
1 1

Colorado State University
Yashwant K Malaiya

CS559
L15: CVSS & Testing

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

2

Leaves are falling..

3

Notes
Midterm coming Tuesday.
Will use canvas. Will need proper laptop/pc with camera.
• Sec 001: Respondus 3:30-4:45 PM
• Sec 801: Honorlock Time window will be announced

later
– 801 students local in Fort Collins need to take it during 3:30-

4:45 PM

Quick review for MT this Thursday.

https://tilt.colostate.edu/TestingCenter/Respondus
https://tilt.colostate.edu/TestingCenter/FacultyResources/Proctoring/pdfs/StudentGuideGettingStartedWithHonorlock.pdf

4

Some Quiz Questions: Q6
Q. According to a paper by Bilge and Dumitras, Vulnerability lifecycle
events are ..
• introduction, discovery, exploit release, disclosure, anti-virus signature

available, patch available, patch installed
Q. In-class question on Thursday: Address Space Layout Randomization
is an example of
• Proactive Defense
Q. For this question, data for a certain product is provided in file - Use
the data to fit the AML model using Excel Solver. Use the initial values
A=0, B=115, C=1. What is the value of A obtained?
• Between 0.0009 and 0.001
Comment: can be done without using an array formula, however the
spreadsheet is cleaner with an array formula.
OpenOffice also has a solver. MATLAB has an Optimization toolbox.

5

Some Quiz Questions: Q7
Q. Discovering previously unknown vulnerabilities ...
• Is legal and can be profitable
Q. The ___________ can be used to identify possible
seasonality. Identify all correct answers.
• autocorrelation function, seasonal index
Q. CVSS is a system for ..
• assessing severity of the software vulnerabilities.
Q. The occurrence rate of breaches is a _situation _metric
Q. About a third of the vulnerabilities have Low Severity according to
CVSS V. 2.0 False
Q. Top 10 songs for each year, and the songs are ranked according to
popularity. What kind of scale does this ranking represent?
• Ordinal

6

CVSS: Review
• Developed to assess severity levels of vulnerabilities.
• V3: L: 0.1-, M:4.0-, H: 7.0-, Crit: 9.0-10.0
Formulas:
• Base Score = f(Impact, Exploitability)
• Sub-scores Exploitability and Impact are computed

using Base Metrics, that depend on the vulnerability
itself.

• Temporal Score = f(Base score, exploit, patch)
• Environmental score = f(CIA requirements,

developments)

7

CVSS: How useful it is?
• What if they had multiplied exploitability and impact

sub-scores instead of adding?
• Correlation among

– CVSS Exploitability
– Microsoft Exploitability metric
– Presence of actual exploits

• Time to discovery?
• Reward program?
• Can metric/score determination be automated?

8

Distribution of Base score

8 / 40

Min. 1st Qu. Median Mean 3rd Qu. Max. Combinations

(a) 0 5 6.8 6.341 7.5 10 63

(b) 0 29 49 48.59 64 100 112
NVD on Jan 2011 (44615 vuln.)

H. Joh and Y. K. Malaiya, "Defining and Assessing Quantitative Security Risk Measures Using Vulnerability Lifecycle and CVSS Metrics,''
SAM'11, The 2011 International Conference on Security and Management, pp.10-16, 2011

http://www.cs.colostate.edu/~malaiya/p/johrisk11.pdf

9

Has CVSS worked?

• Windows 7 Correlation among
– CVSS Exploitability
– Microsoft Exploitability metric
– Presence of actual exploits

• No significant correlation found.
• Continuing research

Variables Exploit Existence MS-EXP CVSS-EXP
Exploit Existence 1 -0.078 -0.146
MS-EXP -0.078 1 -0.116
CVSS-EXP -0.146 -0.116 1

A. Younis and Y.K. Malaiya, "Comparing and Evaluating CVSS Base Metrics and Microsoft Rating System", The 2015 IEEE Int.
Conf. on Software Quality, Reliability and Security, pp. 252-261

10

• Ease of discovery
• Human factor (skills, time, effort, etc.), Discovery technique, Time

• Time:

10

Time to Discovery = Discovery Time Date – First Effected version Release Date

§ Apache HTTP server
§ CVE-2012-0031, (01/18/2012)
§ V. 1.3.0à1998-06-06

Likelihood of Individual Vulnerabilities Discovery

11

v Access complexity vs Time to Discover
• AC= Low

• AC= Medium

• AC= High (very few points)

• There may be come correlation between Access
Complexity and Time to Discover

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 0.900 2.000 3.338 4.500 18.000

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 2.000 6.500 6.819 9.500 18.000

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.400 1.350 3.500 5.208 7.125 18.000

11

Correlation: Access Complexity vs Time to Discover

12 12

Defect

Vulnerability

Exploitable
Vulnerabilities

• 1 to 5 % of defects are vulnerabilities.

• Finding vulnerabilities can take considerable expertise

and effort.

• Out of 49599 vulnerabilities reported by NVD,

2.10% have an exploit.

• A vulnerability with an exploit written for it presents

more risk.

• What characterizes a vulnerability having an exploit?

Awad Youngish, Yashwant K. Malaiya, Charles Anderson, and Indrajit Ray. “To Fear or Not to Fear That is the Question: Code Characteristics of a Vulnerable Function with an Existing Exploit”.
Proceedings of the Sixth ACM on Conference on Data and Application Security and Privacy (CODASPY), 2016, pp. 97-104.

Vulnerability In-Degree Out-
Degree

CountPath ND CYC Fan-In No of
Invocation

SLOC Exploit
Existence

CVE-2009-1891 1 9 9000 6 68 45 2 211 NEE
CVE-2010-0010 4 9 145 4 11 16 4 38 EE
CVE-2013-1896 26 5 8 1 5 37 3 29 EE

Characterizing Vulnerability with Exploits

13

CVSS Base Score vs Vulnerability Rewards Programs

• We examined 1559 vulnerabilities of Mozilla Firefox and Google
Chrome browsers for which records were available.

• Looked at Mozilla and Google vulnerability reward programs
(VRPs) records for those vulnerabilities.

A. Younis, Y. Malaiya and I. Ray, "Evaluating CVSS Base Score Using Vulnerability Rewards Programs",
Proc. 31th Int. Information Security and Privacy Conference, IFIP SEC, Ghent, Belgium, 2016, pp. 62-75.

Firefox

Vulnerabilities Rewarded Not rewarded

547 225 322

VRP severity Rewarded Not rewarded

Critical & High 210 202

Medium 15 89

Low 0 31

http://www.cs.colostate.edu/~malaiya/p/Awad_Yashwant_Indrajit16.pdf

14

CVSS Base Score vs Vulnerability Rewards Programs

The results results show that CVSS Base Score may have
some correlation with the vulnerability reward program.

Chrome

Vulnerabilities Rewarded Not rewarded

1012 584 428

VRP severity Rewarded Not rewarded

Critical & High 441 175

Medium 136 137

Low 7 116

15

How much did Chrome pay?
• Incidental result

16

AutoCVSS?
• Zou et al. 2019: 98 vulnerabilities from Linux kernel, FTP service, and Apache

service with their exploits from exploit-db.
• CVSS relies on human experts to determine metric values during the process

of vulnerability severity assessment. They have attempted to automate the
process.

• Result is that only two vulnerability
severity scores assessed by AutoCVSS
are obviously different from those in
the NVD for CVSS v2.

D. Zou, J. Yang, Z. Li, X. Ma, , AutoCVSS: An Approach for Automatic Assessment of Vulnerability
Severity Based on Attack Process, Int. Conf. on Green, Pervasive, and Cloud Computing, April 2019

17

VRP Cost effectiveness
• Hypothesis: A VRP can be a cost-effective mechanism for finding

security vulnerabilities.
– Period studied: 7/09-1/13
– Chrome’s VRP has cost $485 per day on average, and that of Firefox has

cost $658 per day.
– Average North American developer on a browser security team (i.e., that

of Chrome or Firefox) would cost around $500 per day (assuming a
$100,000 salary with a 50% overhead).

• Hypothesis: Contributing to a single VRP is, in general, not a
viable full-time job, though contributing to multiple VRPs may
be, especially for unusually successful vulnerability researchers.

• Hypothesis: Successful independent security researchers bubble
to the top, where a full-time job awaits them

M. Finifter, D. Akhawe, D. Wagner, An empirical study of vulnerability rewards programs.
In USENIX Security Symposium 2013 (2013), pp. 273-288

18

Time to patch

M. Finifter, D. Akhawe, D. Wagner, An empirical study of vulnerability rewards programs.
In USENIX Security Symposium 2013 (2013), pp. 273-288

19 19

Colorado State University
Yashwant K Malaiya

CS 559
Testing

Quantitative Security

CSU CyberCenter
Course Funding Program – 2019

21 October 13, 2020

21

Faults
• Faults cause a system to respond in a way different

from expected.
• Faults can be associated with bugs in the

system/software structure or functionality.
– Structure: viewed as an interconnection of components like

statements, blocks, functions, modules.
– Functionality: Described by the input/output/state behavior,

described externally.
– Both structure and functionality can be described at a higher

level and a lower (finer) level.

• Example: a file > classes > methods etc. > statements

22

Testing
• Testing and debugging is an essential part of software

development and maintenance. 15-75% cost

– Static analysis: code inspection
– Dynamic: involves execution

• Defects cause functionality/reliability and security
problem.

• Vulnerabilities are a subset of the defects (1-5%)
– If exploited, allow violation of security related assumptions.
– Vulnerability discovery can involve testing with

• Random tests (Fuzzing)
• Generated tests base on security requirements

• The following discussion is general for all defects.

23

Partitioning
• Software can be partitioned to ensure that the software is thoroughly

exercised during testing
• It is necessary to partition it to identify tests that would be effective

for detecting the defects in different sections of the code.
• For testing purposes, a program may be partitioned either functionally

or structurally.
• Functional partitioning refers to partitioning the input space of a

program.
– For example, if a program performs five separate operations, its input space

can be partitioned into five partitions.
– Functional partitioning only requires the knowledge of the functional

description of the program, the actual implementation of the code is not
required.

• Structural partitioning requires the knowledge of the structure at the
code level.
– If a software is composed of ten modules (which may be classes, functions or

other types of units), it can be thought of as having ten partitions

Y. K. Malaiya, "Assessing Software Reliability Enhancement Achievable through Testing",
Recent Advancements in Software Reliability Assurance 2019, pp. 107-138

http://www.cs.colostate.edu/~malaiya/p/Assessing%20Software%20Reliability%20Enhancement%20Achievable19.pdf

24

Sub-Partitioning
• A partition of either type can be subdivided into lower level

partitions, which may themselves be further partitionable
at a lower level if higher resolution is needed (Elbaum
2001).

• Let us assume that a partition pi can be subdivided into
sub-partitions {pi1, pi2 …pin}.
– Random testing within the partition pi will randomly select from

{pi1, pi2 …pin}. It is possible that some of them will get selected
more often in a non-optimal manner.

– Code within a sub-partition may be correlated relative to the
probability of exercising some faults. Thus the effectiveness of
testing may be diluted if the same sub-partition frequently gets
chosen.

– Sub-partitioning has a practical disadvantage when the operational
profile is constructed, it will require estimating the operational
probabilities of the associated sub-partitions.

25 October 13, 2020

25

Testing
• We assume that tests are applied at the inputs and the

response is observed at the outputs of the unit-under-
test.

• A test detects the presence of a fault(s), if the output is
different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional

description of the unit, not its structure to obtain tests. Often
random (“fuzzing”)

– Structural testing: uses the structural information to generate
tests. Requires more effort, but can be more thorough.

– Combined

26 October 13, 2020

26

Random Testing
• Termed Black-box, fuzzing when used for vulnerabilities
• Random testing is a form of functional testing. In

random testing, each test is chosen such that it does
not depend on past tests.

• In actual practice, the “random” tests are generated
using Pseudo-random algorithms that approximate
randomness.

• As we will discuss later, random testing can be effective
for moderate degree of testing, but not for thorough
testing.

27 October 13, 2020

27

Test coverage
• A single test typically covers (i.e. tests for related faults)

several sub-partitions (elements such as functions,
branches, statements)

• The coverage obtained by a test-set can be obtained
using coverage tools.

• The test coverage achieved by a test-set is given by
ratio:

Number of elements covered

coverage = -------------------------------
Total number of elements

28 10/13/20

28

Input mix: Test Profile
• The inputs to a system can represent different types of

operations. The input mix called “Profile” can impact
effectiveness of testing.

• Example:
– elements e1, e2, …ei, …en exercised with probabilities p1, p2,

…pi, …pn

– Profile then is {(ei, pi)} for all elements

• For example a Search program can be tested for text
data, numerical data, data already sorted etc. If most
testing is done using numerical data, more bugs related
to text data may remain unfound.

29 10/13/20

29

Input Mix: Testing “Profile”
• The ideal Profile (input mix) will depend on the objective

– A. Find bugs fast? or
– B. Estimate operational failure rate?

A. Best mix for functional bug finding (Li & Malaiya’94)
– Quick & limited testing: Use operational profile: how the inputs

are encountered in actual operation.
– High reliability: Probe input space evenly

• Operational profile will not execute rare and special cases, the
main cause of failures in highly reliable systems.

– Very high reliability: corner cases and rare combinations
B. For security bugs: corner cases and rare combinations

– Vulnerability finders / exploiters look for these.
N. Li and Y.K. Malaiya, On Input Profile Selection for Software Testing, Proc. Int. Symp.
Software Reliability Engineering, Nov. 1994, pp. 196-205.

H. Hecht, P. Crane, Rare conditions and their effect on software failures, Proc. Annual
Reliability and Maintainability Symposium, 1994, pp. 334-337

Input mix: Test Profile

http://www.cs.colostate.edu/~malaiya/p/li94profile.pdf

30

31

Modeling Bug Finding Process
• The number of bugs found depend on the effort

(measured by testing time) and directedness of testing.
• Directedness: looking for bugs
– In elements not yet exercised enough

• These will include corner cases

– Where bugs of a specific type (specially vulnerabilities) are
likely to be present.
• Experience, expertise, intuition

32

Nature of faults: Detectability Profile
• All faults are not alike.
• There is no such thing as an average fault.
• As testing progresses, the remaining faults are the ones

harder to find.

33

Detection Probability
• Detection probability of a fault: if there are N distinct

possible input vectors, and if a fault is detected by k of
them, then its detection probability is k/N.

• A fault with detection probability (dp) 1/N would be
hardest to test, since it is tested by only one specific
test and none other.

• A fault which is detected by almost all vectors, would
have a detection probability close to 1 and will be
found with minimal texting effort. It is a low hanging
fruit.

10/13/20
FTC YKM

33

34 10/13/20
FTC YKM

34

Detectability Profile of a unit under test

• The Detectability Profile of a unit under test describes how
the defects are distributed relative to their detectability.

• Total M faults, total N possible input combinations. The set of
faults can be partitioned into these subsets:

• 𝐻 = ℎ!, ℎ", … ℎ#
• Where hk is the number of faults detectable by exactly k

inputs. The vector H describes the detectability profile.
– h1 is the number of faults that are hardest to find.
– As testing and debugging continues, harder to find faults will tend to

remain. Easy to find faults will get eliminated soon.

35
10/13/20 FTC YKM

35

Detectability Profile: software

• Regardless of initial profile, after some initial testing, the profile will
become asymmetric.

• In the early development phases, inspection and early testing are
likely to remove most easy to test bugs, while leaving almost all
hardest to test bugs still in.

36
10/13/20 FTC YKM

36

Detectability Profile: software

• Adam’s Data for a large IBM software product. Note
bugs with high detection rates are mostly gone.

Adam's data (Product 1)

0

5

10

15

20

25

30

35

40

0.017 0.053 0.167 0.526 1.667 5.263 16.67 52.63

Detection rate

D
ef

ec
ts

 w
ith

 th
is

 d
et

ec
tio

n
ra

te

Adams, IBM Journal of Research and Development, Jan. 1984

http://www.csd.uwo.ca/courses/CS614b/papers/adams_preventive_service.pdf

37
10/13/20 FTC YKM

37

Coverage with L random vectors
What fault coverage is achieved by applying L test vector?
• hk out of M defects detectable by exactly k vectors: detection

probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors

)1(1C(L)
1
å
=

--=
N

k

kL

M
h

N
k

)1(
N
k

-

L

N
k)1(-

k
L h

N
k)1(-

Coverage Obtained by L Vectors

0.975

0.274

Cr L()

161 L
0 5 10 15 20

0

0.25

0.5

0.75

1

vectors

ex
pe

xt
ed

 c
ov

er
ag

e

Y.K. Malaiya and S. Yang, ""The Coverage Problem for Random Testing”
Proc. International Test Conference, October 1984, pp. 237-245.

http://www.cs.colostate.edu/~malaiya/p/random.pdf

38 10/13/20
FTC YKM

38

Coverage Obtained by L Vectors

3-

1

L-N

1k

10]...003.084.03.69.04.61[4.2-1C(15)
 Adder, Full CECLFor

estimated. be toneed H of elementslower
only Thus impact.an have test) tohard arethat

 faults (i.e.k lowonly with termsL, largeFor

Random)(for)1(1

-1C(L)

87)(McClusky testsPRFor •

×+++++++=

•

•

--»

=

å

å

=

=

-

N

k

kL

k

k
N

k
LN

M
h

N
k
M
h

C
C

0.999

0.274

Cr L()

Cpr L()

161 L
0 5 10 15 20

0

0.5

1

c11/10

Pseudorandom (PR) testing: a vector cannot repeat, unlike in true Random
testing.

K. Wagnor, C. Chin, and E. McCluskey, “Pseudorandom testing. IEEE Trans. Computer, Mar. 1987, pp. 332—343.

39 10/13/20
FTC YKM

39

Detectability Profile: Software

• Software detectability profile is
exponential

• Justification: Early testing will
find & remove easy-to-test
faults.

• Testing methods need to focus
on hard-to-find faults.

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 5 10 15 20

k

Hard to test Low hanging fruit
As testing time progresses, more of
the faults are clustered to the left.

40
10/13/20 FTC YKM

40

Coverage with L random vectors
Testing may be directed rather than random because
• Tester may wish to focus on functionality not adequately exercised

by random testing (for example recovery code)
• Tester may wish to focus on more critical sections of the code.
• The probability of detecting a fault can be give by pi, where pi may

be greater or less than k/N.
P{a defect with dp pi not detected by L vectors} = (1 − 𝑝!)"

• Where 𝑝! >
#
$

if the previous tests are not repeated, or the test
has a good idea of where to look.

• When the exhaustive set (ES) of inputs are applied, then
P{a defect with dp pi not detected by ES} ≈ 0
– Unlikely in most real situations.

Directed testing

41

Some common models
• Several models for ordinary bug finding process.

Termed Software Reliability Growth Models (SRGMs).
• Exponential SRGM: assumes bug finding rate l(t) is

proportional to remaining bugs at time N(t).

𝜆 𝑡 = −
𝑑𝑁 𝑡
𝑑𝑡

= 𝛽'𝑁(𝑡)

• Which has the solution
𝜆 𝑡 = 𝛽$𝛽!𝑒%&!'

• Where β0 and β1 are parameters to be determined. Β0
represents the initial number of bugs and β1 a measure
of test effectiveness.

42

Defect Density
• Exponential defect finding model is

𝜆 𝑡 = 𝛽!𝛽"𝑒#$!%

• β0 represents the initial number of bugs.
• If the initial defect density is D(0), and the software size

(measured in 1000 lines of code, i.e. KLOC) is S, then
𝛽! = 𝐷(0)×𝑆

• The initial defect density is a function of the software
development process and the degree of prior defect
removal.

• The defect finding rate gradually declines, it takes infinite
time to find them all according to the exponential model.

• The final defect density is sometimes used as a release
criterion.

43 10/13/20

43

SRGM : “Logarithmic Poisson”

• If testing combines random and directed testing, the
Logarithmic Poisson arises.

• Logarithmic Poisson model, by Musa-Okumoto, has been
found to have a good predictive capability

• Applicable as long as µ(t) < N(0). Practically always satisfied.

• Parameters bo and b1 don’t have a simple interpretation. An
interpretation has been given by Malaiya and Denton (What Do the Software Reliability
Growth Model Parameters Represent?).

t) + (1 = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf

44 10/13/20

44

References
• Y. K. Malaiya, S. Yang, “The Coverage Problem for Random Testing,” IEEE International Test

Conference 1984, pp. 237-245.
• Y.K. Malaiya, A. von Mayrhauser and P. Srimani, “An Examination of Fault Exposure Ratio,” IEEE

Trans. Software Engineering, Nov. 1993, pp. 1087-1094.
• S. C. Seth, V. D. Agrawal, H. Farhat, "A Statistical Theory of Digital Circuit Testability," IEEE Trans.

Computers, 1990, pp. 582-586.
• K. Wagnor, C. Chin, and E. McCluskey, “Pseudorandom testing. IEEE Trans. Computer, Mar. 1987,

pp. 332—343.
• E. N. Adams, "Optimizing Preventive Service of Software Products," in IBM Journal of Research

and Development, vol. 28, no. 1, pp. 2-14, Jan. 1984.
• J R Dunham, "Experiments in software reliability: Life-critical applications," IEEE Tran. SE, January

1986, pp. 110 - 123
• H. Hashempour, F.J. Meyer, F. Lombardi,, "Analysis and measurement of fault coverage in a

combined ATE and BIST environment," Instrumentation and Measurement, IEEE Transactions on ,
vol.53, no.2, pp.300,307, April 2004.

• Y. K. Malaiya, "Assessing Software Reliability Enhancement Achievable through Testing", Recent
Advancements in Software Reliability Assurance 2019, pp. 107-138

http://www.cs.colostate.edu/~malaiya/p/Assessing%20Software%20Reliability%20Enhancement%20Achievable19.pdf

