
1 1

Colorado State University
Yashwant K Malaiya

CS559
L18

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

2

Term Project
All submissions should follow the 2-column format for IEEE
conference papers.
• Proposal and sources: Oct 10
• Semi-final report: Nov 7

– It should indicate that you have finished at least two-thirds of the work. It
should include an abstract, discussion of background literature, a
summary of the investigations/findings, any refinements of the proposal
objectives as a result of the past study, what the final report will contain
and the applicable references.

– Technical details, equations/tables/plots/screen-shots
– You must be aware of the current trends in research/industry.

• Slides: Due Nov 18 (more details later)
• Ten-minute oral presentation Nov 19-Dec 8

https://www.ieee.org/conferences_events/conferences/publishing/templates.html

3

Peer Interaction
• Your interaction with other student’s research is a part

of the class.
• You will need to review semi-final report of two fellow

students
– Identify main contributions
– Strength/weaknesses
– Suggestions for improvements
– Suggested additional references

• Presentations: reviews and comments
• Your interaction will be evaluated

4 4

Colorado State University
Yashwant K Malaiya

CS559
Projects

Quantitative Cyber-Security

CSU Cybersecurity Center
Computer Science Dept

5

Research
• Understand the techniques and results in a chosen field

– Examine articles from diverse sources
– Study selectively

• Identify current status, trends, unexplored issues
• Search for information

– Multiple types of sources
– Multiple key words

• Search “around” an article
– Backward search: citations
– Forward search: cited by (Google scholars)
– Horizontal search: related publications

6 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

6

Search Databases
Specific sources: database indexes
• Google Scholar

– Forward links: Paper X Cited by
– Backward Links: Paper X cites

• Researcher sites
– Personal/Group Website
– DBLP
– Google Scholar: researcher

• CSU Library etc.
General (accessible through CSU Library)
• ACM Digital Library
• IEEEXplore Digital Library
• ScienceDirect etc

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

7 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

7

Source types
• News (such as Google News)
• Conferences: held once a year, proceedings published

– Conference, Symposium, …
• Industry publications

– Magazines, blogs, white papers, product website
• Journals: published several times a year

– Rigorously reviewed, long publication delay
– Journal, Transactions, …

• Research groups
– Industry, academic, consultants: web site

• Books: often well-known stuff
– Research updates: monographs

https://news.google.com/search?q=fuzzing&hl=en-US&gl=US&ceid=US%3Aen

8 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

8

How to Read Papers: THE THREE-PASS APPROACH

• The first pass: Read (a large number)
– the title, abstract, and introduction
– section and sub-section headings, but ignore everything else
– the conclusions

• The second pass: Read (an intermediate number)
– figures, diagrams and other illustrations
– mark relevant unread references for further reading
– Do you need to read it in detail?

• The third pass: Read critically (closely related)
– identify and challenge assumption and views
– Loop up references needed

Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

9 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

9

Evaluation of Research
Similar to paper review for conferences/journals
• Significance and originality

– Timeliness
– Originality

• Thoroughness of research
– Familiar with the field?
– Has seen significant/recent papers?

• Depth of understanding displayed
• Presentation

10 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

10

You Must Do Research

Not enough:
• Summary of a couple of papers
• Summary of work of a single research group
• Rephrasing of existing surveys

You must know (and should be able to answer
related questions):
• Current state of the art
• Alternative approaches and how they can be evaluated
• Technology trend
• Find data describing the technology
• Existing issues and challenges

11 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

11

Citing Sources

“IEEE” “ACM” etc:
• These are professional organizations that organize numerous

conferences and published journals
• You must specify the author, title of paper, specific names of

conference/journal, associated details, date, page numbers
• A simple URL is not a valid citation
• URL not needed for conference, journal publications. Needed for on-line

publications (Organizational reports, Industrial white-papers, News etc)

Omar H., Alhazmi and Yashwant K. Malaiya, "Application of vulnerability discovery models to major operating
systems“, IEEE Transactions on Reliability, Volume: 57 , Issue: 1, pp. 14-22, March 2008,

Ambrose Andongabo, Ilir Gashi, "vepRisk - A Web Based Analysis Tool for Public Security Data", 13th
European Dependable Computing Conference (EDCC) 2017, pp. 135-138, 2017.

12 October 29, 2020
Fault Tolerant Computing

©Y.K. Malaiya

12

You must include

• Title, your name, class, year, professor’s name
• Abstract: What does it include and why is it important
• Background: Other existing work and background ideas
• Technical discussion: detailed presentation of findings

with non-text material (equations, charts, plots, tables,
algorithms etc.)

• Discussion of results
• Summary, future work
• References
• Appendix if any

13

Projects

13

Dubois, Alexandre 1 economic tradeoffs due to security issues
Li, Jacinda 6 Analysis of Electronic Payment Systems
Pineiro Rivera, Luis 6 Security of Payment Systems
Mulligan, Brett 10 Fuzzing Open Source IoTProject
Chen, Sirius 11 secure containers
Liu, Zijuan 11 Security in Virtualized Systems
Al Amin, Md 12 Ransomware
Neumann, Don 12 Ransomware
Haynes, Katherine 13 DeepNeural Networks to Improve Phishing Detection
Rodriguez, Luis 13 Quantitative Examination of Phishing
Zhao, Qingyi 13 phishing
Weaver, Austen 14 Cost and Cause of U.S. Government Security Breaches
Eswaran, Suraj 15 CYBER INSURANCE
Alqurashi, Saja 19 CS networkusing Mitre ATT&CK
Gowdanakatte, Shwetha 19 ATT&CKFramework and Vulnerability detection forIndustrial Control System
Kotian, Siddhi 20 Effectiveness of Penetration Testing
Padalia, Dhruv 20 effectiveness of Penetration Testing
Shang, Tony 24 deep neural networks todetect DDOS attack
Cheng, YaHsin 25 Cyber Criminals
Houlton, Sarah 25 Cyber Crime and Criminals
Jepsen, Waylon 25 North Korea’s Cyber Criminals
Petkar, Jayesh Umesh 26 Smartphone Security Model and Vulnerabilities
Ravichandran, Shree
Harini 26 Smartphone Security Model
Paudel, Upakar sp Security Posture of Various Android based IoT

14

Presentations
• 10-minute presentations, 2 minutes for Q/A/C
– Suggest max 15 slides
– Mention your name when asking questions

• One joint project with 2 students
– 2x presentation time

• Multiple independent projects on the same topic
– Coordinate to minimize overlap in the presentation

15

Problem: Password guessing
How easy it is to guess a password?
• If your keyboard has R= 95 unique characters,
• randomly constructing a password from that whole set,

12-character password, then L = 12.
• 9512= 540,360,087,662,636,962,890,625 passwords
Entropy = log2(RL) = 78.9 bits assuming passwords are created
randomly
• Non-randomness makes password guessing easier.
• Measures of password strength proposed and used

Password guessing at login? Can be defeated by
– Limited number of tries: 3-5
– Blocking attempts from unknown/suspected IP addresses

Ascii is 8 bits. Thus about 212x8

18

Attacking Salted Passwords

18

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X
amislove hz
bob K@

hash(‘0X’ + word)
cbw XXXXsandi YYYY

19 19

Colorado State University
Yashwant K Malaiya

CS 559
Fuzzing

Quantitative Security

CSU Cybersecurity Center
Computer Science Dept

20

Fuzzing vs. Testing

User Testing
Run program on many normal inputs, look for bad things to happen

Goal: Prevent normal users from encountering errors

Fuzzing
Run program on many abnormal inputs, look for bad things to happen

Goal: Prevent attackers from encountering exploitable errors

Ack: Stanford, Columbia

21

Types of Fuzzing

• Mutation-based (Dumb) fuzzing

– Add anomalies to existing good inputs (e.g., test suite)

• Generative (Smart) fuzzing

– Generate inputs from specification of format, protocol,
etc

• Evolutionary (Responsive) fuzzing

– Leverage program instrumentation, code analysis

– Use response of program to build input set

22

Mutation-Based Fuzzing

Basic Idea
• Take known good input and add anomalies
• Anomalies may be completely random or follow

some heuristics
– Large integers or strings
– Randomly flip bits

23

HTTP Fuzzing Example

Standard HTTP GET Request
GET /index.html HTTP/1.1

Anomalous Requests
GEEEE…EET /index.html HTTP/1.1
GET ///////index.html HTTP/1.1
GET %n%n%n%n%n%n.html HTTP/1.1
GET /AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.html
HTTP/1.1
GET /index.html HTTTTTTTTTTTTTP/1.1
GET /index.html HTTP/1.1.1.1.1.1.1.1
df%w3rasd8#r78jskdflasdjf
4isg8swksdfskdflsdgmsf$gkjs

24

Fuzzing PDF Reader

• Download 100s of random PDF files
• Mutate content in the PDF file:
- flip bits
- increase size of integers or strings
- remove data

• Limited by the functionality that the
existing files happened to use —
unlikely to hit less commonly tested
code paths

25

Mutation-Based Fuzzing

Basic Idea
• Take known good input and add anomalies
• Anomalies may be completely random or follow some heuristics

Advantages
• Little or no knowledge of the structure of the inputs is assumed
• Requires little to no set up time

Disadvantages
• Dependent on the inputs being modified
• May fail for protocols with checksums, challenge-response, etc.

26

Generation Based Fuzzing
Basic Idea
– Test cases are generated from protocol description: RFC, spec, etc.
– Anomalies are added to each possible spot in the inputs
– Knowledge of protocol should give better results than random

fuzzing

27

Generation Example: TLS Heartbeat

length <<length>> bytes random padding

01

length <<length>> bytes random padding

02

Heartbeat Extension for the Transport Layer Security:
to test and keep alive secure communication links
without the need to renegotiate the connection each time

28

Generation Example: TLS Heartbeat

length data padding

01

Heartbleed Vulnerability: server trusts user provided length field and
echoes back memory contents following request data

5HRG4y9N2vvbXNUwv0Jgi5eRv8ilIFhm
4qpdc8t9xTTBZdata&username=zakir
&password=123lnI1c9rX7ZayyY2N0H
72MngCOUuWIogpPuRabENAkXlkH8t3Os
05q8v

data&userna
me=zakir&password=123

29

Mutation-based vs. Generation-based
• Mutation-based fuzzer
– Pros: Easy to set up and automate, little to no knowledge of

input format required
– Cons: Limited by initial corpus, may fall for protocols with

checksums and other hard checks

• Generation-based fuzzers
– Pros: Completeness, can deal with complex dependncies (e.g,

checksum)
– Cons: writing generators is hard, performance depends on

the quality of the spec

30

How much fuzzing is enough?
• Mutation-based-fuzzers may generate an infinite

number of test cases. When has the fuzzer run long
enough?

• Generation-based fuzzers may generate a finite
number of test cases. What happens when they’re all
run and no bugs are found?

• Sometimes every anomalous test case triggers the
same (boring) bug?

31

Charlie Miller’s 5 Lines
In 2010, Charlie Miller fuzzed
– Adobe Acrobat,
– Apple Preview,
– Powerpoint, and
– Open Office

by downloading PDF and PPT files and five
lines of simple fuzzing:
numwrites =
random.randrange(math.ceil((float(len(buf)) /
FuzzFactor))) + 1
for j in range(numwrites):

rbyte = random.randrange(256)
rn = random.randrange(len(buf))
buf[rn] = "%c"%(rbyte)

32

Charlie Miller’s 5 Lines
Collect a large number of pdf files
– Aim to exercise all features of pdf readers
– Found 80,000 PDFs on Internet

Reduce to smaller set with apparently equivalent code coverage
– Used Adobe Reader + Valgrind in Linux to measure code coverage
– Reduced to 1,515 files of ‘equivalent’ code coverage (Test compaction)
– Same effect as fuzzing all 80k in 2% of the time

Randomly changed selected bytes to random values in files
• Produce ~3 million test cases from 1,500 files

Use standard common tools to determine if crash represents a exploit
• Acrobat: 100 unique crashes, 4 actual exploits 4%

• Preview: 250 unique crashes, 60 exploits (tools may over-estimate) 24%

33

Code Coverage

What if we tried to build tests that try to reach code in the program?

Code coverage is a metric which can be used to determine how much code has
been executed.

• Function coverage: Has each function in the program been called?

• Edge coverage: Has every edge in the Control flow graph been executed?

• Branch coverage: Has each branch of each control structure been executed?

• Predicate coverage: Has each boolean expression been evaluated to true and
false?

34

Coverage-guided gray-box fuzzing
• Special type of mutation-based fuzzing
– Run mutated inputs on instrumented program and measure

code coverage
– Search for mutants that result in coverage increase
– Often use genetic algorithms, i.e., try random mutations on

test corpus and only add mutants to the corpus if coverage
increases

– Examples: AFL, libfuzzer

35

American Fuzzy Lop (AFL)

Input
queue

Seed
inputs

Next input

Mutation

Execute
against

instrumented
target

branch/edge
coverage

increased?Add mutant
to the queue Periodically culls the queue

without
affecting total coverage

37

Evolutionary Fuzzing

Basic Idea:

Generate inputs based on the structure and response of the program

• Autodafe: Prioritizes based on inputs that reach dangerous API functions

• EFS (Evolving Fuzzer System): Generates test cases based on code coverage
metrics

Typically instrument program with additional instructions to track what code has
been reached — or, if no source is available, track with Valgrind.

http://autodafe.sourceforge.net/tutorial/index.html

38

Tools

Two influential tools

cross_fuzz — specifically targeted at browser and generating complex DOM
sequences

American Fuzzy Lop (AFL) — most everything else

39

AFL Algorithm

American fuzzy lop (AFL) 2013 initial /2019 stable Michał Zalewski, Google/Snap

• Load user-supplied initial test cases into the queue,
• Take next input file from the queue,
• Attempt to trim the test case to the smallest size that doesn't alter the

measured behavior of the program,
• Repeatedly mutate the file using a balanced and well-researched variety

of traditional fuzzing strategies,
• If any of the generated mutations resulted in a new state transition

recorded by the instrumentation,
– add mutated output as a new entry in the queue.

• Go to 2.

40

Fuzzing challenges
• How to seed a fuzzer?
– Seed inputs must cover different branches
– Remove duplicate seeds covering the same branches
– Small seeds are better.

• Some branches might be very hard to get past as the #
of inputs staisfying the conditions are very small
– Manually/automatically transform/remove those branches

41

Fuzzing rules of thumb
• Input-format knowledge is very helpful
• Generational tends to beat random, better specs make

better fuzzers
• Each implementation will vary, different fuzzers find

different bugs
– More fuzzing with is better

• The longer you run, the more bugs you may find
– But it reaches a plateau and saturates after a while

• Best results come from guiding the process
• Notice where you are getting stuck, use profiling (gcov,

lcov)!

