Quantitative Security

Colorado State University Yashwant K Malaiya CS 559 L13

CSU Cybersecurity Center Computer Science Dept

Today's Outline

- Some thoughts
- Review
- Seasonality
- Multi-version software
- Long term effects

Is hacking legal?

- That depends on what you mean by hacking.
 - Original meaning (MIT, 1960): informal programming
 - Unauthorized access of computing systems is illegal.
 - Can be done by people with limited expertise.
 - Discovering vulnerabilities in software/systems one owns is not illegal.
 - May take significant skill.
 - Scanning for security holes in systems you don't own, is not legal.
 - Paying ransom for data (ransomware) is not legal in USA.
 - Disclosure/selling of zero-day vulnerabilities may be controlled by governments.

Dimensions and Approximations

- For real problems, proper approximations are essential.
 - Jeff Bezos net worth is \$194.43 Billion Oct 2, 2020. Can be approximated as 200 Billion.
 - (1,000,001 1,000,000) may not be approximated as 0.
- Note the distinction between K (10³) and M (10⁶). You must convert numbers appropriately.
- You need to keep dimensions in mind.
 - Fort Collins to Denver is _____ miles.
 - Windows 10 is about 50 Million lines of code.
 - Documented smallest software defect density is 0.1/KLOC (space shuttle software).
 - In OS, the vulnerabilities are about 1% of the defects.

What you should question

- A claim should probably be tentatively accepted if
 - It is consistent with well established, carefully researched observations
 - Credibility of the researchers and publication
- Question a claim if
 - You think you can come up with a better idea
- Researchers (unlike managers) do not claim they know everything.

Term Research Project

- Select your topic idea asap.
- Project Proposal & Sources: due Oct 10
 - See <u>requirements</u>.
- Semi-final report: due Nov 7
 - Lit review done, some preliminary results
- Slides/Presentation: Nov 18, Nov 19-Dec 8
 - interactive
- Final report: due Dec 9
 - Possible publication
- Critical Peer reviews: due Dec 10

Quantitative Security

Colorado State University Yashwant K Malaiya CS 559 Vulnerability Discovery Models

CSU Cybersecurity Center Computer Science Dept

Time-vulnerability Discovery model

3 phase model S-shaped model.

- Phase 1:
 - Installed base –low.
- Phase 2:
 - •Installed base-higher and growing/stable.

• Phase 3:

Installed base-dropping.

O. H. Alhazmi and Y. K. Malaiya, <u>"Quantitative Vulnerability Assessment</u> of Systems Software Proc. Ann. IEEE Reliability and Maintainability Symp., 2005, pp. 615-620

$$\frac{dy}{dt} = Ay(B - y)$$

Colorado State University

Time-based model: Windows 98

Usage –vulnerability Discovery model

- The data:
 - The global internet population.
 - The market share of the system during a period of time.
- Equivalent effort
 - The real environment performs an intensive testing.
 - Malicious activities is relevant to overall activities.
 - Defined as

 $E = \sum_{i=0}^{n} (U_i \times P_i)$

Colorado State University

Software Reliability Modeling

- Applicable to general software bugs
- Key Static software metrics
 - Software size (without comments, KLOC)
 - Defect density (total defects/size)
 - Typical range Range 16 -0.1 /KLOC
 - Software evolution/reuse, requirement volatility
 - Team capabilities, extent of testing
 - Defect finding efficiency

0.1/KLOC Space Shuttle

Exponential SRGM

Exponential Reliability Growth Model

 Assumption: rate of finding and removing bugs proportional to the number of bugs present at time t.

$$-\frac{dN(t)}{dt} = \beta_1 N(t)$$

Which yields

 $N(t) = N(0)e^{-\beta_1 t}$

• Cumulative number of defects found is

$$N(0)(1-e^{-\beta_1 t})$$

• Defect finding rate is $N(0)e^{-\beta_1 t}$

• β_1 depends to defect finding efficiency

Colorado State University

Usage –vulnerability Discovery model

- The model: growth with effort.
- Growth model based on the exponential SRGM
- Time is eliminated.
- $y = N(0)(1 e^{-\beta_1 E})$

Vulnerability density and defect density

- Defect density
 - Valuable metric for planning test effort
 - Used for setting release quality target
 - Some data is available
 - Depends on various factors, may be stable for a team/process
- Vulnerabilities are a class of defects
 - Vulnerability data is in the public domain.
 - Is vulnerability density a useful measure?
 - Is it related to defect density?
 - Vulnerabilities = 5% of defects [Longstaff]?
 - Vulnerabilities = 1% of defects [Anderson]?
- Can be a major step in measuring security.

Vulnerability density and defect density

- Vul dens: 95/98: 0.003-0.004, NT/2000/XP: 0.01-0.02, Apache 0.04
- V_{KD}/D_{KD} about 1% for client OSs, Higher for HTTP servers, server OSs

System	MSLOC	Known Defects (1000s)	D _{KD} (/Kloc)	Known Vulner - abilies	V _{KD} (/Kloc)	Ratio V _{KD} /D _{KD}
Win 95	15	5	0.33	46	0.0031	0.92%
NT 4.0 server	16	10	0.625	162	0.0101	1.62%
Win 98	18	10	0.556	84	0.0047	0.84%
Win2000	35	63	1.8	508	0.0145	0.81%
Win XP	40	106.5*	2.66*	728	0.0182	0.68%*
Apache HTTP 2006	227 (Unix)	4148	18.27	96	0.423	2.32%
Firefox	2.5	24,027	9.61	134	0.0536	0. 557%

Colorado State University

Vulnerability Discovery Models

Model	Equation
NHPP Power-law (Movahedi et al., 2018)	$\Omega(t) = (\beta^{-\alpha}).t^{\alpha}$
Gamma-based VDM (Joh and Malaiya, 2014)	$\Omega(t_0) = \int_{t=0}^{t_0} \frac{\gamma}{\Gamma(\alpha)\beta^{\alpha}} t^{\alpha-1} e^{-\frac{t}{\beta}} dt$ $\Omega(t) = \gamma \{1 - e^{-(\frac{t}{\beta})^{\alpha}}\}$
Weibull-based VDM (Kim et al., 2007) AML VDM (Alhazmi and Malaiya, 2005)	$\Omega(t) = \gamma \{1 - e^{-\left(\frac{t}{\beta}\right)^{\alpha}}\}$ $\Omega(t) = \frac{B}{BCe^{-AB} + 1}$
Normal-based VDM (Joh and Malaiya, 2014)	$\Omega(t) = \frac{\gamma}{1+e^{-\frac{(t-\alpha)}{2}}}$
Rescorla Exponential (RE) (Rescorla, Jan. 2005) Rescorla Quadratic (RQ) (Rescorla, Jan. 2005) Younis Folded (YF) (Younis et al., 2011) Linear Model (LM) (Alhazmi and Malaiya, 2006)	$\Omega(t) = \gamma (1 - e^{-\lambda t})$ $\Omega(t) = \frac{At^2}{2} + Bt$ $\Omega(t) = \frac{\gamma}{2} \{ \operatorname{erf}(\frac{t-\tau}{\sqrt{2\sigma}}) + \operatorname{erf}(\frac{t+\tau}{\sqrt{2\sigma}}) \}$ $\Omega(t) = At + B$

Table of models and their equations

Yazdan Movahedi, Michel Cukier, Ilir Gashi, <u>Vulnerability prediction capability: A comparison between</u> <u>vulnerability discovery models and neural network models</u>, Computers & Security,, Volume 87, 2019.

Seasonality in Vulnerability Discovery

Seasonality in Vulnerability Discovery

- Vulnerability Discovery Model (VDM):
 - a probabilistic methods for modeling the discovery of software vulnerabilities [Ozment]
 - Spans a few years: introduction to replacement
- Seasonality: periodic variation
 - well known statistical approach
 - quite common in economic time series
 - Biological systems, stock markets etc.

Halloween indicator: Low returns in May-Oct.

Examining Seasonality

- Is the seasonal pattern statistically significant?
- Periodicity of the pattern
- Analysis:
 - Seasonal index analysis with test
 - Autocorrelation Function analysis
- Significance
 - Enhance VDMs' predicting ability
- Annual and Weekly seasonality

Annual: Prevalence in Month

Vulnerabilities Disclosed

	WinNT IIS		IE
	'95~'07	'96~'07	'97~'07
Jan	42	15	15
Feb	20	10	32
Mar	12	2	22
Apr	13	11	29
May	18	12	41
Jun	24	17	45
Jul	18	11	53
Aug	17	7	42
Sep	11	6	26
Oct	14	6	20
Nov	18	7	26
Dec	51	28	93
Total	258	132	444
Mean	21.5	11	37
s.d.	12.37	6.78	20.94

Colorado State University

Seasonal Index

WinNT		
••••••	IIS	IE
Jan 1.9	5 1.36	0.41
Feb 0.9	3 0.91	0.86
Mar 0.5	0.81	0.59
Apr 0.6	1.00	0.78
May 0.8	1.09	1.11
Jun 1.1	2 1.55	1.22
Jul 0.8	1.00	1.43
Aug 0.7	0.64	1.14
Sep 0.5	0.55	0.70
Oct 0.6	0.55	0.54
Nov 0.8	0.64	0.70
Dec 2.3	2.55	2.51
χ_{ζ}^{2} 19.6	3 19.68	19.68
X ² 78.3	46	130.43
p-value 3.04e-12	2 3.23e-6	1.42e-6

25

25

- Seasonal index: measures how much the average for a particular period tends to be above (or below) the expected value
- H_0 : no seasonality is present. We will evaluate it using the monthly seasonal index values given by [4]:

where, s_i is the seasonal index for i^{th} month, d_i is the mean value of i^{th} month, *d* is a grand average

[4] Hossein Arsham. Time-Critical Decision Making for Business Administration. Available: http://home.ubalt. edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#rseasonando State University

Autocorrelation function (ACF)

- Plot of autocorrelations function values
- With time series values of z_b, z_{b+1}, ..., z_n, the ACF at lag k, denoted by r_k, is [5]:

$$r_k = \frac{\sum_{t=b}^{n-k} (z_t - \bar{z})(z_{t+k} - \bar{z})}{\sum_{t=b}^n (z_t - \bar{z})^2}$$

, where

$$\bar{z} = \frac{\sum_{t=b}^{n} z_t}{(n-b+1)}$$

- Measures the linear relationship between time series observations separated by a lag of time units
- Hence, when an ACF value is located outside of confidence intervals at a lag t, it can be thought that every lag t, there is a relationships along with the time line

 [5] B. L. Bowerman and R. T. O'connell, Time Series Forecsting: Unified concepts and computer implementation. 2nd Ed., Boston: Duxbury Press, 1987
 Colorado State University

26

Autocorrelation (ACF):Results

27

27

- Expected lags corresponding to 6 months or its multiple would have their ACF values outside confidence interval
- Upper/lower dotted lines: 95% confidence intervals.
- An event occurring at time t + k (k
 > 0) lags behind an event occurring at time t.
- Lags are in month.

Colorado State University

Why seasonality?

Fig. 6 Frequency of Black Hat and Defcon by month, and major Microsoft software system release time by month. a Black Hat and Defcon by month. b MS release by month

H. Joh and Y.K. Malaiya, "<u>Periodicity in Software Vulnerability Discovery, Patching and</u> <u>Exploitation</u>", International Journal of Information Security, July 2016, pp 1-18.

Weekly Seasonality

Figure 1. Run charts for unpatched critical vulnerabilities in 2008 and Exploitation with their corresponding ACFs. The upper two plots are normalized using the maximum value as 100%. In the bottom two plots, legs are in day.

H. Joh, S. Chaichana and Y. K. Malaiya, "<u>Short-term Periodicity in Security Vulnerability</u> <u>Activity</u>" Proc. Int. Symp. Software Reliability Eng. (ISSRE), FA, November 2010, pp. 408-409 **Colorado State University**

Halloween Indicator

- "Also known as "Sell in May and go away"
- Global (1973-1996):
 - Nov.-April: 12.47% ann., st dev
 12.58%
 - 12-months:10.92%, st. dev.
 17.76%
- 36 of 37 developing/developed nations
- Data going back to 1694
- "No convincing explanation"

Jacobsen, Ben and Bouman, Sven, The Halloween Indicator, 'Sell in May and Go Away': Another Puzzle(July 2001). Available at SSRN: http://ssrn.com/abstract=76248

Quantitative Security

Colorado State University Yashwant K Malaiya CS 559 Multi-version Systems

CSU Cybersecurity Center Computer Science Dept

Vulnerability Discovery in Multi-Version Software Systems

- Motivation
- Software Evolution
- Multi-version Software Discovery Model
 - Apache, Mysql and Win XP data

Motivation for Multi-version VDMs

- Superposition effect on vulnerability discovery process due to shared code in successive versions.
- Examination of software evolution: impact on vulnerability introduction and discovery
- Other factors impacting vulnerability discovery process not considered before

Software Reuse

- New software projects use both new and reused blocks.
 - New blocks have a higher defect density because they have undergone less testing.
 - Reused blocks are more reliable.
 - Some defects may be introduced at the new/reused block interface.
 - Overall defect density is weighted average of the two.
 - Encounter rate during execution depends on weighted usage

Software Evolution

- The modification of software during maintenance or development:
 - fixes and feature additions.
 - Influenced by competition
- Code decay and code addition introduce new vulnerabilities
- Successive version of a software can share a significant fraction of code.

Y. K. Malaiya and J. Denton "<u>Requirement Volatility and Defect Density</u>," Proc. IEEE Int. Symp. Software Reliability Engineering, Nov. 1999, pp. 285-294.

Software Evolution: Apache & Mysql

Modification: Apache 43%, Mysql 31%

J. Kim, Y. K. Malaiya and I. Ray, "<u>Vulnerability Discovery in Multi-Version Software Systems</u>," Proc. 10th IEEE Int. Symp. on High Assurance System Engineering (HASE), Dallas, Nov. 2007, pp. 141-148

Vulnerability Discovery & Evolution:

Some vulnerabilities are in added code, many are inherited from precious versions.

³⁷ Colorado State University

Code Sharing & Vulnerabilities

- Observation
 - Vulnerability increases after saturation in AML modeling
- Accounting for Superposition Effect
 - Shared components
 between several
 versions of software

Multi-version Vulnerability Discovery

	Previous Version	Next Version	Shared Code Ratio α
Apache	1.3.24 (3-21- 2002)	2.0.35 (4-6- 2002)	20.16%
Mysql	4.1.1 (12-1- 2003)	5.0.0 (12-22- 2003)	83.52%

Colorado³State University

$$\Omega(t) = \frac{B}{BCe^{-ABt} + 1} + \alpha \frac{B'}{B'C'e^{-A'B'(t-\varepsilon)} + 1}$$

One vs Two Humps

Superposition affect

40 Colorado State University

Multi-version Vulnerability Discovery

 May result in a single hump with prolonged linear period

Evolving Programs

Gradually evolving software

Software evolves in each version.

- Existing code fixed
 - some vulnerabilities found and patched
- Code added for increasing functionality
 - New vulnerabilities injected
 - Total number of vulnerabilities may remain about the same
- Overall code size keeps increasing
 - Vulnerability discovery rate may remain stable

Linear model

• Because of nearly continuous evolution, the linear phase may get stretched.

- If the evolution rate is steady, the size of the pool of undiscovered vulnerabilities stays the same (vulnerabilities removal rate = injection rate)
- If the market share is steady, the number of vulnerability finders remains steady.

Joh's thesis

Linear model

- Four Windows releases: 500 vulnerabilities during July 1998-July 2009
- Size: 35-50 M LOC
- Slope = about 45 vulnerabilities/year
- Further investigation is needed.

Data from Joh's thesis

Long Term Trends

Vulnerabilities (Yearly)

• Long term Trends: Total vulnerabilities, Microsoft products

⁴⁵ Colorado State University

Long Term Trends

• Long term Trends: Microsoft products, Win XP, Win 10

Long Term Trends

• Size evolution: Linus kernel

Long term trends

Likely factors that affect long-term trends

- Better understanding of safer coding practices
 Fewer vulnerabilities injected?
- Better vulnerability discovery tools (fuzzers) and more finders
 - Higher vulnerability discovery rates
- More software products
 - More vulnerabilities to be found

Vulnerability Discovery and Risks

What factors impact risk?

- Not the vulnerabilities that have been found and patched
- Vulnerabilities that have been discovered but not patched
 - Before disclosure: black hat people/organizations
 - after disclosure: when patch development is taking time
 - Vulnerabilities with patches, but patches not applied
- Statistical modeling may be needed for assessing probability of breaches

