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Topics
• Questions (lecture only)
• Testing
• Partitioning, Input mix
• Random testing, Detectability Profile
• Test Coverage and defects
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Faults
• Faults cause a system to respond in a way different 

from expected.
• Faults can be associated with bugs in the 

system/software structure or functionality.
– Structure: viewed as an interconnection of components like 

statements, blocks, functions, modules.
– Functionality: Described by the input/output/state behavior, 

described externally.
– Both structure and functionality can be described at a higher 

level and a lower (finer) level.

• Example: a file > classes > methods etc. > statements
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Testing
• Testing and debugging is an essential part of software 

development and maintenance.
– Static analysis: code inspection
– Dynamic: involves execution

• Defects cause functionality/reliability and security 
problem.

• Vulnerabilities are a subset of the defects (1-5%)
– If exploited, allow violation of security related assumptions.
– Vulnerability discovery can involve testing with

• Random tests (Fuzzing)
• Generated tests base on security requirements

• The following discussion is general for all defects. 
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Testing
• We assume that tests are applied at the inputs and the 

response is observed at the outputs of the unit-under-
test.

• A test detects the presence of a fault(s), if the output is 
different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional 

description of the unit, not its structure to obtain tests. Often 
random (“fuzzing”)

– Structural testing: uses the structural information to generate 
tests. Requires more effort, but can be more thorough.

– Combined
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Random Testing
• Termed Black-box, fuzzing when used for vulnerabilities
• Random testing is a form of functional testing. In 

random testing, each test is chosen such that it does 
not depend on past tests.

• In actual practice, the “random” tests are generated 
using Pseudo-random algorithms that approximate 
randomness. 

• As we will discuss later, random testing can be effective 
for moderate degree of testing, but not for thorough 
testing.
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Test coverage
• A single test typically covers (i.e. tests for related faults) 

several sub-partitions (elements such as functions, 
branches, statements)

• The coverage obtained by a test-set can be obtained 
using coverage tools. 

• The test coverage achieved by a test-set is given by 
ratio:

Number of elements covered

coverage =      -------------------------------
Total number of elements
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Coverage Tools
• There are several code coverage tools: Jcov, Gcov etc. 

for Java, C/C++ etc.
– Compilation using the tool, instruments the compiled code to 

collect metrics covered.
– Coverage metrics:

• Statements/Blocks
• Branches/Edges
• Paths
• Methods/Functions
• Data-flow coverage metrics

– Subsumption hierarchy
• Complete Path coverage => 100% Branch coverage
• Complete Branch coverage => 100% Statement coverage

Assumptions: 
• A fault is associated with one or more elements.
• Exercising the element may trigger  the fault to 

create an error
• Complete coverage does not guarantee finding 

all the faults.
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Testing objectives
• Ordinary faults:
– Fault detection: Apply a test input. Is the output what is 

expected?  Triggering fault and propagating error.

– Fault location: where is the fault?
– Fixing: what will fix the fault?  (debugging)

• Vulnerabilities
– Apply a slightly unexpected input. Does a program crash or 

hang?
– If it does, examine it to see if it leads to a vulnerability.
– Can the vulnerability be exploited?
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Partitioning
• Software can be partitioned to ensure that the software is thoroughly 

exercised during testing 
• It is necessary to partition it to identify tests that would be effective 

for detecting the defects in different sections of the code.  
• For testing purposes, a program may be partitioned either functionally 

or structurally.
• Functional partitioning refers to partitioning the input space of a 

program.
– For example, if a program performs five separate operations, its input space 

can be partitioned into five partitions. 
– Functional partitioning only requires the knowledge of the functional 

description of the program, the actual implementation of the code is not 
required.  

• Structural partitioning requires the knowledge of the structure at the 
code level. 
– If a software is composed of ten modules (which may be classes, functions or 

other types of units), it can be thought of as having ten partitions
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Sub-Partitioning
• A partition of either type can be subdivided into lower level 

partitions, which may themselves be further partitionable 
at a lower level if higher resolution is needed (Elbaum
2001). 

• Let us assume that a partition pi can be subdivided into 
sub-partitions {pi1, pi2 …pin}.
– Random testing within the partition pi will randomly select from 

{pi1, pi2 …pin}. It is possible that some of them will get selected 
more often in a non-optimal manner.

– Code within a sub-partition may be correlated relative to the 
probability of exercising some faults. Thus the effectiveness of 
testing may be diluted if the same sub-partition frequently gets 
chosen.

– Sub-partitioning has a practical disadvantage when the operational 
profile is constructed, it will require estimating the operational 
probabilities of the associated sub-partitions.



17 10/23/20

17

Input mix: Test Profile
• The inputs to a system can represent different types of 

operations. The input mix called “Profile” can impact 
effectiveness of testing.

• Example: 
– elements e1, e2, …ei, …en exercised with probabilities p1, p2, 

…pi, …pn

– Profile then is {(ei, pi)} for all elements

• For example a Search program can be tested for text 
data, numerical data, data already sorted etc. If most 
testing is done using numerical data, more bugs related 
to text data may remain unfound.
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Input Mix: Testing “Profile”
• The ideal Profile  (input mix) will depend on the objective 

– A. Find bugs fast? or
– B. Estimate operational failure rate?

A. Best mix for functional bug finding (Li & Malaiya’94)
– Quick & limited testing: Use operational profile (next slide)
– High reliability: Probe input space evenly

• Operational profile will not execute rare and special cases, the 
main cause of failures in highly reliable systems.

– Very high reliability: corner cases and rare combinations
B. For security bugs: corner cases and rare combinations

– Vulnerability finders / exploiters look for these.
N. Li and Y.K. Malaiya, On Input Profile Selection for Software Testing, Proc. Int. Symp. 
Software Reliability Engineering, Nov. 1994, pp. 196-205.

H. Hecht, P. Crane,  Rare conditions and their effect on software failures, Proc. Annual 
Reliability and Maintainability Symposium, 1994, pp. 334-337

Input mix: Test Profile

http://www.cs.colostate.edu/~malaiya/p/li94profile.pdf
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Modeling Bug Finding Process
• The number of bugs found depend on the effort  

(measured by testing time) and directedness of testing.
• Directedness: looking for bugs 
– In elements not yet exercised enough

• These will include corner cases

– Where bugs of a specific type (specially vulnerabilities) are 
likely to be present.
• Experience, expertise, intuition
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Nature of faults: Detectability Profile
• All faults are not alike.
• There is no such thing as an average fault.  
• As testing progresses, the remaining faults are the ones 

harder to find.
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Detection Probability
• Detection probability of a fault: if  there are N distinct 

possible input vectors, and if a fault is detected by k of 
them, then its detection probability is  k/N.

• A fault  with detection probability 1/N would be 
hardest to test, since it is tested by only one specific 
test and none other. 

• A fault  which is detected by almost all vectors, would 
have a detection probability close to 1 and will be 
found with minimal texting effort. It is a low hanging 
fruit.

10/23/20
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Detectability Profile of a unit under test

• The Detectability Profile of a unit under test describes how 
the defects are distributed relative to their detectability.

• Total M faults, total N possible input combinations. The set of 
faults can be partitioned into these subsets:

• 𝐻 = ℎ!, ℎ", … ℎ#
• Where hk is the number of faults detectable by exactly k 

inputs. The vector H describes the detectability profile.
– h1 is the number of faults that are hardest to find.
– As testing and debugging continues, harder to find faults will tend to 

remain. Easy to find faults will get eliminated soon.

Applicable to software and hardware

Y.K. Malaiya and S. Yang, ""The Coverage Problem for Random Testing”
Proc. International Test Conference, October 1984, pp. 237-245

http://www.cs.colostate.edu/~malaiya/p/random.pdf
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Detectability Profile: software

• Adam’s Data for a large IBM software product. Note 
bugs with high detection rates are mostly gone.  

Adam's data (Product 1)

0

5

10

15

20

25

30

35

40

0.017 0.053 0.167 0.526 1.667 5.263 16.67 52.63

Detection rate

D
ef

ec
ts

 w
ith

 th
is

 d
et

ec
tio

n 
ra

te

Adams, IBM Journal of Research and Development, Jan. 1984

http://www.csd.uwo.ca/courses/CS614b/papers/adams_preventive_service.pdf
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Detectability Profile: software

• Regardless of initial profile, after some initial testing, the profile will 
become asymmetric.

• In the early development phases, inspection and early testing  are 
likely to remove most easy to test bugs, while leaving almost all 
hardest to test bugs still in.
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Coverage with L random vectors
What fault coverage is achieved by applying L test vector?
• hk out of M defects detectable by exactly k vectors:  detection 

probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors
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Coverage Obtained by L Vectors
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Pseudorandom (PR) testing: a vector cannot repeat, unlike in true Random 
testing. 



27 10/23/20
FTC  YKM

27

Detectability Profile: Software

• Software detectability profile is 
exponential 

• Justification: Early testing will 
find & remove easy-to-test 
faults.
– Inspection, unit testing, integration testing, 

system testing, ..

• Testing methods need to focus 
on hard-to-find faults.
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As testing time progresses, more of 
the faults are clustered to the left.
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Coverage with L random vectors
Testing may be directed rather than random because
• Tester may wish to focus on functionality not adequately exercised 

by random testing (for example recovery code)
• Tester may wish to focus on more critical sections of the code.
• The probability of detecting a fault can be give by pi, where pi may 

be greater or less than k/N.
P{a defect with dp pi not detected by L vectors} = (1 − 𝑝!)"

• Where  𝑝! >
#
$

if the previous tests are not repeated, or the test 
has a good idea of where to look.

• When the exhaustive set (ES) of inputs are applied, then 
P{a defect with dp pi not detected by ES} ≈ 0
– Unlikely in most real situations.

Directed testing
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Some common models
• Several models for ordinary bug finding process. 

Termed Software Reliability Growth Models (SRGMs).
• Exponential SRGM: assumes bug  finding rate l(t) is 

proportional to remaining bugs at time N(t).

𝜆 𝑡 = −
𝑑𝑁 𝑡
𝑑𝑡

= 𝛽'𝑁(𝑡)

• Which has the solution
𝜆 𝑡 = 𝛽$𝛽!𝑒%&!'

• Where β0 and β1 are parameters to be determined. Β0 
represents the initial number of bugs and β1 a measure 
of test effectiveness.
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Defect Density
• Exponential defect finding model is

𝜆 𝑡 = 𝛽!𝛽"𝑒#$!%

• β0 represents the initial number of bugs. 
• If the initial defect density is D(0), and the software size 

(measured in 1000 lines of code, i.e. KLOC) is S, then
𝛽! = 𝐷(0)×𝑆

• The initial defect density is a function of the software 
development process and the degree of prior defect 
removal.

• The defect finding rate gradually declines, it takes infinite 
time to find them all according to the exponential model.

• The final defect density is sometimes used as a release 
criterion.
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SRGM : “Logarithmic Poisson”

• If testing combines random and directed testing, the
Logarithmic Poisson arises.

• Logarithmic Poisson model, by Musa-Okumoto, has been
found to have a good predictive capability

• Applicable as long as µ(t) < N(0). Practically always satisfied.

• Parameters bo and b1 don’t have a simple interpretation. An
interpretation has been given by Malaiya and Denton (What Do the Software Reliability
Growth Model Parameters Represent?).

t) + (1  = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

Y.K. Malaiya, A. von Mayrhauser and P. Srimani, “An Examination of Fault Exposure Ratio,”
IEEE Trans. Software Engineering, Nov. 1993, pp. 1087-1094. 

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf
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Test Coverage Measures
• Structiral:
– Statement or Block coverage
– Branch or decision coverage

• Data-flow:
– P-use coverage: p-use pair: variable defined/modified -

use as predicate
– C-use coverage: similar -use for computation

• Subsumption hierarchy: 
– Covering all branches cover all statements
– Covering all p-uses cover all branches

Test Coverage Measures
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Test Coverage Measures
• Test case A =2, B=0, X=4
– Covers branches a, c, e
– Covers all the statements

• Test case A =1, B=1, X=1
– Covers branches a, b, d

• Two test cases for 100% 
branch coverage.

Test Coverage Measures
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Modeling : Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994 
Li, Malaiya, Denton, 1998
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Coverage Based Defect Estimation

• Coverage is an objective measure of testing
– Directly related to test effectiveness
– Independent of processor speed and testing efficiency

• Lower defect density requires higher coverage to 
find more faults

• Once we start finding faults, expect coverage vs. 
defect growth to be linear
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Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows 
logarithmic model 

• Hypothesis 2: test coverage growth follows 
logarithmic model
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Log-Expo Coverage Model (2)

• Eliminating t and rearranging, 

• For “large” Ci, we can approximate
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Cknee D0

Location of the knee

• Based on interpretation through logarithmic 
model

• Location of knee based on initial defect density
• Lower defect densities cause knee to occur at 

higher coverage
• Parameter estimation : Malaiya and Denton (HASE 

‘98)
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Data Sets Used: Vouk and Pasquini

• Vouk data
– from N version programming project to create a flight 

controller
– Three data sets, 6 to 9 errors each

• Pasquini data
– Data from European Space Agency
– C Program with 100,000 source lines
– 29 of 33 known faults uncovered
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Data Set: Pasquini
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Data Set: Pasquini
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Q: Will linear relation hold at 
very high coverage?
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Estimation of Defect Density

Measure Coverage 
Achieved 

Expected 
Defects 

Block 82% 36 
Branch 70% 44 
P-uses 67% 48 

 

• Estimated defects at 95% coverage, for 
Pasquini data (assume 5% dead code)

• 28 faults found, and 33 known to exist
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Data Set: Vouk 3

0

2

4

6

8

10

12

14

36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
P-Use Coverage

D
ef

ec
ts

Model Data

Defects vs. P-Use Coverage

Defects Expected
Fitted Model



47 10/23/20
FTC YKM

47

Coverage Based Estimation
Data Set: Pasquini et al
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Current Methods
• Development process based models allow for a 

priori estimates
– Not as accurate as methods based on test data

• Sampling methods often assume faults found as 
easy to find as faults not found
– Underestimates faults

• Exponential model
– Assume applicability of exponential model
– We present results of a comparison
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The Exponential Model
Data Set: Pasquini et al
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Fuzzing and Coverage
• Directed Fuzzing is used for guiding vulnerability 

discovery.
• Fuzzing is directed using test coverage.
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