Quantitative Cyber-Security

Colorado State University Yashwant K Malaiya CS559 Midterm Review

CSU Cybersecurity Center Computer Science Dept

Midterm coming Tuesday

Will use canvas. Will need proper laptop/pc with camera. Update: Both sections will use <u>Respondus</u> proctoring.

- Sec 001: 3:30-4:45 PM. Tu.
- Sec 801:
 - 801 students local in Fort Collins need to take it during 3:30 4:45 PM. Tu.
 - Non-local 801 students: During 3:30-4:45 PM. Tu. 3:30 PM
 Wed.
- Lockdown browser calculator permitted.
- Closed book, closed notes.

Main topics L1, L2

- Some numbers
- Security system architecture
 - Internet, trusted systems, firewalls, OSs, virtualization
- Assets, Threats, Vulnerabilities
- Cyber attack types, attack surfaces
- Malware: Viruses, worms etc
- Access Control:
 - Subjects, Objects, and Access Rights
 - Access Control Schemes
- Authentication

Firewalls

DMZ: "Demilitarized zone", distributed firewalls, From Georgia Tech Note multiple levels of trust.

Colorado State University

Example: Access Control Matrix

(a) Access matrix

Access Control List (ACL): Every object has an ACL that identifies what operations subjects can perform. Each access to object is checked against object's ACL.

May be kept in a relational database. Access recorded in file metadata (inode).

Main topics L3

- How to do research
 - Literature search, sources, reading papers
 - Original research
 - Publication, significance, citations
- Security frameworks
- NIST Cybersecurity Framework
 - Functions and categories
 - Implementations and priorities
- CIS Critical Security Controls
 - Basic, Foundational, Organizational

Main topics L3

- Riski = Likelihoodi x Impacti
- Risk: Possible Actions

- Acceptance, mitigation, avoidance, transfer

Likelihood_i = $P{A \text{ security hole}_{I} \text{ is exploited}}$.

= P{hole, present}. P{exploitation|hole, present}

• Annual loss expectancy (ALE)

 $ALE = SLE \times ARO$

- Single loss expectancy SLE = AV x EF
 - AV value of the asset. EF exposure factor
- ARO is Annualized rate of occurrence

Main topics L3

- COUNTERMEASURE_VALUE
 = (ALE_PREVIOUS ALE_NOW) –COUNTERMEASURE_COST
- Return on Investment

= COUNTERMEASURE_VALUE/COUNTERMEASURE_COST

Log(Risk) = Log(Likelihood) + Log(Impact)
 Risk score = Likelihood score + Impact score

	Consequences					
Likelihood	Insignificant	Minor	Moderate	Major	Severe	
Almost certain	м	н	н	E	E	
Likely	м	м	н	н	E	
Possible	L	м	М	н	E	
Unlikely	L	м	м	м	н	
Rare	L	L	м	м	н	

Colorado State University

L4: RAMCAP

- RAMCAP Framework
 - Risk = Threat x Vulnerability x Consequence

COlorado Jiale University

L4: FAIR Framework

- Factor Analysis for Information Risk
- Risk = Probably Loss Magnitude x estimated Loss Event Frequency
 - Loss Event Frequency (LEF) = Threat Event Frequency x
 Vulnerability
 - Threat Event Frequency: table
 - Vulnerability (Vuln) = Threat Capability x lack of Control
 Strength
 - Threat Capability: table
 - Control Strength: table
- "Multiplication" achieved by using Matrices.

L4/5: Risk management strategies

Insurance: need

- Law of large numbers
- Actuarially fair Premium: equal to expected claims
 = probability of illness in a year x average no. of utilization of services per year x unit cost of each utilization
- The loss **ratio** is the ratio of incurred losses and loss adjustment expenses to premiums earned.
- Asymmetric information
- Cyber Insurance: coverage, market, costs

Random Variables

- A random variable (r.v.) may take a specific random value at a time. For example
 - X is a random variable that is the height of a randomly chosen student
 - x is one specific value (say 5'9")
- A random variable is defined by its density function.
- A r.v. can be continuous or discrete

		continuous	discrete
Density function	f(x)dx	$P\{x \le X \le x + dx\}$	$p(x_i)$
"Cumulative distribution function" (cdf)	F(x)	$\int_{x\min}^{x} f(x) dx$	$\sum_{i=i\min}^{i\max} p(x_i)$
Expected value (mean)	E(X)	$\int_{x \min}^{x \max} x f(x) dx$	$\sum_{i=i\min}^{i\max} x_i p(x_i)$

Quantitative Security

Colorado State University

L5: Probability

- Disjoint, independent, conditional prob.
- Bayes' rule
- Confusion matrix
 - Sensitivity = TP/(TP+FN)
 - Specificity = TN/(FP+TN)
 - Precision = TP/(TP+FP)
 - Area under the ROC curve

		Actual		
		Disease +	Disease -	
Predicted	Test +ve	ТР	FP	
	Test –ve	FN	TN	

Bayes' Rule

Conditional probability

$$P\{A \mid B\} = \frac{P\{A \cap B\}}{P\{B\}} for P\{B\} > 0$$

P{A|B} is the probability of A, given we know B has happened.

Colorado State University

• Bayes' Rule

$$P\{A \mid B\} = \frac{P\{B \mid A\}P\{A\}}{P\{B\}} for P\{B\} > 0$$

• **Example:** A drug test produces 99% true positive and 99% true negative results. 0.5% are drug users. If a person tests positive, what is the probability he is a drug user?

$$P\{DU | P\} = \frac{P\{P | DU\}P\{DU\}}{P\{P | DU\}P\{DU\} + P\{P | nDU)P\{nDU\}}$$

= 33.3%

Quantitative Security

L5: Distributions

Density and distribution functions

- Binomial, Poisson
- Uniform
- Normal, Lognormal
- In Excel
- Exponential, Weibull
- Variance & Covariance
- Stochastic processes
 - Markov process
 - Poisson process
 - Time between Two Events

L6: Intrusion detection Systems

- IDS approaches
- Anomaly detection: Is this the normal behavior?
- Anomaly detection: Is this the normal behavior?
 - No clear diving line between intruder vs authorized user activity
- Rule-based heuristic
- Detections vs prevention (IPS in the path of information flow)
- Host-Based Intrusion Detection (HIDS) vs Network based

L7: Presentations

- Patch management
 - Optimal timing, tools
- Security Economics
 - Gordon-Loeb model
- Mitre ATT&CK Framework
 - Tactics (initial access to Impact for enterprises) divided into many 9-34 Techniques
 - Can be used to launch or foil attacks
 - Tools based on ATT&CK
- Ransomware
 - Attack types
 - Demand vs recovery costs

Discovery/Zero Day Timeline

- Life cycle of a zero-day vulnerability
- Time for exploitation
- Time window for developers to discover bug
 - Incredibly valuable for both attackers and defenders [1]

L7-L8: Presentations

- Phishing
 - Websites
 - Trends: significant increase
 - Defenses
- Vulnerability Discovery/Zero Day Timeline
 - Time to discovery
- Vulnerability markets
 - Testing and product development cycle
 - Reward programs
 - Black markets
 - Other markets

- Security Breach Costs
 - Breach timeline and costs
 - Industry dependence
 - Security Automation?
 - Costs to governments
 - Calculators and indices
- Schemes for discovering previously unknown vulnerabilities
 - Fuzzing: Black-box, white-box, gray-box
 - Fuzzer efficiency

L9: Modeling and regression

- Models: what (derived/empirical) and why
- Curve fitting, tools
- Visualization
- Linear and non-linear: polynomial, exponential, power
- Log for linearization

Empirical models

- Look at data
- See if it resembles a function
 - Linear, quadratic, logarithmic, exponential..
 - Involving 1, 2 or more parameters
- See if it fits
 - If not try something more complex
- If it fits, see if an interpretation of the parameters is possible
 - Not necessary but will be good.

- Defects vs vulnerabilities
- Types: software, system/physical, Personnel/procedures
- Components of Likelihood of Exploitation
 - Internal, external, interface
- Annual trends
- Vulnerability Lifecycle
- Vulnerability density and defect density
- Who discovers vulnerabilities?
- Classification of vulnerabilities

L10

- CVE numbering system
- Is it a vulnerability?
- Responsible Disclosure
 - Reward programs
 - Vulnerabilities for sale
- Data bases
- Vulnerability Lifecycle
 - Stochastic modeling
 - Zero-day attacks

L11/12

- Qualys "Laws of Vulnerabilities
 Half-life, persistence, exploitation
- Modeling Vulnerability Discovery
- Using calendar time
 - AML model: derivation
 - Windows 98, NT
- Using equivalent effort
 - Market share
- Vulnerability density vs defect density

Time-vulnerability Discovery model

3 phase model S-shaped model.

- Phase 1:
 - Installed base –low.
- Phase 2:
 - •Installed base-higher and growing/stable.
- Phase 3:
 - Installed base-dropping.

$$\frac{dy}{dt} = Ay(B - y)$$

Colorado State University

L12: Software Reliability Modeling

- Static metrics
- Exponential SRGM
- Usage –based vulnerability Discovery model
- Nonlinear regression using solver
- Factors Impacting Vulnerabilities
- Seasonality: testing for seasonality
 - Seasonal index analysis with test
 - Autocorrelation Function analysis

L12/13

- Is hacking legal?
- Dimensions and Approximations
- What you should question
- Software Reuse
 - Software Evolution
- Vulnerability Discovery & Evolution
 - Code Sharing & Vulnerabilities
- Multi-version Vulnerability Discovery
 - Humps vs extended linear
- Linear model
- Long Term Trends
 - Size evolution: Linus kernel

L14 Metrics

- Scales: Nominal, ordinal, Interval, Ratio
- Pendleton et al's Survey on Security metrics
- Vectors: entities, vulnerabilities, security state
- Attack-defense interactions in a computer
- Metrics Classification
 - 1. system vulnerabilities,
 - 2. defense strength and
 - 3. attack severity,
 - 4. situation

L14

Metrics for

- Measuring User (people) Vulnerabilities
- Measuring Interface-Induced Vulnerabilities
- Measuring Software Vulnerabilities

 Evolution, lifetime, CVSS
- Measuring the Strength of Defenses
- Attack metrics
- Situation metrics
 - Incidents
 - Damage
 - investment

L14: CVSS

Objective: prioritize effort to address vulnerabilities

- Metrics: Components by levels translated into a numerical metric
- Scores: Computed score using a set of metrics as given by formulas
- Three metric groups and associated scores;
 - Base (mandatory): intrinsic to the vulnerability
 - Temporal: time-dependent variation in risk
 - Environmental: risk component dependent on the organization's environment

CVSS Base Scores: Ratings

V 3.0 Severity Rating	Base Score Range
None	0
Low	0.1-3.9
Medium	4.0-6.9
High	7.0-8.9
Critial	9.0 - 10.0

- CVSS Metrics: Data bases
- CVE Statuses in NVD

L14

- Exploitability components:
 - Attack Vector (AV)
 - Attack Complexity (AC)
 - Privileges Required (PR)
 - User Interaction (UI)
 - Scope change
- Impact
 - Confidentiality Impact (C)
 - Integrity Impact (I)
 - Availability Impact (A)

CVSS system: How useful it is?

- What if they had multiplied exploitability and impact sub-scores instead of adding?
- Correlation among
 - CVSS Exploitability, Microsoft Exploitability metric, Presence of actual exploits: small or negative correlations
- Time to discovery? Some possible correlation
- Reward program? Significant correlation
- Time to patch: correlation
- Can metric/score determination be automated? Perhaps.
- VRP Cost effectiveness?

L15 Software testing

- Vulnerabilities are a subset of the defects (1-5%)
- Functional partitioning refers to partitioning the input space of a program.
- Structural partitioning requires the knowledge of the structure at the code level.
- A partition of either type can be subdivided into lower level partitions
- Testing: Functional (or Black-box), Structural, combined
- Random testing/fuzzing
- Coverage
- Input mix: Test Profile

How to prepare

- You have already been preparing
- Review lectures, slides, quizzes, assignments
- Focus on
 - Terms
 - Ideas and approaches
 - Solving problems
- If interested, locate references cited and read in more detail. This is a research-oriented class.
- Please review <u>Respondus</u> information, <u>video</u>.
 Download and install
- Note: weekend quiz likely