
1 1

Colorado State University
Yashwant K Malaiya

CS 559
Vulnerability Discovery Models

Quantitative Security

CSU Cybersecurity Center
Computer Science Dept

2

Modeling Vulnerability Discovery

• Quantitative Vulnerability Assessment Alhazmi 2004-

2008

• Seasonality in Vulnerability Discovery Joh 2008,2009

• Discovery in Multi-Version Software Kim 2006,2007

3

Vulnerabilities

4

Motivation

• For defects: Reliability modeling and SRGMs have
been around for decades.

• Assuming that vulnerabilities are special faults will
lead us to this question:
– To what degree reliability terms and models are applicable

to vulnerabilities and security? [Littlewood et al].

– The need for quantitative measurements and estimation is
becoming more crucial.

5

Goal: Modeling Vulnerability Discovery
• Developing a quantitative model to estimate

vulnerability discovery.
• Using calendar time.
• Using equivalent effort.

• Validate these measurements and models.
– Testing the models using available data

• Identify security Assessment metrics
– Vulnerability density
– Vulnerability to Total defect ratio

6

Time – vulnerability discovery model
• What factors impact the discovery process?

– The changing environment
• The share of installed base.
• Global internet users.

– Discovery effort
• Discoverers: Developer, White hats or black hats.
• Discovery effort is proportional to the installed base over time.
• Vulnerability finders’ reward: greater rewards, higher motivation.

– Security level desired for the system
• Server or client

7

Time – vulnerability discovery model
• Each vulnerability is recorded.

– Available [NVD, vender etc].

– Needs compilation and filtering.

• Data show three phases for an OS.
• Assumptions:

– The discovery is driven by the
rewards factor.

– Influenced by the change of market
share. Time

Vu
ln

er
ab

ilit
ie

s

Phase 2Phase 1 Phase 3

8

Time–vulnerability Discovery model

Vulnerability time growth model

Time

 V
u

ln
er

ab
il

it
ie

s

1+
= -ABtBCe

By

3 phase model S-shaped
model.
• Phase 1:

•Installed base –low.
• Phase 2:

•Installed base–higher and
growing/stable.

• Phase 3:
•Installed base–dropping.

)(yBAy
dt
dy

-=

9

AML Discovery model

Vulnerability time growth model

Time

 V
u

ln
er

ab
il

it
ie

s

1+
= -ABtBCe

By

)(yBAy
dt
dy

-=Alhazmi Malaiya Logistic model (AML)

O. H. Alhazmi and Y. K. Malaiya, "Quantitative Vulnerability Assessment of Systems Software
Proc. Ann. IEEE Reliability and Maintainability Symp., 2005, pp. 615-620

http://www.cs.colostate.edu/~malaiya/530/rams05.pdf

10

Windows 98

A 0.004873

B 37.7328

C 0.5543

χ2 7.365

χ2
critial 60.481

P-value 1- 7.6x10-11

Time–based model: Windows 98

Windows 98

0

5

10

15

20

25

30

35

40

45

Ja
n-

99

Mar-
99

May
-99

Ju
l-9

9

Se
p -99

Nov
-99

Ja
n-

00

Mar-
00

May
-00

Ju
l-0

0

Se
p -00

Nov
-00

Ja
n-

01

Mar-
01

May
-01

Ju
l-0

1

Se
p -01

Nov
-01

Ja
n-

02

Mar-
02

May
-02

Ju
l-0

2

Se
p -02

V
ul

ne
ra

bi
lit

ie
s

Fitted curve Total vulnerabilites

11

Time–based model: Windows NT 4.0

Windows NT
4.0

A 0.000692
B 136
C 0.52288
χ2 35.584
χ2critial 103.01
P-value 0.9999973

Windows NT 4.0

0

20

40

60

80

100

120

140

160

Au
g-9

6

Dec
-96

Ap
r-9

7

Au
g-9

7

Dec
-97

Ap
r-9

8

Au
g-9

8

Dec
-98

Ap
r-9

9

Au
g-9

9

Dec
-99

Ap
r-0

0

Au
g-0

0

Dec
-00

Ap
r-0

1

Au
g-0

1

Dec
-01

Ap
r-0

2

Au
g-0

2

Dec
-02

Ap
r-0

3

V
ul

ne
ra

bi
lit

ie
s

Total vulnerabilities Fitted curve

12

Usage –vulnerability Discovery model

• The data:
– The global internet

population.
– The market share of the

system during a period of
time.

• Equivalent effort
– The real environment

performs an intensive testing.
– Malicious activities is relevant

to overall activities.
– Defined as

Internet Growth

16 36
70

147

248
304

359

451 458 479
513

558

569

587

608
677

682
719

745
757

0

100

200

300

400

500

600

700

800

Dec
., 1

99
5

Dec
., 1

99
6

Dec
., 1

99
7

Dec
., 1

99
8

Dec
., 1

99
9

Mar.
 20

00

Ju
l.,

20
00

Dec
., 2

00
0

Mar.
, 2

00
1

Ju
n.,

 20
01

Au
g., 2

00
1

Ap
r. 2

00
2

Ju
l.,

20
02

Se
p.,

 20
02

Mar.
, 2

00
3

Se
p.,

 20
03

Oct.
, 2

00
3

Dec
., 2

00
3

Fe
b.,

 20
04

May
, 2

00
4

M
ill

io
ns

 o
f u

se
rs

The percentage of the market share of O.S.

0

10

20

30

40

50

60

May
-99

Au
g-9

9

Nov-
99

Fe
b-0

0

May
-00

Au
g-0

0

Nov-
00

Fe
b-0

1

May
-01

Au
g-0

1

Nov-
01

Fe
b-0

2

May
-02

Au
g-02

Nov-
02

Fe
b-0

3

May
-03

Au
g-0

3

Nov-
03

Fe
b-0

4

May
-04

In
st

al
le

d
Ba

se
 P

er
ce

nt
ag

e

Windows 95 Windows 98 Windows XP Windows NT Windows 2000 Others

)(
0 i

n

i i PUE ´=å =

13

Estimating number of users

Estimating the number of IE users

QUANTITATIVE ANALYSES OF SOFTWARE VULNERABILITIES, HyunChul Joh, 2011

13

14

Software Reliability Modeling

• Applicable to general software bugs
• Key Static software metrics
– Software size (without comments, KLOC)
– Defect density (total defects/size)

• Typical range Range 16 -0.1 /KLOC
• Software evolution/reuse, requirement volatility
• Team capabilities, extent of testing

– Defect finding efficiency

14

15

Exponential SRGM
Exponential Reliability Growth Model
• Assumption: rate of finding and removing bugs is

proportional to the number of bugs present at
time t.

−
𝑑𝑁(𝑡)
𝑑𝑡

= 𝛽!𝑁(𝑡)

Which yields
𝑁 𝑡 = 𝑁 0 𝑒"#!$

• Cumulative number of defects found is
𝑁(0)(1 − 𝑒"#!$)

• Defect finding rate is
𝑁(0)𝑒"#!$

15

0
0.001
0.002
0.003
0.004
0.005
0.006

0 50000 100000

time (sec.)

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

time (sec.)

N(0)

• N(0) may be estimated using defect density and size
• 𝛽! depends to defect finding efficiency

16

Usage –vulnerability Discovery model

• The model: growth with effort.

• Growth model based on the exponential SRGM
[Musa].

• Time is eliminated.

• 𝑦 = 𝑁(0)(1 − 𝑒!"!#)

0

5

10

15

20

25

30

35

40

0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500

Usage (Million user's months)

V
ul

ne
ra

bi
lit

ie
s

17

Effort-based model: Windows 98

Windows 98

B 37

λvu 0.000505

χ2 3.510

χ2critial 44.9853

P-value 1- 3.3x10-11

Windows 98

0

5

10

15

20

25

30

35

40

0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500

Usage (Million user's months)

Vu
ln

er
ab

ilit
ie

s

Actual Vulnerabilities Fitted curve

18

Effort-based model: Windows NT 4.0

Win NT 4.0

B 108

λvu 0.003061

χ2 15.05

χ2critial 42.5569

P-value 0.985

Windows NT 4.0

0

20

40

60

80

100

120

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

Usage (Millions users months)

V
ul

ne
ra

bi
lit

ie
s

Actual Vulnerability Fitted

`

19

Discussion

• Excellent fit for Windows 98
and NT 4.0.

• Model fits data for all OSs
examined.

• Deviation from the model caused by overlap:
– Windows 98 and Windows XP
– Windows NT 4.0 and Windows 2000

• Vulnerabilities in shared code may be detected in the
newer OS.

• Need: approach for handling such overlap

Windows 98

0

5

10

15

20

25

30

35

40

45

Ja
n-99

Mar-
99

May
-99

Ju
l-9

9

Sep
-99

Nov
-99

Ja
n-00

Mar-
00

May
-00

Ju
l-0

0

Sep
-00

Nov
-00

Ja
n-01

Mar-
01

May
-01

Ju
l-0

1

Sep
-01

Nov
-01

Ja
n-02

Mar-
02

May
-02

Ju
l-0

2

Sep
-02

Vu
ln

er
ab

ilit
ie

s

Fitted curve Total vulnerabilites

20

Non-linear regression with Solver

• Excel has the capability to solve linear (and often
nonlinear) programming problems.

• The SOLVER tool in Excel:
– May be used to solve linear and nonlinear optimization

problems
– Allows integer or binary restrictions to be placed on decision

variables
– Can be used to solve problems with up to 200 decision

variables
– The SOLVER Add-in is a Microsoft Office Excel add-in program

that is available when you install Microsoft Office or Excel.
– To use the Solver Add-in, however, you first need to load it in

Excel. The process is slightly different for Mac or PC users.

21

Classic Optimization Problem

• Linear Programming, Non-Linear Programming etc.
• Specified

– Objective function: minimize or maximize
– Constraints: equalities, inequalities

• Generally solution is iterative
• Excel Solver algorithms

• Simplex method is used for solving linear problems
• GRG solver for solving smooth nonlinear problems
• Evolution solver uses genetic algorithms

22

Initial Values

• Start with some initial values and the gradually iterate
towards optimal.

• When 3 or more parameters are used, it is best to start
with some good initial guesses.

• Algorithm may get stuck at a local minimum/maximum
• Repeat with diverse initial guesses.

23

Example

• Example:
– w95exmple.xlsx

• Decision variables: 3 parameter values.
• Objective Function: Sum of squares of errors between

actual vs predicted values
• Constraints: all parameters must be positive

1+
= -ABtBCe

By

w95exmple.xlsx

24

Vulnerability density and defect density
• Defect density

– Valuable metric for planning test effort
– Used for setting release quality target
– Some data is available
– Depends on various factors, may be stable for a team/process

• Vulnerabilities are a class of defects
– Vulnerability data is in the public domain.
– Is vulnerability density a useful measure?
– Is it related to defect density?

• Vulnerabilities = 5% of defects [Longstaff]?
• Vulnerabilities = 1% of defects [Anderson]?

• Can be a major step in measuring security.

25

Vulnerability density and defect density
• Vul dens: 95/98: 0.003-0.004, NT/2000/XP: 0.01-0.02, Apache 0.04
• VKD/DKD. about 1% for client OSs, Higher for HTTP servers, server OSs

System MSLOC
Known
Defects
(1000s)

DKD
(/Kloc)

Known
Vulner -
abilies

VKD
(/Kloc)

Ratio
VKD
/DKD

Win 95 15 5 0.33 46 0.0031 0.92%
NT 4.0 server 16 10 0.625 162 0.0101 1.62%
Win 98 18 10 0.556 84 0.0047 0.84%

Win2000 35 63 1.8 508 0.0145 0.81%

Win XP 40 106.5* 2.66* 728 0.0182 0.68%*
Apache
HTTP 2006

227
(Unix) 4148 18.27 96 0.423 2.32%

Firefox 2.5 24,027 9.61 134 0.0536 0. 557%

MS Thesis Woo, 2006

26

Some notes of caution

• We can never really know the actual number of
– ordinary software defects
– Vulnerabilities

• We can only count the bugs/vulnerabilities that are known.
• Some methods exist to estimate the number of defects not yet

found:
– SRGMs
– Defect found-coverage relationship (Malaiya et al 94, 98)

• Similar methods may be devised for vulnerabilities

https://www.cs.colostate.edu/~malaiya/p/denton98_residual.pdf

27

Factors Impacting Vulnerabilities

Number of vulnerabilities:
• Software Code Size: assuming vulnerability density remains

about the same
• Fraction of code that handles access in/out: higher densities for

web servers, browsers
• Software age/reuse: vulnerabilities are discovered and removed

with time, new code injects new vulnerabilities

Vulnerability discovery rate:
• Installed system base: higher base makes the product more

attractive
• Vulnerability discovery tools/expertise

30

Summary and conclusions
We have introduced:
• Models:

– Time – vulnerability model.
– Usage – vulnerability model.
– Both models shown acceptable goodness of fit.

• Chi-square test.

• Measurements:
– vulnerability density.
– Vulnerability density vs. defect density.

31

Time-based VDMs

• Classification of Time-based VDMs.

32

Vulnerability Discovery Models

Table of models and their equations

Yazdan Movahedi, Michel Cukier, Ilir Gashi, Vulnerability prediction capability: A comparison between
vulnerability discovery models and neural network models, Computers & Security,, Volume 87, 2019.

https://www.sciencedirect.com/science/article/pii/S0167404819301518?via%3Dihub

33

Seasonality in Vulnerability Discovery

34

Seasonality in Vulnerability Discovery

• Vulnerability Discovery Model (VDM):
– a probabilistic methods for modeling the discovery of

software vulnerabilities [Ozment]

– Spans a few years: introduction to replacement
• Seasonality: periodic variation

– well known statistical approach
– quite common in economic time series

• Biological systems, stock markets etc.

Halloween indicator:
Low returns in May-Oct.

35

Examining Seasonality
• Is the seasonal pattern statistically significant?
• Periodicity of the pattern
• Analysis:
– Seasonal index analysis with test
– Autocorrelation Function analysis

• Significance
– Enhance VDMs’ predicting ability

• Annual and Weekly seasonality

35

36

Annual: Prevalence in Month

Vulnerabilities Disclosed
WinNT
‘95~’07

IIS
‘96~’07

IE
‘97~’07

Jan 42 15 15
Feb 20 10 32
Mar 12 2 22
Apr 13 11 29
May 18 12 41
Jun 24 17 45
Jul 18 11 53
Aug 17 7 42
Sep 11 6 26
Oct 14 6 20
Nov 18 7 26
Dec 51 28 93
Total 258 132 444
Mean 21.5 11 37
s.d. 12.37 6.78 20.94

36

0.00

0.05

0.10

0.15

0.20

0.25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pe
rc
en
ta
ge

Month

Percentage of Vuln. for
Month

Win NT I I S Internet Explorer

37

Seasonal Index

Seasonal Index Values
WinNT IIS IE

Jan 1.95 1.36 0.41
Feb 0.93 0.91 0.86
Mar 0.56 0.81 0.59
Apr 0.60 1.00 0.78
May 0.84 1.09 1.11
Jun 1.12 1.55 1.22
Jul 0.84 1.00 1.43
Aug 0.79 0.64 1.14
Sep 0.51 0.55 0.70
Oct 0.65 0.55 0.54
Nov 0.84 0.64 0.70
Dec 2.37 2.55 2.51

19.68 19.68 19.68
78.37 46 130.43

p-value 3.04e-12 3.23e-6 1.42e-6

37

• Seasonal index: measures how much
the average for a particular period
tends to be above (or below) the
expected value

• H0: no seasonality is present. We
will evaluate it using the monthly
seasonal index values given by [4]:

where, si is the seasonal index for ith
month, di is the mean value of ith
month, d is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration.
Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonindx

38

Autocorrelation function (ACF)
• Plot of autocorrelations function values
• With time series values of zb, zb+1, …, zn, the ACF at lag k, denoted

by rk, is [5]:

•
• , where
• Measures the linear relationship between time series

observations separated by a lag of time units
• Hence, when an ACF value is located outside of confidence

intervals at a lag t, it can be thought that every lag t, there is a
relationships along with the time line

38
[5] B. L. Bowerman and R. T. O'connell, Time Series Forecsting: Unified concepts and computer

implementation. 2nd Ed., Boston: Duxbury Press, 1987

39

Autocorrelation (ACF):Results

• Expected lags corresponding to 6
months or its multiple would
have their ACF values outside
confidence interval

• Upper/lower dotted lines: 95%
confidence intervals.

• An event occurring at time t + k (k
> 0) lags behind an event
occurring at time t.

• Lags are in month.

39

40

Why seasonality?

40

H. Joh and Y.K. Malaiya, "Periodicity in Software Vulnerability Discovery, Patching and
Exploitation",International Journal of Information Security, July 2016, pp 1-18.

http://www.cs.colostate.edu/~malaiya/p/PeriodicityJoh17.pdf

41

Weekly Seasonality
• Data from Qualis plots

41

H. Joh, S. Chaichana and Y. K. Malaiya, "Short-term Periodicity in Security Vulnerability
Activity" Proc. Int. Symp. Software Reliability Eng. (ISSRE), FA, November 2010, pp. 408-409

http://www.cs.colostate.edu/~malaiya/p/jjoh.periodicity.2010.pdf

42

Halloween Indicator

• “Also known as “Sell in May and go
away”

• Global (1973-1996):
– Nov.-April: 12.47% ann., st dev

12.58%
– 12-months:10.92%, st. dev.

17.76%
• 36 of 37 developing/developed

nations
• Data going back to 1694
• “No convincing explanation”

Jacobsen, Ben and Bouman, Sven,The Halloween Indicator, 'Sell in May and Go
Away': Another Puzzle(July 2001). Available at SSRN:
http://ssrn.com/abstract=76248

1950-2008

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Ja
nu
ary

Fe
bru
ary
Ma
rch Ap

ril
Ma
y
Ju
ne Ju

ly

Au
gu
st

Se
pte
mb
er

Oc
tob
er

No
ve
mb
er

De
ce
mb
er

R
et
u
rn

43 43

Colorado State University
Yashwant K Malaiya

CS 559
Multi-version Systems

Quantitative Security

CSU Cybersecurity Center
Computer Science Dept

44 44

Vulnerability Discovery in Multi-Version Software Systems

• Motivation
• Software Evolution
• Multi-version Software Discovery Model

– Apache, Mysql and Win XP data

45 45

Motivation for Multi-version VDMs
• Superposition effect on vulnerability discovery process

due to shared code in successive versions.
• Examination of software evolution: impact on

vulnerability introduction and discovery
• Other factors impacting vulnerability discovery process

not considered before

46

Software Reuse
• New software projects use both new and reused

blocks.
– New blocks have a higher defect density because they have

undergone less testing.
– Reused blocks are more reliable.
– Some defects may be introduced at the new/reused block

interface.
– Overall defect density is weighted average of the two.
– Encounter rate during execution depends on weighted usage

47 47

Software Evolution
• The modification of software during maintenance or

development:
– fixes and feature additions.
– Influenced by competition

• Code decay and code addition introduce new vulnerabilities
• Successive version of a software can share a significant fraction

of code.

Y. K. Malaiya and J. Denton "Requirement Volatility and Defect Density,"
Proc. IEEE Int. Symp. Software Reliability Engineering, Nov. 1999, pp. 285-294.

http://www.cs.colostate.edu/~malaiya/reqvol.pdf

48
48

Software Evolution: Apache & Mysql

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1.3
.0

1.3
.2

1.3
.4

1.3
.9

1.3
.12

1.3
.17

1.3
.20

1.3
.23

1.3
.27

1.3
.29

1.3
.32

1.3
.34

1.3
.36

Version Number

LO
C
 (

Li
ne

s
of

 C
od

e)

Initial Code Added Code

0

100000

200000

300000

400000

500000

600000

4.0
.0

4.0
.2

4.0
.4

4.0
.5a 4.0

.7
4.0

.9

4.0
.11

a
4.0

.13

4.0
.15

a
4.0

.16
4.0

.18
4.0

.21
4.0

.23
4.0

.24
4.0

.26

Version Number

LO
C
 (

Li
ne

s
of

 C
od

e)

Initial Code Added Code

Modification: Apache 43%, Mysql 31%

J. Kim, Y. K. Malaiya and I. Ray, "Vulnerability Discovery in Multi-Version Software Systems," Proc. 10th IEEE Int.
Symp. on High Assurance System Engineering (HASE), Dallas, Nov. 2007, pp. 141-148

http://www.cs.colostate.edu/~malaiya/p/kim07.pdf

49
49

Vulnerability Discovery & Evolution:
Apache & Mysql

Some vulnerabilities are in added code, many are inherited from precious
versions.

Mysql DBMS

0%

20%

40%

60%

80%

100%

120%

O
ct

-0
1

Fe
b-

02

Ju
n-

02

O
ct

-0
2

Fe
b-

03

Ju
n-

03

O
ct

-0
3

Fe
b-

04

Ju
n-

04

O
ct

-0
4

Fe
b-

05

Ju
n-

05

O
ct

-0
5

Fe
b-

06

Ju
n-

06

O
ct

-0
6

Release Date
V

u
ln

er
a

b
il

it
ie

s

Code increasing Vulnerability Discovery

Apache

0%

20%

40%

60%

80%

100%

120%

Ju
n-

98

Ju
n-

99

Ju
n-

00

Ju
n-

01

Ju
n-

02

Ju
n-

03

Ju
n-

04

Ju
n-

05

Ju
n-

06

Release Date

P
e
rc

e
n
ta

g
e

Added Code in Next Version Reliability Growth

c

50
50

Code Sharing & Vulnerabilities

• Observation
– Vulnerability increases

after saturation in AML
modeling

• Accounting for
Superposition Effect
– Shared components

between several
versions of software

Multiple Software Vulnerability Discovery
Trend

Calendar Time
V
ul

ne
ra

bi
lit

y
D

is
co

ve
ry

 r
at

e
1st Version 2nd Version
Shared part Total Version Trend
Total Version Trend

51
51

Multi-version Vulnerability Discovery
Model

Multiple Software Vulnerability Discovery
Trend

Calendar Time

V
ul

ne
ra

bi
lit

y
D

is
co

ve
ry

 r
at

e

1st Version 2nd Version
Shared part Total Version Trend
Total Version Trend

Previous
Version

Next
Version

Shared
Code

Ratio α

Apache
1.3.24
(3-21-
2002)

2.0.35
(4-6-
2002)

20.16%

Mysql
4.1.1
(12-1-
2003)

5.0.0
(12-22-
2003)

83.52%

52
52

One vs Two Humps

One-humped Vulnerability Discovery Model

Calendar Time

N
um

be
r

of
 V

ul
ne

ra
bi

lit
y

Calendar Time

C
um

ul
at

iv
e

V
ul

ne
ra

bi
lit

y

Superposition affect

53
53

Multi-version Vulnerability Discovery
Model

• May result in a single hump with prolonged
linear period

One-humped Vulnerability Discovery Trend

Calendar Time

V
ul

ne
ra

bi
lit

y
N

um
be

r

1st version Shared Total

One-humped Vulnerability Discovery

Calendar Time

V
ul

ne
ra

bi
lit

y
R
at

e

1st Version 2nd Version Shared Total

54
54

Evolving Programs

Gradually evolving software
Software evolves in each version.
• Existing code fixed

– some vulnerabilities found and patched
• Code added for increasing functionality

– New vulnerabilities injected
– Total number of vulnerabilities may remain about the

same
• Overall code size keeps increasing

– Vulnerability discovery rate may remain stable

55
55

Linear model
• Because of nearly continuous evolution, the linear phase may get stretched.

Joh’s thesis

• If the evolution rate is steady, the size of the pool of undiscovered vulnerabilities
stays the same.

• If the market share is steady, the number of vulnerability finders remains steady.

56
56

Linear model

Data from Joh’s thesis

• Four Windows releases: 500 vulnerabilities during July 1998-July 2009
• Size: 35-50 M LOC
• Slope = about 45 vulnerabilities/year
• Further investigation is needed.

57
57

Long Term Trends

• Long term Trends: Total vulnerabilities, Microsoft products

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1990 1995 2000 2005 2010 2015 2020 2025

Vulnerabilities (Yearly)

TotVul Msft

58
58

Long Term Trends

• Long term Trends: Microsoft products, Win XP, Win 10

-500

0

500

1000

1500

2000

1990 1995 2000 2005 2010 2015 2020 2025

Vulnerabilites (Yearly)

Msft XP win 10

59
59

Long Term Trends

• Size evolution: Linus kernel

0

5

10

15

20

25

30

1985 1990 1995 2000 2005 2010 2015 2020 2025

Linux Kernel size

60
60

Long term trends

Likely factors that affect long-term trends
• Better understanding of safer coding practices

– Fewer vulnerabilities injected?

• Better vulnerability discovery tools (fuzzers) and
more finders
– Higher vulnerability discovery rates

61
61

Vulnerability Discovery and Risks

What factors impact risk?
• Not the vulnerabilities that have been found and

patched
• Vulnerabilities that have been discovered but not

patched
– Before disclosure: black hat people/organizations
– after disclosure: when patch development is taking time

• Vulnerabilities with patches, but patches not applied
• Statistical modeling may be needed for assessing probability

of breaches

