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Detectability Profile

• To test a potential fault, it needs to be 
triggered and error needs to be sensed.

• Some faults are easy to test, some are very
hard to test.

• As testing and debugging progresses, the
remaining faults are the ones that are harder 
to find.

• Corner cases: at extreme values for multiple 
variables.
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Software Reliability Growth models
• Time-based models:
– Defect discovery rate = f(calendar time)
– Cumulative number of defects discovered = f(calendar time)

• Exponential and Logarithmic models

• Coverage based models
– Cumulative number of defects discovered =f(coverage 

achieved)
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Term Project
All submissions should follow the 2-column format for IEEE 
conference papers.
• Proposal and sources: Oct 10
• Semi-final report: Nov 7

– It should indicate that you have finished at least two-thirds of the work. It 
should include an abstract, discussion of background literature, a 
summary of the investigations/findings, any refinements of the proposal 
objectives as a result of the past study, what the final report will contain 
and the applicable references. 

– Technical details, equations/tables/plots/screen-shots
– You must be aware of the current trends in research/industry.

• Slides: Due Nov 18
• Ten-minute oral presentation Nov 19-Dec 8

https://www.ieee.org/conferences_events/conferences/publishing/templates.html
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Authentication

• Authentication: the process of verifying an actor’s 
identity

• Needed for security of systems
– Permissions, capabilities, and access control are all 

contingent upon knowing the identity of the actor

• Parameterized as a username and a user’s 
proprietary information
– The proprietary information attempts to limit 

unauthorized access

7
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Types of proprietary info

• Actors provide their proprietary information to login to 
a system

• Three classes of proprietary info:
1. Something you know

• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

8
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Checking Passwords

• The system must validate passwords provided by 
users

• Thus, passwords must be stored somewhere
• Simple scheme: plain text (is this good?)

9

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt
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Problem: Password guessing 
How easy it is  to guess a password?
• If your keyboard has R= 95 unique characters, 
• randomly constructing a password from that whole set, 

12-character password, then L = 12.
• 9512= 540,360,087,662,636,962,890,625 passwords 
Entropy = log2(RL) = 78.9 bits assuming passwords are created 
randomly
• Non-randomness makes password guessing easier.
• Measures of password strength proposed and used

Password guessing at login?  Can be defeated by 
– Limited number of tries: 3-5
– Blocking attempts from unknown/suspected IP addresses

Ascii is 8 bits. Thus about 212x8
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Problem: Password File Theft

• Attackers often compromise systems
• They may be able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
– The attacker can now log-in as any user, including 

root/administrator

• Passwords should never be stored in plain text

11
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Famous Password breaches
Top 5

Yahoo 2013; 2014 3 billion; 500 million

First American Financial Corp 2019 885 million

Facebook 2019 540 million

Marriott International 2018 500 million

Friend Finder Networks 2016 412.2 million

According a Verizon Data Breach Investigations Report, 
• over 70% of employees reuse passwords at work. 
• “81% of hacking-related breaches leveraged either stolen and/or weak 

passwords.”

https://www.knowbe4.com/hubfs/rp_DBIR_2017_Report_execsummary_en_xg.pdf
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Problem: Password File Theft

• Attackers often compromise systems
• They are often able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
– The attacker can now log-in as any user, including 

root/administrator

• Thus Passwords should never be stored in plain text, 
but using ..

13
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• Impossible to reconstruct password from hash

Encryption vs Hashing
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Hashed Passwords
• Key idea: store encrypted versions of passwords
– Use one-way cryptographic hash functions
– Examples: md5, sha1, sha256, sha512

• Cryptographic hash function transform input data into 
scrambled output data
– Deterministic: hash(A) = hash(A)
– High entropy:

• md5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• md5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• md5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

– Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time
• Example: 221 tries for md5

16

Md5: 128 bit

Ack: Northeastern U
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Hashed Password Example
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cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

md5(‘p4ssw0rd’) = 
2a9d119df47ff993b662a8ef36f9ea20 

md5(‘2a9d119df47ff993b662a8ef36f9ea20’) 
= b35596ed3f0d5134739292faa04f7ca3 
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Attacking Password Hashes

• Problem: users choose poor passwords
– Most common passwords: 123456, password
– Username: cbw, Password: cbw
– Common password patterns

• Weak passwords enable dictionary attacks

18

Default passwords (password, default, admin, guest etc) if not changed 
can be a security hazard.
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Most Common passwords
• Most common passwords unscrambled from the 2012 leaked 

LinkedIn.com dataset as of 2016 (in 1,000s)

https://www.statista.com/statistics/271098/most-common-passwords/

Has your password been 
compromised?
https://haveibeenpwned.
com/Passwords

https://haveibeenpwned.com/Passwords
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Dictionary Attacks

• Common for 60-70% of hashed passwords to be 
cracked in <24 hours

20

English
Dictionary

Common
Passwords

hash()

hash()

List of 
possible 

password 
hashes

hashed_
password.txt
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Hardening Password Hashes

• Key problem: cryptographic hashes are deterministic
– hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
– This enables attackers to build lists of hashes

• Solution: make each password hash unique
– Add a salt to each password before hashing
– hash(salt + password) = password hash
– Each user has a unique, random salt
– Salts can be stores in plain text

21
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Example Salted Hashes
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cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt
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Attacking Salted Passwords
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hash()
List of 

possible 
password 

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of 
possible 

password 
hashes w/ 

salt a8

List of 
possible 

password 
hashes w/ 

salt 0X

cbw a8
sandi 0X
amislove hz
bob K@

hash(‘0X’ + word)
cbw XXXXsandi YYYY
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Breaking Hashed Passwords

• Stored passwords should always be salted
– Forces the attacker to brute-force each password 

individually

• Problem: it is now possible to compute cryptographic 
hashes very quickly
– GPU computing: hundreds of small CPU cores
– nVidia GeForce GTX Titan Z: 5,760 cores
– GPUs can be rented from the cloud very cheaply

• 2x GPUs for $0.65 per hour (2014 prices)

25
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Examples of Hashing Speed

• A modern x86 server can hash all possible 6 character long 
passwords in 3.5 hours
– Upper and lowercase letters, numbers, symbols
– (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes
• Most users use (slightly permuted) dictionary words, no 

symbols
– Predictability makes cracking much faster
– Lowercase + numbers à (26+10)6 = 2B combinations

26
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Hardening Salted Passwords

• Problem: typical hashing algorithms are too fast
– Enables GPUs to brute-force passwords

• Solution: use hash functions that are designed to be 
slow
– Examples: bcrypt, scrypt, PBKDF2
– These algorithms include a work factor that increases the time 

complexity of the calculation
– scrypt also requires a large amount of memory to compute, 

further complicating brute-force attacks

27
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bcrypt Example

• Python example; install the bcrypt package

28

[cbw@ativ9 ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor
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Password Storage Summary

1. Never store passwords in plain text
2. Always salt and hash passwords before storing 

them
3. Use hash functions with a high work factor

• These rules apply to any system that needs to 
authenticate users
– Operating systems, websites, etc.

29
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Password Recovery/Reset

• Problem: hashed passwords cannot be recovered

30

“Hi… I forgot my password. Can 
you email me a copy? Kthxbye”

• This is why systems typically implement password
reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset
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Password crackers
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Forgotten passwords
• Too many passwords to remember
• “Strong” passwords can be hard to remember
• Traditional approach: user physically requests 

password reset 
– Using phone numbers or email addresses on record
– Showing IDs

• Danger: fraudulently obtaining password using social 
engineering. May represent the weakest link in the 
password system.
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Good passwords are bad
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Security Questions
• Security Questions are used to authenticate when
– Suspicious attempts
– Forgotten passwords

• 33-39% may be guessed by family members. Friends or 
those with access to personal information

• 20% of users could not remember their own answers.
• Possible solution: Multiple questions with a minimum 

threshold of right answers
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Multifactor Authentication
• Smartphone with number xxx-xxx-xxxx: one in 1010

– About 33 bits of entropy

• Fingerprints might be unique. However information my 
be lost when 25-80 minutiae are used for comparison. 
Uniqueness still being researched.

• Face recognition: 97.25% accuracy?
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Password managers
• Can record username, password, form information etc.
for automatic filling.
– Locally on a device
– On the web

• Can generate good passwords
• The master password may be kept locally. If you forget it, you 

may have to extract it yourself.
• Some browsers may include password management capabilities
• Can protect against keyloggers
Disadvantages:

– May have vulnerabilities
– May be blocked by some websites


