
1 1

Colorado State University
Yashwant K Malaiya

CS559
L18

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

3

Detectability Profile

• To test a potential fault, it needs to be
triggered and error needs to be sensed.

• Some faults are easy to test, some are very
hard to test.

• As testing and debugging progresses, the
remaining faults are the ones that are harder
to find.

• Corner cases: at extreme values for multiple
variables.

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

0 5 10 15 20

k

Hard to test Low hanging fruit

4

Software Reliability Growth models
• Time-based models:
– Defect discovery rate = f(calendar time)
– Cumulative number of defects discovered = f(calendar time)

• Exponential and Logarithmic models

• Coverage based models
– Cumulative number of defects discovered =f(coverage

achieved)

5

Term Project
All submissions should follow the 2-column format for IEEE
conference papers.
• Proposal and sources: Oct 10
• Semi-final report: Nov 7

– It should indicate that you have finished at least two-thirds of the work. It
should include an abstract, discussion of background literature, a
summary of the investigations/findings, any refinements of the proposal
objectives as a result of the past study, what the final report will contain
and the applicable references.

– Technical details, equations/tables/plots/screen-shots
– You must be aware of the current trends in research/industry.

• Slides: Due Nov 18
• Ten-minute oral presentation Nov 19-Dec 8

https://www.ieee.org/conferences_events/conferences/publishing/templates.html

6 6

Colorado State University
Yashwant K Malaiya

CS559
Paswords

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

7

Authentication

• Authentication: the process of verifying an actor’s
identity

• Needed for security of systems
– Permissions, capabilities, and access control are all

contingent upon knowing the identity of the actor

• Parameterized as a username and a user’s
proprietary information
– The proprietary information attempts to limit

unauthorized access

7

8

Types of proprietary info

• Actors provide their proprietary information to login to
a system

• Three classes of proprietary info:
1. Something you know

• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

8

9

Checking Passwords

• The system must validate passwords provided by
users

• Thus, passwords must be stored somewhere
• Simple scheme: plain text (is this good?)

9

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

10

Problem: Password guessing
How easy it is to guess a password?
• If your keyboard has R= 95 unique characters,
• randomly constructing a password from that whole set,

12-character password, then L = 12.
• 9512= 540,360,087,662,636,962,890,625 passwords
Entropy = log2(RL) = 78.9 bits assuming passwords are created
randomly
• Non-randomness makes password guessing easier.
• Measures of password strength proposed and used

Password guessing at login? Can be defeated by
– Limited number of tries: 3-5
– Blocking attempts from unknown/suspected IP addresses

Ascii is 8 bits. Thus about 212x8

11

Problem: Password File Theft

• Attackers often compromise systems
• They may be able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
– The attacker can now log-in as any user, including

root/administrator

• Passwords should never be stored in plain text

11

12

Famous Password breaches
Top 5

Yahoo 2013; 2014 3 billion; 500 million

First American Financial Corp 2019 885 million

Facebook 2019 540 million

Marriott International 2018 500 million

Friend Finder Networks 2016 412.2 million

According a Verizon Data Breach Investigations Report,
• over 70% of employees reuse passwords at work.
• “81% of hacking-related breaches leveraged either stolen and/or weak

passwords.”

https://www.knowbe4.com/hubfs/rp_DBIR_2017_Report_execsummary_en_xg.pdf

13

Problem: Password File Theft

• Attackers often compromise systems
• They are often able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
– The attacker can now log-in as any user, including

root/administrator

• Thus Passwords should never be stored in plain text,
but using ..

13

15

• Impossible to reconstruct password from hash

Encryption vs Hashing

16

Hashed Passwords
• Key idea: store encrypted versions of passwords
– Use one-way cryptographic hash functions
– Examples: md5, sha1, sha256, sha512

• Cryptographic hash function transform input data into
scrambled output data
– Deterministic: hash(A) = hash(A)
– High entropy:

• md5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• md5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• md5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

– Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time
• Example: 221 tries for md5

16

Md5: 128 bit

Ack: Northeastern U

17

Hashed Password Example

17

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

md5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

md5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

18

Attacking Password Hashes

• Problem: users choose poor passwords
– Most common passwords: 123456, password
– Username: cbw, Password: cbw
– Common password patterns

• Weak passwords enable dictionary attacks

18

Default passwords (password, default, admin, guest etc) if not changed
can be a security hazard.

19

Most Common passwords
• Most common passwords unscrambled from the 2012 leaked

LinkedIn.com dataset as of 2016 (in 1,000s)

https://www.statista.com/statistics/271098/most-common-passwords/

Has your password been
compromised?
https://haveibeenpwned.
com/Passwords

https://haveibeenpwned.com/Passwords

20

Dictionary Attacks

• Common for 60-70% of hashed passwords to be
cracked in <24 hours

20

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

21

Hardening Password Hashes

• Key problem: cryptographic hashes are deterministic
– hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
– This enables attackers to build lists of hashes

• Solution: make each password hash unique
– Add a salt to each password before hashing
– hash(salt + password) = password hash
– Each user has a unique, random salt
– Salts can be stores in plain text

21

22

Example Salted Hashes

22

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

24

Attacking Salted Passwords

24

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X
amislove hz
bob K@

hash(‘0X’ + word)
cbw XXXXsandi YYYY

25

Breaking Hashed Passwords

• Stored passwords should always be salted
– Forces the attacker to brute-force each password

individually

• Problem: it is now possible to compute cryptographic
hashes very quickly
– GPU computing: hundreds of small CPU cores
– nVidia GeForce GTX Titan Z: 5,760 cores
– GPUs can be rented from the cloud very cheaply

• 2x GPUs for $0.65 per hour (2014 prices)

25

26

Examples of Hashing Speed

• A modern x86 server can hash all possible 6 character long
passwords in 3.5 hours
– Upper and lowercase letters, numbers, symbols
– (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes
• Most users use (slightly permuted) dictionary words, no

symbols
– Predictability makes cracking much faster
– Lowercase + numbers à (26+10)6 = 2B combinations

26

27

Hardening Salted Passwords

• Problem: typical hashing algorithms are too fast
– Enables GPUs to brute-force passwords

• Solution: use hash functions that are designed to be
slow
– Examples: bcrypt, scrypt, PBKDF2
– These algorithms include a work factor that increases the time

complexity of the calculation
– scrypt also requires a large amount of memory to compute,

further complicating brute-force attacks

27

28

bcrypt Example

• Python example; install the bcrypt package

28

[cbw@ativ9 ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

29

Password Storage Summary

1. Never store passwords in plain text
2. Always salt and hash passwords before storing

them
3. Use hash functions with a high work factor

• These rules apply to any system that needs to
authenticate users
– Operating systems, websites, etc.

29

30

Password Recovery/Reset

• Problem: hashed passwords cannot be recovered

30

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password
reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

31

Password crackers

32

Forgotten passwords
• Too many passwords to remember
• “Strong” passwords can be hard to remember
• Traditional approach: user physically requests

password reset
– Using phone numbers or email addresses on record
– Showing IDs

• Danger: fraudulently obtaining password using social
engineering. May represent the weakest link in the
password system.

33

Good passwords are bad

34

Security Questions
• Security Questions are used to authenticate when
– Suspicious attempts
– Forgotten passwords

• 33-39% may be guessed by family members. Friends or
those with access to personal information

• 20% of users could not remember their own answers.
• Possible solution: Multiple questions with a minimum

threshold of right answers

35

Multifactor Authentication
• Smartphone with number xxx-xxx-xxxx: one in 1010

– About 33 bits of entropy

• Fingerprints might be unique. However information my
be lost when 25-80 minutiae are used for comparison.
Uniqueness still being researched.

• Face recognition: 97.25% accuracy?

36

Password managers
• Can record username, password, form information etc.
for automatic filling.
– Locally on a device
– On the web

• Can generate good passwords
• The master password may be kept locally. If you forget it, you

may have to extract it yourself.
• Some browsers may include password management capabilities
• Can protect against keyloggers
Disadvantages:

– May have vulnerabilities
– May be blocked by some websites

