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Leaves are falling..
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Notes
Midterm coming Tuesday. 
Will use canvas. Will need proper laptop/pc with camera.
• Sec 001: Respondus 3:30-4:45 PM
• Sec 801: Honorlock Time window will be announced 

later
– 801 students local in Fort Collins need to take it during 3:30-

4:45 PM

Quick review for MT this Thursday.

https://tilt.colostate.edu/TestingCenter/Respondus
https://tilt.colostate.edu/TestingCenter/FacultyResources/Proctoring/pdfs/StudentGuideGettingStartedWithHonorlock.pdf


4

Some Quiz Questions: Q6
Q. According to a paper by Bilge and Dumitras, Vulnerability lifecycle 
events are ..
• introduction, discovery, exploit release, disclosure, anti-virus signature 

available, patch available, patch installed
Q. In-class question on Thursday: Address Space Layout Randomization 
is an example of 
• Proactive Defense
Q. For this question, data for a certain product is provided in file - Use 
the data to fit the AML model using Excel Solver. Use the initial values 
A=0, B=115, C=1. What is the value of A obtained?
• Between 0.0009 and 0.001
Comment: can be done without using an array formula, however the 
spreadsheet is cleaner with an array formula.
OpenOffice also has a solver. MATLAB has an Optimization toolbox. 
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Some Quiz Questions: Q7
Q. Discovering previously unknown vulnerabilities ...
• Is legal and can be profitable
Q. The ___________ can be used to identify possible 
seasonality. Identify all correct answers.
• autocorrelation function, seasonal index
Q. CVSS is a system for ..
• assessing severity of the software vulnerabilities.
Q. The occurrence rate of breaches is a _situation _metric
Q. About a third of the vulnerabilities have Low Severity according to 
CVSS V. 2.0     False
Q. Top 10 songs for each year, and the songs are ranked according to 
popularity. What kind of scale does this ranking represent?
• Ordinal
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CVSS: Review
• Developed to assess severity levels of vulnerabilities.
• V3: L: 0.1-, M:4.0-, H: 7.0-, Crit: 9.0-10.0
Formulas:
• Base Score = f( Impact, Exploitability)
• Sub-scores Exploitability and Impact are computed 

using Base Metrics, that depend on the vulnerability 
itself.

• Temporal Score = f(Base score, exploit, patch)
• Environmental score = f(CIA requirements, 

developments)
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CVSS: How useful it is?
• What if they had multiplied exploitability and impact 

sub-scores instead of adding?
• Correlation among 

– CVSS Exploitability
– Microsoft Exploitability metric
– Presence of actual exploits

• Time to discovery?
• Reward program?
• Can metric/score determination be automated?
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Distribution of Base score

8 / 40

Min. 1st Qu. Median Mean 3rd Qu. Max. Combinations

(a) 0 5 6.8 6.341 7.5 10 63

(b) 0 29 49 48.59 64 100 112
NVD on Jan 2011 ( 44615 vuln. )

H. Joh and Y. K. Malaiya, "Defining and Assessing Quantitative Security Risk Measures Using Vulnerability Lifecycle and CVSS Metrics,'' 
SAM'11, The 2011 International Conference on Security and Management, pp.10-16, 2011

http://www.cs.colostate.edu/~malaiya/p/johrisk11.pdf
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Has CVSS worked?

• Windows 7  Correlation among 
– CVSS Exploitability
– Microsoft Exploitability metric
– Presence of actual exploits

• No significant correlation found.
• Continuing research

Variables Exploit Existence MS-EXP CVSS-EXP
Exploit Existence 1 -0.078 -0.146
MS-EXP -0.078 1 -0.116
CVSS-EXP -0.146 -0.116 1

A. Younis and Y.K. Malaiya, "Comparing and Evaluating CVSS Base Metrics and Microsoft Rating System", The 2015 IEEE Int. 
Conf. on Software Quality, Reliability and Security, pp. 252-261
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• Ease of discovery 
• Human factor (skills, time, effort, etc.), Discovery technique, Time

• Time:

10

Time to Discovery = Discovery Time Date – First Effected version Release Date  

§ Apache HTTP server
§ CVE-2012-0031, (01/18/2012)
§ V. 1.3.0à1998-06-06

Likelihood of Individual Vulnerabilities Discovery
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v Access complexity vs Time to Discover
• AC= Low

• AC= Medium 

• AC= High (very few points)

• There may be come correlation between Access 
Complexity  and Time to Discover

Min.      1st Qu.     Median Mean     3rd Qu.      Max. 
0.100       0.900         2.000 3.338      4.500        18.000 

Min.        1st Qu.     Median Mean       3rd Qu.      Max. 
0.100     2.000         6.500 6.819       9.500       18.000 

Min.    1st Qu.      Median Mean      3rd Qu.       Max. 
0.400      1.350        3.500 5.208      7.125        18.000 

11

Correlation:  Access Complexity vs Time to Discover
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Defect

Vulnerability

Exploitable
Vulnerabilities

• 1 to 5 % of defects are vulnerabilities.

• Finding vulnerabilities can take considerable expertise 

and effort. 

• Out of 49599 vulnerabilities reported by NVD, 

2.10% have an exploit.

• A vulnerability with an exploit written for it presents 

more risk.

• What characterizes a vulnerability having an exploit?

Awad Youngish, Yashwant K. Malaiya, Charles Anderson, and Indrajit Ray. “To Fear or Not to Fear That is the Question: Code Characteristics of a Vulnerable Function with an Existing Exploit”.
Proceedings of the Sixth ACM on Conference on Data and Application Security and Privacy (CODASPY), 2016, pp. 97-104.

Vulnerability In-Degree Out-
Degree

CountPath ND CYC Fan-In No of 
Invocation 

SLOC Exploit 
Existence

CVE-2009-1891 1 9 9000 6 68 45 2 211 NEE
CVE-2010-0010 4 9 145 4 11 16 4 38 EE
CVE-2013-1896 26 5 8 1 5 37 3  29 EE

Characterizing Vulnerability with Exploits
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CVSS Base Score vs Vulnerability Rewards Programs

• We examined 1559 vulnerabilities of Mozilla Firefox and Google 
Chrome browsers for which records were available.

• Looked at Mozilla and Google vulnerability reward programs 
(VRPs) records for those vulnerabilities.

A. Younis, Y. Malaiya and I. Ray, "Evaluating CVSS Base Score Using Vulnerability Rewards Programs",
Proc. 31th Int. Information Security and Privacy Conference, IFIP SEC, Ghent, Belgium, 2016, pp. 62-75.

Firefox

Vulnerabilities Rewarded Not rewarded

547 225 322

VRP severity Rewarded Not rewarded

Critical & High 210 202

Medium 15 89

Low 0 31

http://www.cs.colostate.edu/~malaiya/p/Awad_Yashwant_Indrajit16.pdf
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CVSS Base Score vs Vulnerability Rewards Programs

The results results show that CVSS Base Score may have 
some correlation with the vulnerability reward program.

Chrome

Vulnerabilities Rewarded Not rewarded

1012 584 428

VRP severity Rewarded Not rewarded

Critical & High 441 175

Medium 136 137

Low 7 116
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How much did Chrome pay?
• Incidental result
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AutoCVSS?
• Zou et al. 2019: 98 vulnerabilities from Linux kernel, FTP service, and Apache 

service with their exploits from exploit-db.
• CVSS relies on human experts to determine metric values during the process 

of vulnerability severity assessment. They have attempted to automate the 
process.

• Result is that only two vulnerability 
severity scores assessed by AutoCVSS
are obviously different from those in 
the NVD for CVSS v2.

D. Zou, J. Yang, Z. Li, X. Ma, , AutoCVSS: An Approach for Automatic Assessment of Vulnerability 
Severity Based on Attack Process, Int. Conf. on Green, Pervasive, and Cloud Computing, April 2019
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VRP Cost effectiveness
• Hypothesis: A VRP can be a cost-effective mechanism for finding 

security vulnerabilities.
– Period studied: 7/09-1/13
– Chrome’s VRP has cost $485 per day on average, and that of Firefox has 

cost $658 per day.
– Average North American developer on a browser security team (i.e., that 

of Chrome or Firefox) would cost around $500 per day (assuming a 
$100,000 salary with a 50% overhead).

• Hypothesis: Contributing to a single VRP is, in general, not a 
viable full-time job, though contributing to multiple VRPs may 
be, especially for unusually successful vulnerability researchers.

• Hypothesis:  Successful independent security researchers bubble 
to the top, where a full-time job awaits them

M. Finifter, D. Akhawe, D. Wagner, An empirical study of vulnerability rewards programs.
In USENIX Security Symposium 2013 (2013), pp. 273-288
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Time to patch

M. Finifter, D. Akhawe, D. Wagner, An empirical study of vulnerability rewards programs.
In USENIX Security Symposium 2013 (2013), pp. 273-288
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Faults
• Faults cause a system to respond in a way different 

from expected.
• Faults can be associated with bugs in the 

system/software structure or functionality.
– Structure: viewed as an interconnection of components like 

statements, blocks, functions, modules.
– Functionality: Described by the input/output/state behavior, 

described externally.
– Both structure and functionality can be described at a higher 

level and a lower (finer) level.

• Example: a file > classes > methods etc. > statements
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Testing
• Testing and debugging is an essential part of software 

development and maintenance.  15-75% cost

– Static analysis: code inspection
– Dynamic: involves execution

• Defects cause functionality/reliability and security 
problem.

• Vulnerabilities are a subset of the defects (1-5%)
– If exploited, allow violation of security related assumptions.
– Vulnerability discovery can involve testing with

• Random tests (Fuzzing)
• Generated tests base on security requirements

• The following discussion is general for all defects. 
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Partitioning
• Software can be partitioned to ensure that the software is thoroughly 

exercised during testing 
• It is necessary to partition it to identify tests that would be effective 

for detecting the defects in different sections of the code.  
• For testing purposes, a program may be partitioned either functionally 

or structurally.
• Functional partitioning refers to partitioning the input space of a 

program.
– For example, if a program performs five separate operations, its input space 

can be partitioned into five partitions. 
– Functional partitioning only requires the knowledge of the functional 

description of the program, the actual implementation of the code is not 
required.  

• Structural partitioning requires the knowledge of the structure at the 
code level. 
– If a software is composed of ten modules (which may be classes, functions or 

other types of units), it can be thought of as having ten partitions

Y. K. Malaiya, "Assessing Software Reliability Enhancement Achievable through Testing", 
Recent Advancements in Software Reliability Assurance 2019, pp. 107-138

http://www.cs.colostate.edu/~malaiya/p/Assessing%20Software%20Reliability%20Enhancement%20Achievable19.pdf
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Sub-Partitioning
• A partition of either type can be subdivided into lower level 

partitions, which may themselves be further partitionable 
at a lower level if higher resolution is needed (Elbaum
2001). 

• Let us assume that a partition pi can be subdivided into 
sub-partitions {pi1, pi2 …pin}.
– Random testing within the partition pi will randomly select from 

{pi1, pi2 …pin}. It is possible that some of them will get selected 
more often in a non-optimal manner.

– Code within a sub-partition may be correlated relative to the 
probability of exercising some faults. Thus the effectiveness of 
testing may be diluted if the same sub-partition frequently gets 
chosen.

– Sub-partitioning has a practical disadvantage when the operational 
profile is constructed, it will require estimating the operational 
probabilities of the associated sub-partitions.
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Testing
• We assume that tests are applied at the inputs and the 

response is observed at the outputs of the unit-under-
test.

• A test detects the presence of a fault(s), if the output is 
different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional 

description of the unit, not its structure to obtain tests. Often 
random (“fuzzing”)

– Structural testing: uses the structural information to generate 
tests. Requires more effort, but can be more thorough.

– Combined
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Random Testing
• Termed Black-box, fuzzing when used for vulnerabilities
• Random testing is a form of functional testing. In 

random testing, each test is chosen such that it does 
not depend on past tests.

• In actual practice, the “random” tests are generated 
using Pseudo-random algorithms that approximate 
randomness. 

• As we will discuss later, random testing can be effective 
for moderate degree of testing, but not for thorough 
testing.
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Test coverage
• A single test typically covers (i.e. tests for related faults) 

several sub-partitions (elements such as functions, 
branches, statements)

• The coverage obtained by a test-set can be obtained 
using coverage tools. 

• The test coverage achieved by a test-set is given by 
ratio:

Number of elements covered

coverage =      -------------------------------
Total number of elements
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Input mix: Test Profile
• The inputs to a system can represent different types of 

operations. The input mix called “Profile” can impact 
effectiveness of testing.

• Example: 
– elements e1, e2, …ei, …en exercised with probabilities p1, p2, 

…pi, …pn

– Profile then is {(ei, pi)} for all elements

• For example a Search program can be tested for text 
data, numerical data, data already sorted etc. If most 
testing is done using numerical data, more bugs related 
to text data may remain unfound.
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Input Mix: Testing “Profile”
• The ideal Profile  (input mix) will depend on the objective 

– A. Find bugs fast? or
– B. Estimate operational failure rate?

A. Best mix for functional bug finding (Li & Malaiya’94)
– Quick & limited testing: Use operational profile: how the inputs 

are encountered in actual operation.
– High reliability: Probe input space evenly

• Operational profile will not execute rare and special cases, the 
main cause of failures in highly reliable systems.

– Very high reliability: corner cases and rare combinations
B. For security bugs: corner cases and rare combinations

– Vulnerability finders / exploiters look for these.
N. Li and Y.K. Malaiya, On Input Profile Selection for Software Testing, Proc. Int. Symp. 
Software Reliability Engineering, Nov. 1994, pp. 196-205.

H. Hecht, P. Crane,  Rare conditions and their effect on software failures, Proc. Annual 
Reliability and Maintainability Symposium, 1994, pp. 334-337

Input mix: Test Profile

http://www.cs.colostate.edu/~malaiya/p/li94profile.pdf


30



31

Modeling Bug Finding Process
• The number of bugs found depend on the effort  

(measured by testing time) and directedness of testing.
• Directedness: looking for bugs 
– In elements not yet exercised enough

• These will include corner cases

– Where bugs of a specific type (specially vulnerabilities) are 
likely to be present.
• Experience, expertise, intuition
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Nature of faults: Detectability Profile
• All faults are not alike.
• There is no such thing as an average fault.  
• As testing progresses, the remaining faults are the ones 

harder to find.
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Detection Probability
• Detection probability of a fault: if  there are N distinct 

possible input vectors, and if a fault is detected by k of 
them, then its detection probability is  k/N.

• A fault  with detection probability (dp) 1/N would be 
hardest to test, since it is tested by only one specific 
test and none other. 

• A fault  which is detected by almost all vectors, would 
have a detection probability close to 1 and will be 
found with minimal texting effort. It is a low hanging 
fruit.

10/13/20
FTC  YKM

33
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Detectability Profile of a unit under test

• The Detectability Profile of a unit under test describes how 
the defects are distributed relative to their detectability.

• Total M faults, total N possible input combinations. The set of 
faults can be partitioned into these subsets:

• 𝐻 = ℎ!, ℎ", … ℎ#
• Where hk is the number of faults detectable by exactly k 

inputs. The vector H describes the detectability profile.
– h1 is the number of faults that are hardest to find.
– As testing and debugging continues, harder to find faults will tend to 

remain. Easy to find faults will get eliminated soon.
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Detectability Profile: software

• Regardless of initial profile, after some initial testing, the profile will 
become asymmetric.

• In the early development phases, inspection and early testing  are 
likely to remove most easy to test bugs, while leaving almost all 
hardest to test bugs still in.
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Detectability Profile: software

• Adam’s Data for a large IBM software product. Note 
bugs with high detection rates are mostly gone.  

Adam's data (Product 1)
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Adams, IBM Journal of Research and Development, Jan. 1984

http://www.csd.uwo.ca/courses/CS614b/papers/adams_preventive_service.pdf


37
10/13/20 FTC  YKM

37

Coverage with L random vectors
What fault coverage is achieved by applying L test vector?
• hk out of M defects detectable by exactly k vectors:  detection 

probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors
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Y.K. Malaiya and S. Yang, ""The Coverage Problem for Random Testing”
Proc. International Test Conference, October 1984, pp. 237-245.

http://www.cs.colostate.edu/~malaiya/p/random.pdf
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Coverage Obtained by L Vectors
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Pseudorandom (PR) testing: a vector cannot repeat, unlike in true Random 
testing. 

K. Wagnor, C. Chin, and E. McCluskey, “Pseudorandom testing. IEEE Trans. Computer,  Mar. 1987, pp. 332—343. 
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Detectability Profile: Software

• Software detectability profile is 
exponential 

• Justification: Early testing will 
find & remove easy-to-test 
faults.

• Testing methods need to focus 
on hard-to-find faults.
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Hard to test Low hanging fruit
As testing time progresses, more of 
the faults are clustered to the left.
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Coverage with L random vectors
Testing may be directed rather than random because
• Tester may wish to focus on functionality not adequately exercised 

by random testing (for example recovery code)
• Tester may wish to focus on more critical sections of the code.
• The probability of detecting a fault can be give by pi, where pi may 

be greater or less than k/N.
P{a defect with dp pi not detected by L vectors} = (1 − 𝑝!)"

• Where  𝑝! >
#
$

if the previous tests are not repeated, or the test 
has a good idea of where to look.

• When the exhaustive set (ES) of inputs are applied, then 
P{a defect with dp pi not detected by ES} ≈ 0
– Unlikely in most real situations.

Directed testing
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Some common models
• Several models for ordinary bug finding process. 

Termed Software Reliability Growth Models (SRGMs).
• Exponential SRGM: assumes bug  finding rate l(t) is 

proportional to remaining bugs at time N(t).

𝜆 𝑡 = −
𝑑𝑁 𝑡
𝑑𝑡

= 𝛽'𝑁(𝑡)

• Which has the solution
𝜆 𝑡 = 𝛽$𝛽!𝑒%&!'

• Where β0 and β1 are parameters to be determined. Β0 
represents the initial number of bugs and β1 a measure 
of test effectiveness.
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Defect Density
• Exponential defect finding model is

𝜆 𝑡 = 𝛽!𝛽"𝑒#$!%

• β0 represents the initial number of bugs. 
• If the initial defect density is D(0), and the software size 

(measured in 1000 lines of code, i.e. KLOC) is S, then
𝛽! = 𝐷(0)×𝑆

• The initial defect density is a function of the software 
development process and the degree of prior defect 
removal.

• The defect finding rate gradually declines, it takes infinite 
time to find them all according to the exponential model.

• The final defect density is sometimes used as a release 
criterion.
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SRGM : “Logarithmic Poisson”

• If testing combines random and directed testing, the
Logarithmic Poisson arises.

• Logarithmic Poisson model, by Musa-Okumoto, has been
found to have a good predictive capability

• Applicable as long as µ(t) < N(0). Practically always satisfied.

• Parameters bo and b1 don’t have a simple interpretation. An
interpretation has been given by Malaiya and Denton (What Do the Software Reliability
Growth Model Parameters Represent?).

t) + (1  = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf
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