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Modeling Vulnerability Discovery

• Quantitative Vulnerability  Assessment Alhazmi 2004-

2008

• Seasonality in Vulnerability Discovery Joh 2008,2009

• Discovery in Multi-Version Software Kim 2006,2007
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Vulnerabilities
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Motivation

• For defects: Reliability modeling and SRGMs have 
been around for decades.

• Assuming that vulnerabilities are special faults will 
lead us to this question:
– To what degree reliability terms and models are applicable 

to vulnerabilities and security? [Littlewood et al].

– The need for quantitative measurements and estimation is 
becoming more crucial.



5

Goal: Modeling Vulnerability Discovery
• Developing a quantitative model to estimate 

vulnerability discovery.
• Using calendar time.
• Using equivalent effort.

• Validate these measurements and models.
– Testing the models using available data

• Identify security Assessment metrics
– Vulnerability density
– Vulnerability to Total defect ratio
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Time – vulnerability discovery model
• What factors impact the discovery process?

– The changing environment
• The share of installed base.
• Global internet users. 

– Discovery effort 
• Discoverers: Developer, White hats or black hats.
• Discovery effort is proportional to the installed base over time.
• Vulnerability finders’ reward: greater rewards,  higher motivation.

– Security level desired for the system
• Server or client
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Time – vulnerability discovery model
• Each vulnerability is recorded.

– Available [NVD, vender etc].

– Needs compilation and filtering.

• Data show three phases for an OS.
• Assumptions:

– The discovery is driven by the 
rewards factor.

– Influenced by the change of market 
share. Time
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Time–vulnerability Discovery model

Vulnerability time growth model
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By

3 phase model S-shaped 
model.
• Phase 1:

•Installed base –low.
• Phase 2:

•Installed base–higher and 
growing/stable.

• Phase 3:
•Installed base–dropping.
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AML Discovery model

Vulnerability time growth model

Time
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= -ABtBCe

By

)( yBAy
dt
dy

-=Alhazmi Malaiya  Logistic model (AML)

O. H. Alhazmi and Y. K. Malaiya, "Quantitative Vulnerability Assessment of Systems Software
Proc. Ann. IEEE Reliability and Maintainability Symp., 2005, pp. 615-620

http://www.cs.colostate.edu/~malaiya/530/rams05.pdf
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Windows 98

A 0.004873

B 37.7328

C 0.5543

χ2 7.365

χ2
critial 60.481

P-value 1- 7.6x10-11

Time–based model: Windows 98
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Time–based model: Windows NT 4.0

Windows NT 
4.0

A 0.000692
B 136
C 0.52288
χ2 35.584
χ2critial 103.01
P-value 0.9999973

Windows NT 4.0
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Usage –vulnerability Discovery model

• The data:
– The global internet 

population.
– The market share of the 

system during a period of 
time.

• Equivalent effort
– The real environment 

performs an intensive testing.
– Malicious activities is relevant 

to overall activities.
– Defined as 

Internet Growth
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Estimating number of users

Estimating the number of IE users 

QUANTITATIVE ANALYSES OF SOFTWARE VULNERABILITIES, HyunChul Joh, 2011

13
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Software Reliability Modeling

• Applicable to general software bugs
• Key Static software metrics
– Software size (without comments, KLOC)
– Defect density (total defects/size)

• Typical range Range 16 -0.1 /KLOC
• Software evolution/reuse, requirement volatility
• Team capabilities, extent of testing

– Defect finding efficiency

14
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Exponential SRGM
Exponential Reliability Growth Model
• Assumption: rate of finding and removing bugs is 

proportional to the number of bugs present at 
time t.

−
𝑑𝑁(𝑡)
𝑑𝑡

= 𝛽!𝑁(𝑡)

Which yields
𝑁 𝑡 = 𝑁 0 𝑒"#!$

• Cumulative number of defects found is
𝑁(0)(1 − 𝑒"#!$)

• Defect finding rate is
𝑁(0)𝑒"#!$

15
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• N(0) may be estimated using defect density and size
• 𝛽! depends to defect finding efficiency
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Usage –vulnerability Discovery model

• The model: growth with effort.

• Growth model based on the exponential SRGM 
[Musa].

• Time is eliminated.

• 𝑦 = 𝑁(0)(1 − 𝑒!"!#)
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Effort-based model: Windows 98

Windows 98

B 37

λvu 0.000505

χ2 3.510

χ2critial 44.9853   

P-value 1- 3.3x10-11
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Effort-based model: Windows NT 4.0

Win NT 4.0

B 108

λvu 0.003061

χ2 15.05

χ2critial 42.5569   

P-value 0.985

Windows NT 4.0
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Discussion

• Excellent fit for Windows 98 
and NT 4.0.

• Model fits data for all OSs 
examined.

• Deviation from the model caused by overlap:
– Windows 98 and Windows XP
– Windows NT 4.0 and Windows 2000

• Vulnerabilities in shared code may be detected in the 
newer OS.

• Need: approach for handling such overlap
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Non-linear regression with Solver

• Excel has the capability to solve linear (and often 
nonlinear) programming problems. 

• The SOLVER tool in Excel: 
– May be used to solve linear and nonlinear optimization 

problems 
– Allows integer or binary restrictions to be placed on decision 

variables 
– Can be used to solve problems with up to 200 decision 

variables 
– The SOLVER Add-in is a Microsoft Office Excel add-in program 

that is available when you install Microsoft Office or Excel. 
– To use the Solver Add-in, however, you first need to load it in 

Excel. The process is slightly different for Mac or PC users. 
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Classic Optimization Problem

• Linear Programming, Non-Linear Programming etc.
• Specified

– Objective function: minimize or maximize
– Constraints: equalities, inequalities

• Generally solution is iterative
• Excel Solver algorithms

• Simplex method is used for solving linear problems
• GRG solver for solving smooth nonlinear problems
• Evolution solver uses genetic algorithms
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Initial Values

• Start with some initial values and the gradually iterate 
towards optimal. 

• When 3 or more parameters are used, it is best to start 
with some good initial guesses.

• Algorithm may get stuck at a local minimum/maximum
• Repeat with diverse initial guesses.
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Example

• Example:
– w95exmple.xlsx

• Decision variables: 3 parameter values.
• Objective Function: Sum of squares of errors between 

actual vs predicted values
• Constraints: all parameters must be positive

1+
= -ABtBCe

By

w95exmple.xlsx
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Vulnerability density and defect density
• Defect density

– Valuable metric for planning test effort
– Used for setting release quality target
– Some data is available
– Depends on various factors, may be stable for a team/process

• Vulnerabilities are a class of defects
– Vulnerability data is in the public domain.
– Is vulnerability density a useful measure?
– Is it related to defect density?

• Vulnerabilities = 5% of defects [Longstaff]?
• Vulnerabilities = 1% of defects [Anderson]?

• Can be a major step in measuring security.
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Vulnerability density and defect density
• Vul dens: 95/98: 0.003-0.004,   NT/2000/XP: 0.01-0.02,   Apache 0.04 
• VKD/DKD.    about 1% for client OSs, Higher for HTTP servers, server OSs

System MSLOC
Known
Defects
(1000s)

DKD
(/Kloc)

Known 
Vulner -
abilies

VKD
(/Kloc)

Ratio
VKD
/DKD

Win 95 15 5 0.33 46 0.0031 0.92%
NT 4.0 server 16 10 0.625 162 0.0101 1.62%
Win 98 18 10 0.556 84 0.0047 0.84%

Win2000 35 63 1.8 508 0.0145 0.81%

Win XP 40 106.5* 2.66* 728 0.0182 0.68%*
Apache
HTTP 2006

227 
(Unix) 4148 18.27 96 0.423 2.32%

Firefox 2.5 24,027 9.61 134 0.0536 0. 557%

MS Thesis Woo, 2006 
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Some notes of caution

• We can never really know the actual number of 
– ordinary software defects
– Vulnerabilities

• We can only count the bugs/vulnerabilities that are known.
• Some methods exist to estimate the number of defects not yet 

found:
– SRGMs
– Defect found-coverage relationship (Malaiya et al 94, 98)

• Similar methods may be devised for vulnerabilities

https://www.cs.colostate.edu/~malaiya/p/denton98_residual.pdf
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Factors Impacting  Vulnerabilities

Number of vulnerabilities:
• Software Code Size: assuming vulnerability density remains 

about the same
• Fraction of code that handles access in/out: higher densities for 

web servers, browsers
• Software age/reuse: vulnerabilities are discovered and removed 

with time, new code injects new vulnerabilities

Vulnerability discovery rate: 
• Installed system base: higher base makes the product more 

attractive
• Vulnerability discovery tools/expertise
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Summary and conclusions
We have introduced:
• Models:

– Time – vulnerability model.
– Usage – vulnerability model.
– Both models shown acceptable  goodness of fit.

• Chi-square test.

• Measurements:
– vulnerability density.
– Vulnerability density vs. defect density.
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Time-based VDMs 

• Classification of Time-based VDMs. 
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Vulnerability Discovery Models

Table of models and their equations

Yazdan Movahedi, Michel Cukier, Ilir Gashi, Vulnerability prediction capability: A comparison between 
vulnerability discovery models and neural network models, Computers & Security,, Volume 87, 2019.

https://www.sciencedirect.com/science/article/pii/S0167404819301518?via%3Dihub
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Seasonality in Vulnerability Discovery
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Seasonality in Vulnerability Discovery

• Vulnerability Discovery Model (VDM): 
– a probabilistic methods for modeling the discovery of 

software vulnerabilities [Ozment] 

– Spans a few years: introduction to replacement
• Seasonality: periodic variation

– well known statistical approach
– quite common in economic time series

• Biological systems, stock markets etc.

Halloween indicator: 
Low returns in May-Oct.
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Examining Seasonality
• Is the seasonal pattern statistically significant? 
• Periodicity of the pattern
• Analysis: 
– Seasonal index analysis with test
– Autocorrelation Function analysis

• Significance
– Enhance VDMs’ predicting ability

• Annual and Weekly seasonality

35
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Annual: Prevalence in Month

Vulnerabilities Disclosed
WinNT
‘95~’07

IIS
‘96~’07

IE
‘97~’07

Jan 42 15 15
Feb 20 10 32
Mar 12 2 22
Apr 13 11 29
May 18 12 41
Jun 24 17 45
Jul 18 11 53
Aug 17 7 42
Sep 11 6 26
Oct 14 6 20
Nov 18 7 26
Dec 51 28 93
Total 258 132 444
Mean 21.5 11 37
s.d. 12.37 6.78 20.94

36
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Seasonal Index

Seasonal Index Values
WinNT IIS IE

Jan 1.95 1.36 0.41
Feb 0.93 0.91 0.86
Mar 0.56 0.81 0.59
Apr 0.60 1.00 0.78
May 0.84 1.09 1.11
Jun 1.12 1.55 1.22
Jul 0.84 1.00 1.43
Aug 0.79 0.64 1.14
Sep 0.51 0.55 0.70
Oct 0.65 0.55 0.54
Nov 0.84 0.64 0.70
Dec 2.37 2.55 2.51

19.68 19.68 19.68
78.37 46 130.43

p-value 3.04e-12 3.23e-6 1.42e-6

37

• Seasonal index: measures how much 
the average for a particular period 
tends to be above (or below) the 
expected value

• H0: no seasonality is present. We 
will evaluate it using the monthly 
seasonal index values given by [4]:

where, si is the seasonal index for ith
month, di is the mean value of ith
month, d is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration. 
Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonindx
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Autocorrelation function (ACF)
• Plot of autocorrelations function values
• With time series values of  zb, zb+1, …, zn, the ACF at lag k, denoted 

by  rk, is [5]:

•
• , where        
• Measures the linear relationship between time series 

observations separated by a lag of  time units
• Hence, when an ACF value is located outside of confidence 

intervals at a lag t, it can be thought that every lag t, there is a 
relationships along with the time line

38
[5] B. L. Bowerman and R. T. O'connell, Time Series Forecsting: Unified concepts and computer 

implementation. 2nd Ed., Boston: Duxbury Press, 1987
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Autocorrelation (ACF):Results

• Expected lags corresponding to 6 
months or its multiple would 
have their ACF values outside 
confidence interval

• Upper/lower dotted lines: 95% 
confidence intervals. 

• An event occurring at time t + k (k 
> 0) lags behind an event 
occurring at time t. 

• Lags are in month.

39
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Why seasonality?

40

H. Joh and Y.K. Malaiya, "Periodicity in Software Vulnerability Discovery, Patching and 
Exploitation",International Journal of Information Security, July 2016, pp 1-18.

http://www.cs.colostate.edu/~malaiya/p/PeriodicityJoh17.pdf
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Weekly Seasonality
• Data from Qualis plots

41

H. Joh, S. Chaichana and Y. K. Malaiya, "Short-term Periodicity in Security Vulnerability
Activity" Proc. Int. Symp. Software Reliability Eng. (ISSRE), FA, November 2010, pp. 408-409

http://www.cs.colostate.edu/~malaiya/p/jjoh.periodicity.2010.pdf
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Halloween Indicator

• “Also known as “Sell in May and go 
away”

• Global (1973-1996): 
– Nov.-April: 12.47% ann., st dev 

12.58%
– 12-months:10.92%, st. dev. 

17.76%
• 36 of 37 developing/developed 

nations
• Data going back to 1694
• “No convincing explanation”

Jacobsen, Ben and Bouman, Sven,The Halloween Indicator, 'Sell in May and Go 
Away': Another Puzzle(July 2001). Available at SSRN: 
http://ssrn.com/abstract=76248
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Vulnerability Discovery in Multi-Version Software Systems 

• Motivation
• Software Evolution
• Multi-version Software Discovery Model

– Apache, Mysql and Win XP data
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Motivation for Multi-version VDMs
• Superposition effect on vulnerability discovery process 

due to shared code in successive versions.
• Examination of  software evolution: impact on 

vulnerability introduction and discovery
• Other factors impacting vulnerability discovery process 

not considered before
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Software Reuse
• New software projects use both new and reused 

blocks.
– New blocks have a higher defect density because they have 

undergone less testing.
– Reused blocks are more reliable.
– Some defects may be introduced at the new/reused block 

interface.
– Overall defect density is weighted average of the two.
– Encounter rate during execution depends on weighted usage
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Software Evolution
• The modification of software during maintenance or 

development: 
– fixes and feature additions.
– Influenced by competition

• Code decay and code addition introduce new vulnerabilities
• Successive version of a software can share a significant fraction 

of code.

Y. K. Malaiya and J. Denton "Requirement Volatility and Defect Density," 
Proc. IEEE Int. Symp. Software Reliability Engineering, Nov. 1999, pp. 285-294.

http://www.cs.colostate.edu/~malaiya/reqvol.pdf
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Software Evolution: Apache & Mysql
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Modification: Apache 43%, Mysql 31%

J. Kim, Y. K. Malaiya and I. Ray, "Vulnerability Discovery in Multi-Version Software Systems," Proc. 10th IEEE Int. 
Symp. on High Assurance System Engineering (HASE), Dallas, Nov. 2007, pp. 141-148

http://www.cs.colostate.edu/~malaiya/p/kim07.pdf
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Vulnerability Discovery & Evolution: 
Apache & Mysql

Some vulnerabilities are in added code, many are inherited from precious 
versions.

Mysql DBMS
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Code Sharing & Vulnerabilities

• Observation
– Vulnerability increases 

after saturation in AML 
modeling

• Accounting for 
Superposition Effect
– Shared components 

between several 
versions of software

Multiple Software Vulnerability Discovery 
Trend
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Multi-version Vulnerability Discovery 
Model

Multiple Software Vulnerability Discovery 
Trend
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One vs Two Humps

One-humped Vulnerability Discovery Model
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Multi-version Vulnerability Discovery 
Model

• May result in a single hump with prolonged 
linear period

One-humped Vulnerability Discovery Trend
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Evolving Programs

Gradually evolving software
Software evolves in each version.
• Existing code fixed 

– some vulnerabilities found and patched
• Code added  for increasing functionality 

– New vulnerabilities injected
– Total number of vulnerabilities may remain about the 

same
• Overall code size keeps increasing

– Vulnerability discovery rate may remain stable
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Linear model
• Because of nearly continuous evolution, the linear phase may get stretched.

Joh’s thesis

• If the evolution rate is steady, the size of the pool of undiscovered vulnerabilities 
stays the same.

• If the market share is steady, the number of vulnerability finders remains steady.
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Linear model

Data from Joh’s thesis

• Four Windows releases: 500 vulnerabilities during July 1998-July 2009
• Size: 35-50 M LOC
• Slope = about 45 vulnerabilities/year
• Further investigation is needed.
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Long Term Trends

• Long term Trends: Total vulnerabilities, Microsoft products
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Long Term Trends

• Long term Trends: Microsoft products, Win XP, Win 10
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Long Term Trends

• Size evolution: Linus kernel
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Long term trends

Likely factors that affect long-term trends
• Better understanding of safer coding practices

– Fewer vulnerabilities injected?

• Better vulnerability discovery tools (fuzzers) and 
more finders
– Higher vulnerability discovery rates
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Vulnerability Discovery and Risks

What factors impact risk?
• Not the vulnerabilities that have been found and 

patched
• Vulnerabilities that have been discovered but not 

patched
– Before disclosure: black hat people/organizations
– after disclosure: when patch development is taking time

• Vulnerabilities with patches, but patches not applied
• Statistical modeling may be needed for assessing probability 

of breaches


