
1 1

Colorado State University
Yashwant K Malaiya

CS559
L 17

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

2

Topics
• Questions (lecture only)
• Testing
• Partitioning, Input mix
• Random testing, Detectability Profile
• Test Coverage and defects

7 7

Colorado State University
Yashwant K Malaiya

CS 559
Testing

Quantitative Security

CSU Cybersecurity Center
Computer Science Dept

8 October 23, 2020

8

Faults
• Faults cause a system to respond in a way different

from expected.
• Faults can be associated with bugs in the

system/software structure or functionality.
– Structure: viewed as an interconnection of components like

statements, blocks, functions, modules.
– Functionality: Described by the input/output/state behavior,

described externally.
– Both structure and functionality can be described at a higher

level and a lower (finer) level.

• Example: a file > classes > methods etc. > statements

9

Testing
• Testing and debugging is an essential part of software

development and maintenance.
– Static analysis: code inspection
– Dynamic: involves execution

• Defects cause functionality/reliability and security
problem.

• Vulnerabilities are a subset of the defects (1-5%)
– If exploited, allow violation of security related assumptions.
– Vulnerability discovery can involve testing with

• Random tests (Fuzzing)
• Generated tests base on security requirements

• The following discussion is general for all defects.

10 October 23, 2020

10

Testing
• We assume that tests are applied at the inputs and the

response is observed at the outputs of the unit-under-
test.

• A test detects the presence of a fault(s), if the output is
different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional

description of the unit, not its structure to obtain tests. Often
random (“fuzzing”)

– Structural testing: uses the structural information to generate
tests. Requires more effort, but can be more thorough.

– Combined

11 October 23, 2020

11

Random Testing
• Termed Black-box, fuzzing when used for vulnerabilities
• Random testing is a form of functional testing. In

random testing, each test is chosen such that it does
not depend on past tests.

• In actual practice, the “random” tests are generated
using Pseudo-random algorithms that approximate
randomness.

• As we will discuss later, random testing can be effective
for moderate degree of testing, but not for thorough
testing.

12 October 23, 2020

12

Test coverage
• A single test typically covers (i.e. tests for related faults)

several sub-partitions (elements such as functions,
branches, statements)

• The coverage obtained by a test-set can be obtained
using coverage tools.

• The test coverage achieved by a test-set is given by
ratio:

Number of elements covered

coverage = -------------------------------
Total number of elements

13

Coverage Tools
• There are several code coverage tools: Jcov, Gcov etc.

for Java, C/C++ etc.
– Compilation using the tool, instruments the compiled code to

collect metrics covered.
– Coverage metrics:

• Statements/Blocks
• Branches/Edges
• Paths
• Methods/Functions
• Data-flow coverage metrics

– Subsumption hierarchy
• Complete Path coverage => 100% Branch coverage
• Complete Branch coverage => 100% Statement coverage

Assumptions:
• A fault is associated with one or more elements.
• Exercising the element may trigger the fault to

create an error
• Complete coverage does not guarantee finding

all the faults.

14

Testing objectives
• Ordinary faults:
– Fault detection: Apply a test input. Is the output what is

expected? Triggering fault and propagating error.

– Fault location: where is the fault?
– Fixing: what will fix the fault? (debugging)

• Vulnerabilities
– Apply a slightly unexpected input. Does a program crash or

hang?
– If it does, examine it to see if it leads to a vulnerability.
– Can the vulnerability be exploited?

15

Partitioning
• Software can be partitioned to ensure that the software is thoroughly

exercised during testing
• It is necessary to partition it to identify tests that would be effective

for detecting the defects in different sections of the code.
• For testing purposes, a program may be partitioned either functionally

or structurally.
• Functional partitioning refers to partitioning the input space of a

program.
– For example, if a program performs five separate operations, its input space

can be partitioned into five partitions.
– Functional partitioning only requires the knowledge of the functional

description of the program, the actual implementation of the code is not
required.

• Structural partitioning requires the knowledge of the structure at the
code level.
– If a software is composed of ten modules (which may be classes, functions or

other types of units), it can be thought of as having ten partitions

16

Sub-Partitioning
• A partition of either type can be subdivided into lower level

partitions, which may themselves be further partitionable
at a lower level if higher resolution is needed (Elbaum
2001).

• Let us assume that a partition pi can be subdivided into
sub-partitions {pi1, pi2 …pin}.
– Random testing within the partition pi will randomly select from

{pi1, pi2 …pin}. It is possible that some of them will get selected
more often in a non-optimal manner.

– Code within a sub-partition may be correlated relative to the
probability of exercising some faults. Thus the effectiveness of
testing may be diluted if the same sub-partition frequently gets
chosen.

– Sub-partitioning has a practical disadvantage when the operational
profile is constructed, it will require estimating the operational
probabilities of the associated sub-partitions.

17 10/23/20

17

Input mix: Test Profile
• The inputs to a system can represent different types of

operations. The input mix called “Profile” can impact
effectiveness of testing.

• Example:
– elements e1, e2, …ei, …en exercised with probabilities p1, p2,

…pi, …pn

– Profile then is {(ei, pi)} for all elements

• For example a Search program can be tested for text
data, numerical data, data already sorted etc. If most
testing is done using numerical data, more bugs related
to text data may remain unfound.

18 10/23/20

18

Input Mix: Testing “Profile”
• The ideal Profile (input mix) will depend on the objective

– A. Find bugs fast? or
– B. Estimate operational failure rate?

A. Best mix for functional bug finding (Li & Malaiya’94)
– Quick & limited testing: Use operational profile (next slide)
– High reliability: Probe input space evenly

• Operational profile will not execute rare and special cases, the
main cause of failures in highly reliable systems.

– Very high reliability: corner cases and rare combinations
B. For security bugs: corner cases and rare combinations

– Vulnerability finders / exploiters look for these.
N. Li and Y.K. Malaiya, On Input Profile Selection for Software Testing, Proc. Int. Symp.
Software Reliability Engineering, Nov. 1994, pp. 196-205.

H. Hecht, P. Crane, Rare conditions and their effect on software failures, Proc. Annual
Reliability and Maintainability Symposium, 1994, pp. 334-337

Input mix: Test Profile

http://www.cs.colostate.edu/~malaiya/p/li94profile.pdf

19

Modeling Bug Finding Process
• The number of bugs found depend on the effort

(measured by testing time) and directedness of testing.
• Directedness: looking for bugs
– In elements not yet exercised enough

• These will include corner cases

– Where bugs of a specific type (specially vulnerabilities) are
likely to be present.
• Experience, expertise, intuition

20

Nature of faults: Detectability Profile
• All faults are not alike.
• There is no such thing as an average fault.
• As testing progresses, the remaining faults are the ones

harder to find.

21

Detection Probability
• Detection probability of a fault: if there are N distinct

possible input vectors, and if a fault is detected by k of
them, then its detection probability is k/N.

• A fault with detection probability 1/N would be
hardest to test, since it is tested by only one specific
test and none other.

• A fault which is detected by almost all vectors, would
have a detection probability close to 1 and will be
found with minimal texting effort. It is a low hanging
fruit.

10/23/20
FTC YKM

21

22 10/23/20
FTC YKM

22

Detectability Profile of a unit under test

• The Detectability Profile of a unit under test describes how
the defects are distributed relative to their detectability.

• Total M faults, total N possible input combinations. The set of
faults can be partitioned into these subsets:

• 𝐻 = ℎ!, ℎ", … ℎ#
• Where hk is the number of faults detectable by exactly k

inputs. The vector H describes the detectability profile.
– h1 is the number of faults that are hardest to find.
– As testing and debugging continues, harder to find faults will tend to

remain. Easy to find faults will get eliminated soon.

Applicable to software and hardware

Y.K. Malaiya and S. Yang, ""The Coverage Problem for Random Testing”
Proc. International Test Conference, October 1984, pp. 237-245

http://www.cs.colostate.edu/~malaiya/p/random.pdf

23
10/23/20 FTC YKM

23

Detectability Profile: software

• Adam’s Data for a large IBM software product. Note
bugs with high detection rates are mostly gone.

Adam's data (Product 1)

0

5

10

15

20

25

30

35

40

0.017 0.053 0.167 0.526 1.667 5.263 16.67 52.63

Detection rate

D
ef

ec
ts

 w
ith

 th
is

 d
et

ec
tio

n
ra

te

Adams, IBM Journal of Research and Development, Jan. 1984

http://www.csd.uwo.ca/courses/CS614b/papers/adams_preventive_service.pdf

24
10/23/20 FTC YKM

24

Detectability Profile: software

• Regardless of initial profile, after some initial testing, the profile will
become asymmetric.

• In the early development phases, inspection and early testing are
likely to remove most easy to test bugs, while leaving almost all
hardest to test bugs still in.

25
10/23/20 FTC YKM

25

Coverage with L random vectors
What fault coverage is achieved by applying L test vector?
• hk out of M defects detectable by exactly k vectors: detection

probability k/N
• P{a defect with dp k/N not detected by a vector} =

• P{a defect with dp k/N not detected by L vectors} =

• Of hk faults, expected number not covered is
• Expected test coverage with L vectors

)1(1C(L)
1
å
=

--=
N

k

kL

M
h

N
k

)1(
N
k

-

L

N
k)1(-

k
L h

N
k)1(-

Coverage Obtained by L Vectors

0.975

0.274

Cr L()

161 L
0 5 10 15 20

0

0.25

0.5

0.75

1

vectors

ex
pe

xt
ed

 c
ov

er
ag

e

26 10/23/20
FTC YKM

26

Coverage Obtained by L Vectors

3-

1

L-N

1k

10]...003.084.03.69.04.61[4.2-1C(15)
 Adder, Full CECLFor

estimated. be toneed H of elementslower
only Thus impact.an have test) tohard arethat

 faults (i.e.k lowonly with termsL, largeFor

Random)(for)1(1

-1C(L)

87)(McClusky testsPRFor •

×+++++++=

•

•

--»

=

å

å

=

=

-

N

k

kL

k

k
N

k
LN

M
h

N
k
M
h

C
C

0.999

0.274

Cr L()

Cpr L()

161 L
0 5 10 15 20

0

0.5

1

c11/10

Pseudorandom (PR) testing: a vector cannot repeat, unlike in true Random
testing.

27 10/23/20
FTC YKM

27

Detectability Profile: Software

• Software detectability profile is
exponential

• Justification: Early testing will
find & remove easy-to-test
faults.
– Inspection, unit testing, integration testing,

system testing, ..

• Testing methods need to focus
on hard-to-find faults.

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 5 10 15 20

k

Hard to test Low hanging fruit
As testing time progresses, more of
the faults are clustered to the left.

28
10/23/20 FTC YKM

28

Coverage with L random vectors
Testing may be directed rather than random because
• Tester may wish to focus on functionality not adequately exercised

by random testing (for example recovery code)
• Tester may wish to focus on more critical sections of the code.
• The probability of detecting a fault can be give by pi, where pi may

be greater or less than k/N.
P{a defect with dp pi not detected by L vectors} = (1 − 𝑝!)"

• Where 𝑝! >
#
$

if the previous tests are not repeated, or the test
has a good idea of where to look.

• When the exhaustive set (ES) of inputs are applied, then
P{a defect with dp pi not detected by ES} ≈ 0
– Unlikely in most real situations.

Directed testing

29

Some common models
• Several models for ordinary bug finding process.

Termed Software Reliability Growth Models (SRGMs).
• Exponential SRGM: assumes bug finding rate l(t) is

proportional to remaining bugs at time N(t).

𝜆 𝑡 = −
𝑑𝑁 𝑡
𝑑𝑡

= 𝛽'𝑁(𝑡)

• Which has the solution
𝜆 𝑡 = 𝛽$𝛽!𝑒%&!'

• Where β0 and β1 are parameters to be determined. Β0
represents the initial number of bugs and β1 a measure
of test effectiveness.

30

Defect Density
• Exponential defect finding model is

𝜆 𝑡 = 𝛽!𝛽"𝑒#$!%

• β0 represents the initial number of bugs.
• If the initial defect density is D(0), and the software size

(measured in 1000 lines of code, i.e. KLOC) is S, then
𝛽! = 𝐷(0)×𝑆

• The initial defect density is a function of the software
development process and the degree of prior defect
removal.

• The defect finding rate gradually declines, it takes infinite
time to find them all according to the exponential model.

• The final defect density is sometimes used as a release
criterion.

31 10/23/20

31

SRGM : “Logarithmic Poisson”

• If testing combines random and directed testing, the
Logarithmic Poisson arises.

• Logarithmic Poisson model, by Musa-Okumoto, has been
found to have a good predictive capability

• Applicable as long as µ(t) < N(0). Practically always satisfied.

• Parameters bo and b1 don’t have a simple interpretation. An
interpretation has been given by Malaiya and Denton (What Do the Software Reliability
Growth Model Parameters Represent?).

t) + (1 = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

Y.K. Malaiya, A. von Mayrhauser and P. Srimani, “An Examination of Fault Exposure Ratio,”
IEEE Trans. Software Engineering, Nov. 1993, pp. 1087-1094.

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf

32 10/23/20

32

References
• Y. K. Malaiya, S. Yang, “The Coverage Problem for Random Testing,” IEEE International Test

Conference 1984, pp. 237-245.
• Y.K. Malaiya, A. von Mayrhauser and P. Srimani, “An Examination of Fault Exposure Ratio,” IEEE

Trans. Software Engineering, Nov. 1993, pp. 1087-1094.
• S. C. Seth, V. D. Agrawal, H. Farhat, "A Statistical Theory of Digital Circuit Testability," IEEE Trans.

Computers, 1990, pp. 582-586.
• K. Wagnor, C. Chin, and E. McCluskey, “Pseudorandom testing. IEEE Trans. Computer, Mar. 1987,

pp. 332—343.
• E. N. Adams, "Optimizing Preventive Service of Software Products," in IBM Journal of Research

and Development, vol. 28, no. 1, pp. 2-14, Jan. 1984.
• J R Dunham, "Experiments in software reliability: Life-critical applications," IEEE Tran. SE, January

1986, pp. 110 - 123
• H. Hashempour, F.J. Meyer, F. Lombardi,, "Analysis and measurement of fault coverage in a

combined ATE and BIST environment," Instrumentation and Measurement, IEEE Transactions on ,
vol.53, no.2, pp.300,307, April 2004.

33 33

Colorado State University
Yashwant K Malaiya

CS 559
Coverage based approaches

Quantitative Security

CSU Cybersecurity Center
Computer Science Dept

34 10/23/20
FTC YKM

34

Test Coverage Measures
• Structiral:
– Statement or Block coverage
– Branch or decision coverage

• Data-flow:
– P-use coverage: p-use pair: variable defined/modified -

use as predicate
– C-use coverage: similar -use for computation

• Subsumption hierarchy:
– Covering all branches cover all statements
– Covering all p-uses cover all branches

Test Coverage Measures

35 10/23/20
FTC YKM

35

Test Coverage Measures
• Test case A =2, B=0, X=4
– Covers branches a, c, e
– Covers all the statements

• Test case A =1, B=1, X=1
– Covers branches a, b, d

• Two test cases for 100%
branch coverage.

Test Coverage Measures

36
10/23/20 FTC YKM

36

Modeling : Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994
Li, Malaiya, Denton, 1998

37 10/23/20
FTC YKM

37

Coverage Based Defect Estimation

• Coverage is an objective measure of testing
– Directly related to test effectiveness
– Independent of processor speed and testing efficiency

• Lower defect density requires higher coverage to
find more faults

• Once we start finding faults, expect coverage vs.
defect growth to be linear

38 10/23/20
FTC YKM

38

Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows
logarithmic model

• Hypothesis 2: test coverage growth follows
logarithmic model

1)(),1ln()(00
10

0
00 £+= tCt
N

tC bb

1)(),1ln()(1
0 £+= tCt
N

tC ii
i

i
i bb

39 10/23/20
FTC YKM

39

Log-Expo Coverage Model (2)

• Eliminating t and rearranging,

• For “large” Ci, we can approximate

etc. cov use-p cov,branch : ;parameters:,,
coveragetest : coverage,defect : where

1)],1)(exp(1ln[

210

0

0
210

0

iaaa
CC

CCaaaC

iii

i

iiii £-+=

iii CBAC +-=0

40
10/23/20 FTC YKM

40

0 10 20 30 40 50 60 70 80 90 100
Coverage

De
fe
ct
s

i
knee

iiii CCCBAC >+-= ,0

Linear
Approximation
after the knee

Coverage Model, Estimated Defects

• Only applicable after the knee
• Assumptions : Stable Software

C0

95%

41 10/23/20
FTC YKM

41

Cknee D0

Location of the knee

• Based on interpretation through logarithmic
model

• Location of knee based on initial defect density
• Lower defect densities cause knee to occur at

higher coverage
• Parameter estimation : Malaiya and Denton (HASE

‘98)

÷÷
ø

ö
çç
è

æ
-

0min

min1
ED

E

42 10/23/20
FTC YKM

42

Data Sets Used: Vouk and Pasquini

• Vouk data
– from N version programming project to create a flight

controller
– Three data sets, 6 to 9 errors each

• Pasquini data
– Data from European Space Agency
– C Program with 100,000 source lines
– 29 of 33 known faults uncovered

43
10/23/20 FTC YKM

43

Data Set: Pasquini

0

5

10

15

20

25

30

35

40

45

50

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

Branch Coverage

D
ef

ec
ts

Model Data

Defects vs. Branch Coverage

Defects Expected

Fitted Model

44
10/23/20 FTC YKM

44

Data Set: Pasquini

0

10

20

30

40

50

60

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

P-Use Coverage

D
ef

ec
ts

Model Data

Defects vs. P-Use Coverage

Defects Expected

Fitted Model

Q: Will linear relation hold at
very high coverage?

45
10/23/20 FTC YKM

45

Estimation of Defect Density

Measure Coverage
Achieved

Expected
Defects

Block 82% 36
Branch 70% 44
P-uses 67% 48

• Estimated defects at 95% coverage, for
Pasquini data (assume 5% dead code)

• 28 faults found, and 33 known to exist

46
10/23/20 FTC YKM

46

Data Set: Vouk 3

0

2

4

6

8

10

12

14

36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
P-Use Coverage

D
ef

ec
ts

Model Data

Defects vs. P-Use Coverage

Defects Expected
Fitted Model

47 10/23/20
FTC YKM

47

Coverage Based Estimation
Data Set: Pasquini et al

0

10

20

30

40

50

60
2 62 12
3

18
4

24
6

30
7

36
8

42
7

48
8

54
9

61
1

67
2

73
3

79
2

85
3

91
4

97
6

10
37

10
98

11
57

12
18

Test Cases

D
ef

ec
ts

Defects

Estimates are stable

48 10/23/20
FTC YKM

48

Current Methods
• Development process based models allow for a

priori estimates
– Not as accurate as methods based on test data

• Sampling methods often assume faults found as
easy to find as faults not found
– Underestimates faults

• Exponential model
– Assume applicability of exponential model
– We present results of a comparison

49 10/23/20
FTC YKM

49

The Exponential Model
Data Set: Pasquini et al

0

5

10

15

20

25

30

5 65 12
6

18
7

24
9

31
0

37
1

43
0

49
1

55
2

61
4

67
5

73
6

79
5

85
6

91
7

97
9

10
40

11
01

11
60

12
21

Test Cases

D
ef

ec
ts

Estimate Defects Found

Estimate rises as new defects found

Estimates very close to actual faults

50

Fuzzing and Coverage
• Directed Fuzzing is used for guiding vulnerability

discovery.
• Fuzzing is directed using test coverage.

51 10/23/20
FTC YKM

51

Related articles
• Frankl & Iakouneno, Proc. SIGSOFT ‘98

– 8 versons of European Space Agency program, 10K LOC, Single
fault reinsertion

• Williams, Mercer, Mucha, Kapur, 2001
– "Code coverage, what does it mean in terms of quality?,“
– analysis from first principles

• Peter G Bishop, SAFECOMP 2002
– A related model, unreachable code

• Mockus, A.; Nagappan, N.; Dinh-Trong, T.T., "Test coverage and post-
verification defects: A multiple case study," ESEM 2009.
– Avaya lab data
– “The test effort increases exponentially with test coverage, but the

reduction in field problems increases linearly with test coverage.”

52

Related articles
• Mockus, A.; Nagappan, N.; Dinh-Trong, T.T., "Test coverage and post-

verification defects: A multiple case study," Empirical Software Engineering
and Measurement, 2009. ESEM 2009. 3rd International Symposium on , vol.,
no., pp.291,301, 15-16 Oct. 2009

• Avaya lab data
• “The test effort increases exponentially with test coverage, but the reduction

in field problems increases linearly with test coverage.”

10/23/20
FTC YKM

52

