Quantitative Cyber-Security

Colorado State University Yashwant K Malaiya CS559

L26: Presentations

CSU Cybersecurity Center Computer Science Dept

Presentations

- This is a research-oriented project. Please mention significant recent work and cite researchers and identify current trends challenges.
- Students with closely related presentations should coordinate among themselves to minimize overlap.
- Everyone: fill the peer-review form, and submit through canvas on
- Final: is two part
 - Final a: critial review of two specific project Final Reports
 - Assignment should be available Dec 10 and will be due on Dec 15.
 - Final b: proctored questions based (somewhat like midterm)
 - Dec 16 2-4 PM as scheduled. Perhaps 1 hour.

Presentations/Final Report

Tu Dec 1, 2020

- Paudel, Upakar. Security Posture of Various Android based IoT
- 2. Gowdanakatte, Shwetha. ATT&CK Framework and Vulnerability detection for Industrial Control System
- 3. Eswaran, Suraj. Cyber Risk and Cyber Insurance
- 4. Cheng, YaHsin. Severity of Cybercrime acts and Methods to Prevent them
- 5. Weaver, Austen. Cost and Cause of U.S. Government Security Breaches
- 6. Ravichandran, Shree Harini. Smartphone Security Model and Vulnerabilities

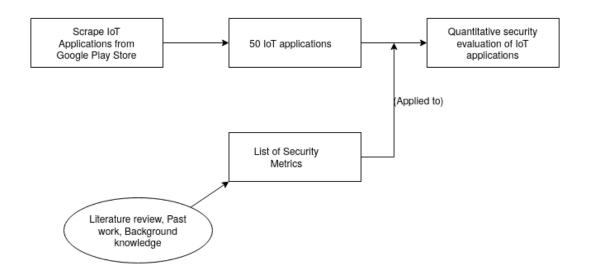
Project

Final report (8-12 pages, submit using Canvas/Turnitin): It needs to be publication quality. It should include

- the title, name of the author(s), name of the class and professor,
- an abstract,
- description of what is your contribution and what is new in your report,
- introduction (modification, background and related work, objectives and methods),
- description of assumptions/schemes/models/problem-formulation,
- comparison/discussion/derivation etc. of the results,
- conclusions (findings and suggestions for improvements) and
- references.
- Report must include appropriate figures and must have some hard data (tables/plots/screen-shots/algorithms etc.).
- Evaluation: significance and originality, thoroughness of research, depth of understanding displayed and presentation.

Measuring Security Posture of Various Android Based IoT Applications

Upakar Paudel



OVERVIEW

- IoT device rise in popularity opens up a lot of security and privacy issues
- IoT applications act as a bridge between IoT device and outer network
- IoT applications need to be secure to better protect IoT devices and network

CONTRIBUTION

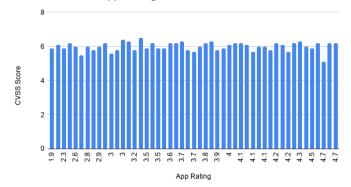
- Devised various metrics to measure security health of IoT applications
- Measured the security health of 50 IoT applications based on devised metrics
- Understand the correlation between various metrics and security health of IoT applications

METHODOLOGY

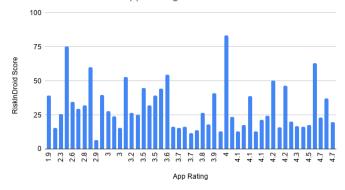
Security Metrics	Tools
Strength of Password Policy	Crylogger
RiskInDroid Score	RiskInDroid
CVSS Score	MobSF
Malicious/Risky third party dependencies	MobSF
Number of ICC Leaks	IccTa / FlowDroid
App Rating	Application Detail
Use of expired/invalid certification	MobSF
Sensitive data to logs/third party	MobSF
Days Since last released update	Application Detail
Number of Cryptoguard violations	Cryptoguard
Number of Crylogger violations	Crylogger

SECURITY METRICS AND TOOLS USED

Application	RiskInDroid_Score	CVSS Score Malicious/Risky 3rd Party Deper		# Invalid Certs	Sensitive Data to Logs	Days since release FlowD			Crylogger Violations
castify.roku	20.00949004		4	.3 Severity (7.4)	Severity (7.5)	0	1	85	
castwebbrowsertotv.castwebvideo.webvideocaster	16.87102103	6.3 No Severity	4	.3 Severity (7.4)	Severity (7.5)	266	3	45	
cn.ubia.ubox	39.66391169	6.2 No Severity		3 Severity (7.4)	Severity (7.5)	1	55	50	
co.bitfinder.awair	25.1147021	6.5 No Severity	3	.5 Severity (7.4)	Severity (7.5)	19	4	20	
co.sonofy.smartroomsolutions	44.78844702	5.9 No Severity	3	5.5 No Severity (0)	Severity (7.5)	22	0	26	
com.abb.energyviewer	27.80792497	5.6 No Severity		3 No Severity (0)	Severity (7.5)	25	0	19	
com.adt.pulse	17.63325678	5.9 No Severity	4	.5 No Severity (0)	Severity (7.5)	187	7	19	
com.alarm.alarmmobile.android.guardian	12.77713509	5.9 No Severity		4 No Severity (0)	Severity (7.5)	21	2	22	
com.allocacoc.smart	13.03858582	e 6.2 No Severity	4	.1 No Severity (0)	Severity (7.5)	336	1	47	
com.angelcam	16.37759876	6 No Severity	4	.3 No Severity (0)	Severity (7.5)	40	4	12	
com.bosch.indegoconnect	32.18617769	6 No Severity	2	.8 No Severity (0)	Severity (7.5)	64	11	7	
com.concept2.ergdata	23.78130006	5.8 No Severity		3 No Severity (0)	Severity (7.5)	174	8	5	
com.customsolutions.android.alexa	13.77088834	6 No Severity	3	.8 Severity (7.4)	Severity (7.5)	1	17	68	
com.datadudu.ubibot	83.55327179	6.1 No Severity		4 No Severity (0)	Severity (7.5)	14	16	10	
com.ezviz	26.49029453	6.2 No Severity		.8 No Severity (0)	Severity (7.5)	4	6	53	
com.fibaro.homecenter	25.48420798	5.9 No Severity		.3 No Severity (0)	Severity (7.5)	45	10	14	
com.govee.home	15.4987491			.7 No Severity (0)	Severity (7.5)	26	5	29	
com.hubble.care	23.65007916			4 No Severity (0)	Severity (7.5)	1	1	34	
com.hunter.hunterWifiConnectAndroid	39.28325299	-		.9 No Severity (0)	Severity (7.5)	89	3	22	
com.ilifes.mart.mslict_gp	50.22148724			.2 Severity (7.4)	Severity (7.5)	25	1	81	
com.iruleav.nebula.android.prod	62.88423324	-		.6 No Severity (0)	Severity (7.5)	223	0	9	
com.jibo	17.53310785			.1 No Severity (0)	Severity (7.5)	867	7	27	
com.lgeha.nuts	18.20389998			.9 Severity (7.4)	Severity (7.5)	14	5	85	
com.mm.android.direct.AmcrestViewPro	16.44592273			.7 No Severity (0)	Severity (7.5)	125	15	6	
com.mm.android.yale	44.35523956			.6 No Severity (0)	Severity (7.5)	128	1	33	
com.mobics.kuna	32.14857018	-		.5 No Severity (0)	Severity (7.5)	202	6	31	
com.netatmo.camera	38.70498726			.1 No Severity (0)	Severity (7.5)	7	3	17	
com.northstar.connect	54.72970251	-		.6 No Severity (0)	Severity (7.5)	35	5	16	
com.safety1st.babymonitor	15.6002384			2.2 No Severity (0)		15	12	41	
com.safety1st.babymonitor com.schneider electric,wiser2	26.55555704			i.2 Severity (7.4)	Severity (7.5) Severity (7.5)	439	12	7	
com.sensibo.app	40.91785054					439	18	11	
				.9 No Severity (0)	Severity (7.5)	290	1	0	
com.seventwentysoftware.powerzoneplus	23.30521411			.7 No Severity (0)	Severity (7.5)		4	53	
com.simplisafe.mobile	37.09232772			.7 No Severity (0)	Severity (7.5)	8	7		
com.smarthvac	11.55532989			.7 No Severity (0)	Severity (7.5)	53		17	
com.smartroost.app	29.39379723			.7 No Severity (0)	Severity (7.5)	147	0	10	
com.sonova.hansaton.rcapp	34.51833581	6 No Severity		.6 No Severity (0)	Severity (7.5)	145	3	24	
com.specialyg.ippro	52.77745701			1.1 Severity (7.4)	Severity (7.5)	55	40	90	
com.supremevue.ecobeewrap	13.05248864			.1 No Severity (0)	Severity (7.5)	25	8	29	
com.tplink.tpm5	19.77756491			.7 No Severity (0)	Severity (7.5)	18	2	47	
com.tuya.smart	15.73711562			.2 No Severity (0)	Severity (7.5)	24	0	37	
com.velux.active	39.1415388	-		.5 No Severity (0)	Severity (7.5)	22	0	2	
com.vivitarsecurity.smart	16.14666676			3.6 Severity (7.4)	Severity (7.5)	127	1	45	
com.vuebell	6.408135591	6 No Severity		1.9 Severity (7.4)	Severity (7.5)	4	6	51	
com.xvrview	75.35598769			.3 Severity (7.4)	Severity (7.5)	16	29	17	
de.twokit.video.tv.cast.browser.firetv	15.3456646	6.4 No Severity		3 Severity (7.4)	Severity (7.5)	34	1	44	
eu.hoermann.ast.bluesecur	59.96070958			.8 No Severity (0)	Severity (7.5)	98	0	3	
io.fireboard.android	46.59954102		4	.2 No Severity (0)	Severity (7.5)	31	18	11	
no.easee.apps.easee.users	21.54588838	6 No Severity	4	.1 No Severity (0)	Severity (7.5)	7	16	4	
xyz.angeldev.flux	24.58459827	5.8 No Severity	4	.1 No Severity (0)	Severity (7.5)	38	0	5	


cryptoguard	crylogger							
Rule 2: Found broken hash functions	R-01: Don't use broken hash functions (SHA1,MD2,MD5,)							
	R-02: Don't use broken encryption alg. (RC2,DES,IDEA)							
Rule 1: Found broken crypto schemes	R-03: Don't use the operation modeECBwith>1 data block							
	R-04: Don't use the operation modeCBC(client/server scenarios)							
	R-10: Don't use a static (= constant) salt for key derivation							
Rule 9: Found constant salts in code	R-11: Don't use a short salt (<64 bits) for key derivation							
	R-12: Don't use the same salt for different purposes							
Rule 3: Used constant keys in code	R-05: Don't use a static (= constant) key for encryption							
Rule 3. Oseu constant keys in code	R-07: Don't use a static (= constant) initialization vector (IV)							
Rule 10: Found constant IV in code	R-08: Don't use a "badly-derived" initialization vector (IV)							
Rule 10. Found constant IV in code	R-09: Don't reuse the initialization vector (IV) and key pairs							
Rule 8a: Used < 1000 iteration for PBE ***Constants: [1000]	R-13: Don't use<1000 iterations for key derivation							
Rule 11: Found predictable seeds in code	R-17: Don't use a static (= constant) seed for PRNG							
Rule 13: Untrusted PRNG	R-18: Don't use an unsafe PRNG (java.util.Random)							
Rule 7: Used HTTP Protocol	R-22: Don't use HTTP URL connections (use HTTPS)							
Rule 14: Used Predictable KeyStore Password	R-23: Don't use a static (= constant) password for store							
Rule 12: Does not manually verify the hostname	R-26: Don't manually change the hostname verifier							
Rule 6: Uses untrusted HostNameVerifier	R-24: Don't verify host names in SSL in trivial ways							
Rule 4: Uses untrusted TrustManager	R-25: Don't verify certificates in SSL in trivial ways							
Rule 5: Used export grade public Key								
	R-14: Don't use a weak password (score<3)							
	R-15: Don't use a NIST-black-listed password							
	R-16: Don't reuse a password multiple times							
	R-19: Don't use a short key (<2048 bits) for RSA							
	R-20: Don't use the textbook (raw) algorithm for RSA							
	R-21: Don't use the paddingPKCS1-v1.5for RSA							

Cryptoguard vs Crylogger rules



Application	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22	R23	R24	R25	R26
castify.roku	٧	V	R	V	S	R	S	R	V	S	R	R	R	R	R	S	S	٧	R	R	R	V	S	R	R	R
castwebbrowsertotv.castwebvideo.webvideocaster	V	R	R	V	s	R	s	R	V	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
cn.ubia.ubox	٧	R	R	R	s	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
co.bitfinder.awair	V	R	R	R	S	R	S	R	R	S	R	R	R	V	R	S	S	V	R	R	R	R	S	R	R	R
co.sonofy.smartroomsolutions	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.abb.energyviewer	V	R	R	R	s	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.alarm.alarmmobile.android.guardian	V	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.angelcam	V	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.bosch.indegoconnect	٧	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	V	R	R	R	S	R	R	R
com.concept2.ergdata	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	V	R	R	R	S	R	R	R
com.customsolutions.android.alexa	V	R	R	V	S	R	s	R	R	S	R	R	R	R	R	S	S	V	V	R	R	R	S	R	R	R
com.datadudu.ubibot	V	R	R	V	S	R	s	R	V	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.ezviz	٧	R	R	R	S	R	S	R	R	S	R	V	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.fibaro.homecenter	٧	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.govee.home	V	R	R	V	s	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.iruleav.nebula.android.prod	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.jibo	V	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.mobics.kuna	٧	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.netatmo.camera	V	R	R	R	s	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.safety1st.babymonitor	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.schneider_electric.wiser2	R	R	R	V	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.sensibo.app	٧	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.seventwentysoftware.powerzoneplus	V	R	R	R	S	R	s	R	R	S	V	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.smarthvac	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.smartroost.app	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	V	R	R	R	S	R	R	R
com.supremevue.ecobeewrap	V	R	R	V	S	R	S	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
com.tplink.tpm5	٧	V	V	V	S	R	S	R	V	S	V	R	V	R	R	S	S	V	R	R	V	R	S	R	V	V
com.tuya.smart	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
de.twokit.video.tv.cast.browser.firetv	V	R	R	R	S	R	S	R	R	S	R	R	R	R	R	S	S	٧	R	R	R	V	S	R	R	R
io.fireboard.android	٧	R	R	R	S	R	s	R	R	S	V	R	V	V	R	S	S	٧	V	R	R	R	S	R	V	R
no.easee.apps.easee.users	V	R	R	R	S	R	s	R	R	S	R	R	R	R	R	S	S	V	R	R	R	R	S	R	R	R
xyz.angeldev.flux	R	R	R	R	S	R	S	R	R	S	R	R	R	R	R	s	S	V	R	R	R	R	S	R	R	R

CVSS Score vs. App Rating

RiskInDroid Score vs App Rating

Correlation across CVSS, RiskInDroid Score and App Rating

OBSERVATION

- All applications are vulnerable to sending sensitive data to logs/third party
- Applications don't usually communicate with bad host on the internet
- Applications show high vulnerability with regard to use of broken hash function and unsafe random number generator
- No correlation between App Rating and CVSS score / RiskInDroid score

CONCLUSION & FUTURE WORK

Conclusion:

- Measured the security health of 50 IoT applications
- Pinpointed areas that need improvement and developers can address

Future Work:

- Extend current work with additional IoT applications
- Devise other suitable metrics to measure security health of IoT applications
- Perform thorough analysis

REFERENCES

- Daniel R. Thomas, Alastair R. Beresford, and An-drew Rice. 2015. Security Metrics for the Android Ecosystem. In Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smart-phones and Mobile Devices (SPSM '15). Association for Computing Machinery, New York, NY, USA, 87–98.
 DOI:https://doi.org/10.1145/2808117.2808118
- R. M. Savola, P. Savolainen, A. Evesti, H. Abie and M. Sihvonen, "Risk-driven security metrics development for an e-health IoT application," 2015 Information Security for South Africa (ISSA), Johannesburg, 2015, pp. 1-6, doi: 10.1109/ISSA.2015.7335061.T. Zheng, T. Jianwei, Q. Hong, L. Xi, Z. Hongyu, and
- Q. Wenhui, "Design of automated security assessment framework for mobile applications," in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, Nov. 2017, pp. 778–781, doi: 10.1109/ICSESS.2017.8343028.
- L. Piccolboni, G. Di Guglielmo, L. P. Carloni, and S. Sethumadhavan, "CRYLOGGER: Detecting Crypto Misuses Dynamically," arXiv:2007.01061 [cs], Jul. 2020, doi: 10.1109/SP40001.2021.00010.

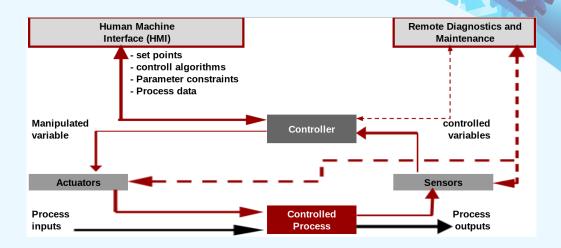
Author: Shwetha Gowdanakatte

Professor: Dr. Yashawant Malaiya

Computer Science Colorado State University

OVERVIEW

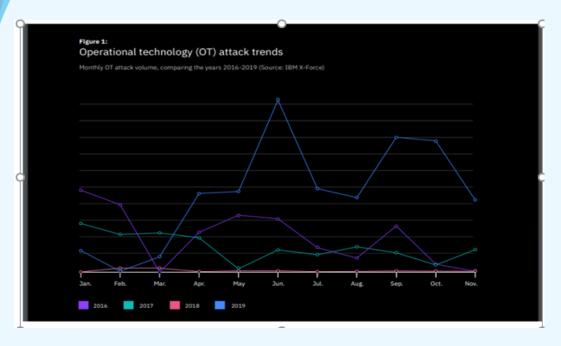
In this paper, I explore


- -Current standards, procedures and technologies for vulnerability detection and threat modeling for Industrial Control Systems [ICS].
- -Quantitative examination of MITRE ATT&CK for ICS.
- -Recent research in threat modeling and vulnerability detection for ICS.
- -Demonstrate manual threat modeling for ICS.
- -Propose Automated threat modeling for ICS.

Index Terms: Cyber Security, Industrial Control Systems [ICS], Supervisory Control and Data Acquisition [SCADA], Human Machine Interface [HMI], Programmable Logic Controller [PLC], Information Technology [IT], Operation Technology [OT], Advanced Persistent Threats [APT], Industrial Internet Of Things [IIOT], Common Vulnerabilities and Exposures [CVE]

INTRODUCTION TO ICS

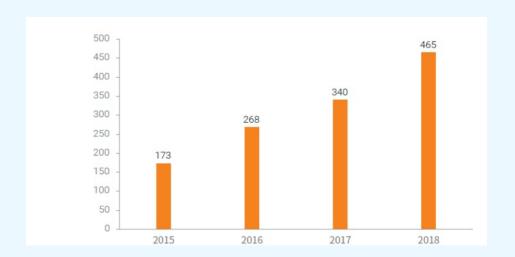
- ICS: Collective term used to describe the control systems and associated instrumentation used to automate the industrial process.
- -Typically include Human Machine Interface [HMI], Programmable Logic Controller [PLC], sensor, network systems,
- Supervisory Control and Data Acquisition Systems [SCADA] are used to control and monitor ICS.


INTRODUCTION TO ICS

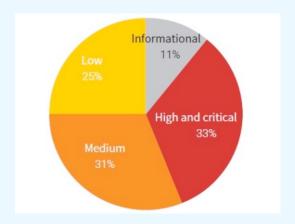
- -Initial ICS systems were isolated from enterprise network and the internet, has hence been less vulnerable to cyberattacks.
- -Current day ICS systems are equipped with advanced communication protocols, such as TCP/IP, Modbus, Device-Net
- -Vulnerable to cyber-attacks.

ars	Attacks
	2019 Hydro Cyber Attack
	Hexane on Oil and Gas Industries
	Cyber attack on HOYA
	Nyrstar Ransomware attack
	2018 Allanite
	Lyceum APT
	Ransomeware Attack on Manufacturing system
	2017 DragonFly
	BadRabbit Rasomware
	Triton Attack
	Trisis: Saudi Arabia
	Merck's cyber attack
	APT33 US Aerospace and Energy sectors
	Xanotime
	Wannacry attack
	Crashoverride
	NotPetya
	2016 Ukraine: Crash Override
	Attack on German Nuclear Power Plant
	APT33 US Aerospace and Energy sectors
	Kermuri Water Company
	Shamoon : Saudi Arabia
	2015 Helmith: OilRig
	Dymalloy
	Black Engery on Ukranian Power Grids
	2014 Dragon Fly
	2013 Infiltration of Newyork Dam
	MAGNALLIUM Petrochemical Industry
	Havex
	2012 Shamoon : Saudi Arabia
	Gas Pipe line cyber intrusion
	2011 Dymalloy
	duqu
	2010 Stuxnet
	Night Dragon: Oil and Gas
	2009 Derail City Tran Systems
	2008 Turkey Pipe line explosion

ICS: CYBER ATTACKS STATISTICS



ICS Statistics 2016-2019: IBM-X-Force Report



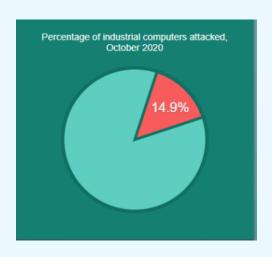
ICS: CYBER ATTACKS STATISTICS

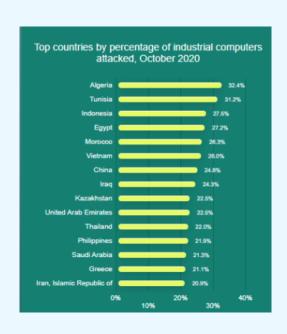
ICS Vulnerability trend from 2015-2018: [7]

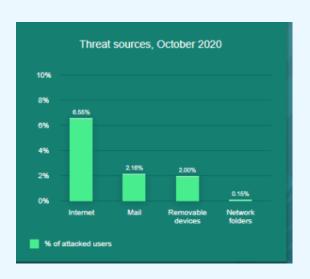
Distribution of security issues by risk level: [7]

CURRENT STATE OF TECHNOLOGY

- 2002: Strategies for ICS security by DHS [Department of Homeland Security.
- 2006: A national infrastructure plan for ICS security.
- 2010: Industrial Control System Network Emergency Response Team (ICS-CERT).
- 2011: Standards for ICS security by NIST.
- ICS Kill Chain: Adapted from cyber kill chain created by Lockheed Martin.
- 2020: MITRE ATT&CK Framework for ICS.


Dragos Inc.:


- Provides in-depth visibility of threats for ICS and provides recommendations.
- Regular reports, critical alerts, executive insight, webinars and more.
- Reported 438 ICS vulnerabilities, 3 new activity groups targeting ICS systems in 2019.



CURRENT STATE OF TECHNOLOGY

Kaspersky Lab: Reports on latest vulnerabilities, threats and recommendations.

RELATED RESEARCH-1

Al-Shaear. et.all[11]: Statistical analysis of APT TTP chains of MITRE ATT&CK.

Main Idea: Principal Component Analysis and prior distribution of techniques in reported ATP attacks.

Prior probability distribution techniques [11]

Provides fundamental techniques the probability of techniques for a set of adversaries.

Maximum Prediction Likelihood [11]

RELATED RESEARCH-2

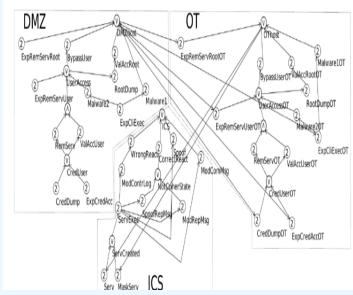
Falco, et. All [5]: Al based attack planner for smart cities. Incorporates MITRE and Cyber Kill Chain for attack tree generation.

Pros: Effective compared to manual attack trees.

Cons: Lack of data on Probabilistic results on possible techniques.

D. Cerotti et.all [2]: Bayesian network for monitoring and forecasting adversaries for power grid systems.

Analyzes attacks at DMZ between IT and OT networks.


Pros: Excellent method for prediction of techniques for ICS.

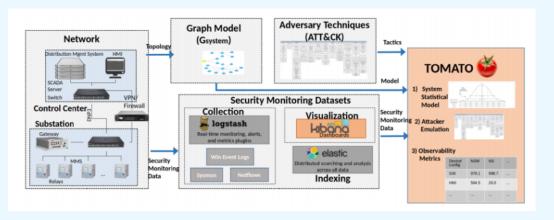
Cons: Does not provide details on implementation of Bayesian networks.

BypassUser CredDump ExpCredAcc ExpRemServRoot	0.021764 0.0717119 0.342749
ExpCredAcc ExpRemServRoot	0.342749
ExpRemServRoot	
	0.0050550
	0.0359553
ExpRemServUser	0.0057617
RemServ	0.0024305
RootDump	0.0364453
ValAccRoot	0.0019609
ValAccUser	0.010796

Probabilistic values for techniques from Bayesian Network. [2]

Bayesian Network Attack Graph [2]

Bayesian Network Model [2]


RELATED RESEARCH-3

Halvosen et.al. [6]: TOMATO [Threat Observability and Monitoring, Assessment Tool]

Measure the effectiveness of security monitoring. It evaluates a number of adversarial techniques and false alarms.

Pros: More advanced than the previous method.

Cons: Not address the detection of attacks and vulnerabilities at components level.

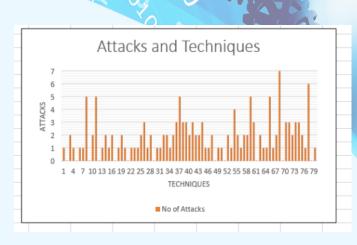
Architectural Overview of TOMATO

Event	Num Occurr.	Freq.	Anomalous Freq.
sc.exe	7	0.0026	0.2333
ipconfig.exe	6	0.0022	0.2000
rundll32.exe	4	0.0015	0.1333
cmd.exe	3	0.0011	0.1000
powershell.exe	3	0.0011	0.1000
reg.exe	2	0.0007	0.0666
net.exe stop	1	0.0004	0.0333
regsvr32.exe	1	0.0004	0.0333
sdbinst.exe	1	0.0004	0.0333
parent=taskeng.exe	1	0.0004	0.0333

Distribution of Anomalous Process Creation Events on the Gateway Device

Host	Tactic	P(f _{tactic} Host)
GW	Lateral Movement	0.2931
GW	Discovery	0.0022
GW	Execution	0.0052
GW	Privilege Escalation	0.0404
HMI	Lateral Movement	0.4549
HMI	Discovery	(
HMI	Execution	(
HMI	Privilege Escalation	0.0316

Probability Distribution of Finding Attack Tactics Using Host-Based Monitoring [6]

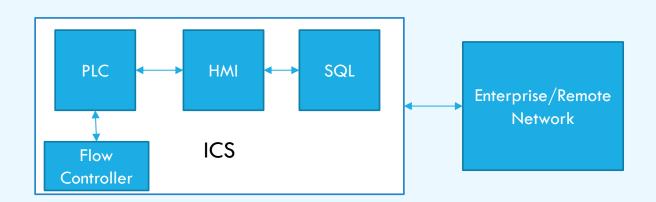


		ı	MITRE	ATT&CK	FRAM	EWORK	FOR IC	00100 Signatura			
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
9 techniques Drive-by Compromise	10 techniques Command and Scripting	Account Manipulation (4)	12 techniques Abuse Elevation Control	Abuse Elevation Control Mechanism (4)	14 techniques Brute Force (4)	24 techniques Account Discovery (4)	9 techniques Exploitation of Remote	Archive Collected	Application Layer Protocol (4)	9 techniques Automated Exfiltration	13 techniques Account Access Removal
Exploit Public- Facing Application External Remote Services Hardware Additions Phishing (3) Replication Through Removable Media Supply Chain Compromise (3) Trusted Relationship Valid Accounts (4)	Exploitation for Client Execution Inter-Process Communication (2) Native API Scheduled Task/Job (s) Shared Modules Software Deployment Tools System Services (2) Windows Management Instrumentation	BITS Jobs Boot or Logon Autostart Execution (11) Boot or Logon Initialization Scripts (5) Browser Extensions Compromise Client Software Binary Create or Modify System Process (4) Event Triggered Execution (15) External Remote Services Hijack Execution Flow (11)	Mechanism (4) Access Token Manipulation (5) Boot or Logon Autostart Execution (11) Boot or Logon Initialization Scripts (5) Create or Modify System Process (4) Event Triggered Execution (15) Exploitation for Privilege Escalation Group Policy Modification Hijack Execution Flow (11) Process Injection (11) Scheduled	Access Token Manipulation (5) BITS Jobs Deobfuscate/Decode Files or Information Direct Volume Access Execution Guardrails (1) Exploitation for Defense Evasion File and Directory Permissions Modification (2) Group Policy Modification Hide Artifacts (6) Hijack Execution Filow (11) Impair Defenses (6) Indicator Removal on Host (6)	Credentials from Password I Stores (a) Exploitation for Credential Access Forced Authentication Input Capture (a) Man-in-the-Middle (1) Modify Authentication Process (a) Network Sniffing OS Credential Dumping (a) Steal Application Access Token Steal or Forge Kerberos Tickets (a)	Application Window Discovery Browser Bookmark Discovery Cloud Service Dashboard Cloud Service Discovery Domain Trust Discovery File and Directory Discovery Network Service Scanning Network Share Discovery Network Share Discovery Perspect of Policy Password Policy Discovery Permission Groups Discovery Process Discovery	Internal Spearphishing Lateral Tool Transfer Remote Service Session Hijacking (2) Remote Services (6) Replication Through Removable Media Software Deployment Tools Taint Shared Content Use Alternate Authentication Material (4)	Audio Capture Automated Collection Clipboard Data Data from Cloud Storage Object Data from Information Repositories (2) Data from Local System Data from Local Collection (2) Email Collection (3)	Communication Through Removable Media Data Encoding (2) Data Obfuscation (3) Dynamic Resolution (3) Encrypted Channel (2) Fallback Channels Ingress Tool Transfer Multi-Stage Channels Non-Application Layer Protocol Non-Standard Port Protocol Tunneling	Data Transfer Size Limits Exfiitration Over Alternative Protocol (3) Exfiitration Over C2 Channel Exfiitration Over Other Network Medium (1) Exfiitration Over Physical Medium (1) Exfiitration Over Web Service (2) Scheduled Transfer Data to Cloud	Data Destruction Data Encrypted for Impact Data Manipulation (3) Defacement (2) Disk Wipe (2) Endpoint Denial of Service (4) Firmware Corruption Inhibit System Recovery Network Denial of Service (2) Resource Hijacking Service Stop System Shutdown/Reboot
		Implant Container Image Office Application Startup (6) Pre-OS Boot (3) Scheduled Task/Job (5) Server Software Component (3) Traffic Sinnaling (4)	Task/Job (s) Valid Accounts (4)	Masquerading (6) Modify Authentication Process (3) Modify Cloud Compute Infrastructure (4) Modify Registry Obfuscated Files or Information (5) Pre-OS Boot (3)	Steal Web Session Cookie Two-Factor Authentication Interception Unsecured Credentials (6)	Query Registry Remote System Discovery Software Discovery (1) System Information Discovery System Network Configuration Discovery System Network Connections Discovery		Man in the Browser Man-in-the- Middle (1) Screen Capture Video Capture	Proxy (4) Remote Access Software Traffic Signaling (1) Web Service (3)	Account	

MITRE ATT&CK FRAMEWORK FOR ICS

Attacks			Tactics and Techniques					
	Intial Access	Execution	Persistance	Evasion				
Trition	Eng. Wrk Stattion	Change Program State	Program. Donwload	Exploitattion for Evasion				
		Exec thrugh API	System Firmware	Indicator Removal on Host				
		Scripting						
Industroyer or Crash	ove Data Historian Compromise	Command Line Interfac	e					
Dragonfly Havox	sphearphishing attachement	User Execution						
<u> </u>	supply chain compromise							
Black Energy	sphearphishing attachement		Valid Account					
Bad Rabbit	Drive By Conpromise	User Execution						
BAU KADDIL	External Remote Services	USEI EXECUTION						
	External Nemote Services							
Conficker	Replication Through Removable Media							
Duqu								
Flame								
kill disc				Indicator Removal on Host				

Techniques	Attacks
Spearphishing Attachment	7
Valid Accounts	6
Remote System Discovery	5
Change Program State	5
Scripting	5
Program Download	4



MANUAL THREAT MODELING FOR ICS

Example ICS system: Air Sampling and particle monitoring system.

- Monitors air particles in pharmaceutical clean rooms.
- Periodically samples air at a certain flow rate.

Critical Assets: PLC, HMI, SQL Server and Flow Controller with PID

MANUAL THREAT MODELING FOR ICS

Vulnerabilities released in 2019 for Rockwell Components

Component	vulnerability	Risk	
Compact Logix 5370 PLC	Remote Exploiatbility	loiatbility Denial Of Service	
	cross site scripting	Denial Of Service	
Panel View Plus 700-1500 HMI	Improper access control	Remote Attacker can access to the target system	
Ethernet module:1756-ENBT	Remote Exploiatbility	ote Exploiatbility Denial Of Service	
	Buffer overflow		

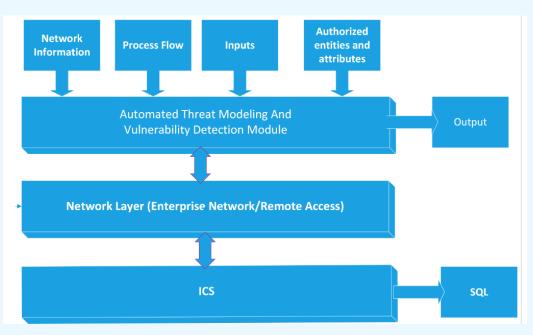
Possible Adversaries and Techniques for this

application

application		
Adversaries	Techniques	
Initial Access	Data Historian Compromise	
	sphearphishing attachement	
Execution	Change program state	
	Man in the middle	
Persistance	Program download	
	Valid account	
Discovery	Remote discovery	
Inhibit Response Function	,	
	Service Stop	
Impact	Denial of Service	
	Loss of availability	
	Loss of control	

Based on the analysis, the possible attacks can be:

- Triton.
- Industroyer or Crashoverride.
- Dragonfly Havox.


Limitations:

- In this method, threats are analyzed manually based on the ICS architecture, MITRE ATT&CK framework, and the vulnerabilities that are disclosed to the public. This can be time consuming and tedious for complex ICS systems.
- Testing of techniques and adversaries can be done only by penetration and brute force method for each adversary.
- This method fails to detect vulnerabilities that are not discovered yet.

PROPOSED AUTOMATED THREAT MODELING

Proposed Architecture

- Takes the inputs, such as network information (IP addr, subnet mask, gateway), process flow, inputs and authorized entities and attributes.
- Performs various attacks with MITRE ATT&CK techniques on the given ICS systems.
- Analyzes probability of techniques that can be successfully used by possible adversaries, and detects vulnerabilities in the PLC and HMI.
- Produces the probabilistic results on techniques and vulnerabilities.

PROPOSED AUTOMATED THREAT MODELING

Hypothetical Output

Possible Techniques	Probability
Data Historian Compromise on the HMI	0.85
Denial Of Service	0.7
Unitended PLC Start/Stop	0.65
Unitended Program Modification	0.6
Unauthorized access	0.5
Loss of Availability	0.4

Detected Vulnerabilities	
Crafted TCP/IP Packets	
SQL injection attacks	
Vulnerability in Remote Web Server	

Overall Percentage Of Security Risk	70%
-------------------------------------	-----

Implementation Discussion:

- Implementation of the Al algorithm to take the inputs and generate attack trees for various attacks.
- Apply MITRE ATT&CK techniques for each attack and test them against ICS
- Calculate the probabilities of possible techniques and detect vulnerabilities

Next Steps:

- Implementation of Automated Threat Modeling tool.
- Simulate the attacks and verify the effectiveness of the tool.

Conclusion

- ICS attacks are increasing every year as the automation industries and manufacturing facilities are incorporating advanced technology for their ICS.
- Many organizations are working towards implementing standards and providing security assessments for ICS.
- Current Research in the field of threat modeling and vulnerability demonstrates that we need to come up with effective automated threat modeling techniques.
- Proposed automated threat modeling can be useful if it can be demonstrated through implementation and simulation.
- Conclusively, I got to learn a lot about recent trends in ICS attacks, current state of technology and current research in the related field.

Acknowledgement

MANY THANKS TO DR. MALAIYA FOR PROVIDING AN OPPORTUNITY TO CONDUCT RESEARCH ON THIS TOPIC, FOR HIS GUIDANCE AND TIMELY SUPPORT. THANKS FOR THE CONSTRUCTIVE FEEDBACK ON THE PROGRESS REPORT.

REFERENCES

- [1] Analysis of the cyber attack on the ukrainian power grid. https://ics.sans.org/media/E-ISAC SANS Ukraine DUC 5.pdf, 2016.
- [2] D. Cerotti , D.Codetta-Raiteri1, and G.Dondossola. A bayesian networkapproach for the interpretation of cyber attacks to power systems. June 2019.
- [3] T. M. Chen and S. Abu-Nimeh. Lessons from stuxnet. Computer, 44(4):91–93, April 2011.
- [4] etc.. Davide Cerotti, Daniele Codetta-Raiteri. Evidence-based analysis of cyber attacks to security monitored distributed energy resources. Applied Science, July 2020.
- [5] G. Falco, A. Viswanathan, C. Caldera, and H. Shrobe. A master attack methodology for an ai-based automated attack planner for smart cities. IEEE Access. 6:48360–48373. 2018.
- [6] James Halvorsen, Jesse Waite, and Adam Hahn. Evaluating the observability of network security monitoring strategies with tomato. IEEE Access.
- [7] Mina hao. Ics information security assurance framework 10. https://nsfocusglobal.com/ics-information-security-assurance-framework-10/,2020.
- [8] Zhang Jian, Yang Li, and Liao Haode. A security architecture model of oil and gas scada network based on multi-agent. International Journal of Security and Its Applications, 10:449–460, 01 2016.
- [9] MITRE. ATTCK for Industrial Control Systems. https://collaboratemitre.org/attackics/index.php/Main Page, 2020.
- [10] MITRE. Brute Force I/O. https://collaborate.mitre.org/attackics/index.php/Technique/T806, 2020.
- [11] J. M. Spring R. Al-Shaer and E. Christou. Learning the associations of mitre att ck adversarial techniques. IEEE Conference, pages 1–9.
- [12] T. Williams. The purdue enterprise reference architecture, 1993.
- [13] Coffey Kyle etc. Zhou, Jianying. Vulnerability analysis of network scanning on scada systems. Computer, 2018.
- [14] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain. Machine learning-based network vulnerability analysis of industrial internet of things. IEEE Internet of Things Journal, 6(4):6822–6834,2019.

CYBER RISK AND CYBER INSURANCE

CS559 QUANTITATIVE SECURITY

SURAJ ESWARAN

COLORADO STATE UNIVERSITY

INTRODUCTION

- Cyber Risk: Any risk form the use of IT systems that affects the confidentiality, availability or integrity of information (systems) caused by (non) criminal activity.
- A form of risk from the exposure resulting from a **cyber-attack** or **data breach**.
- Organizations tend to become more **vulnerable** to these kinds of threats due to their **high reliability** on **computers**, **networks**, and **information** in order to have a good relationship with the delivery of the services.
- In order to protect against these risk, many businesses have cyber insurance with their insurance policy.
- Cyber Insurance: A financial policy which helps the businesses to send the funds involving in recovery from cyber risk events.
- This paper deals with the understanding the various views on cyber risk insurance and its challenges that arises in insurance markets in the recent years.

CYBER RISK= CONSEQUENCE OF THE ATTACK X LIKELIHOOD OF THE ATTACK

THREATS FACED RECENTLY

Business Fraud

Government Fraud

Investment Fraud

Utility Fraud

Confidence Fraud

Auction Fraud

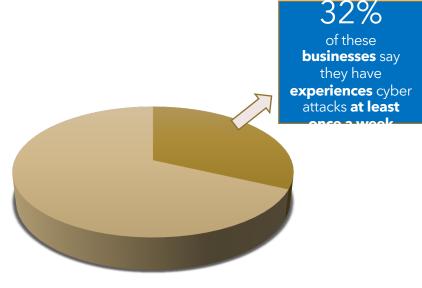
Credit/Debit Card Fraud

Technology Fraud

RESEARCH QUESTIONS

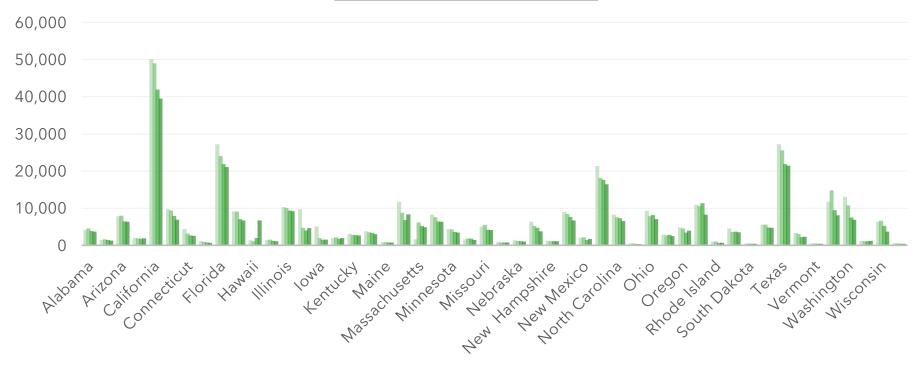
List of research questions were listed during this analysis:

- 1. RQ1: How dangerous is Cyber Risk?
- 2. RQ2: What were the several ways in handling **Cyber-Risk** by Insurers?
- 3. RQ3: What are the **challenges** faced in **insurance markets** in the recent years?

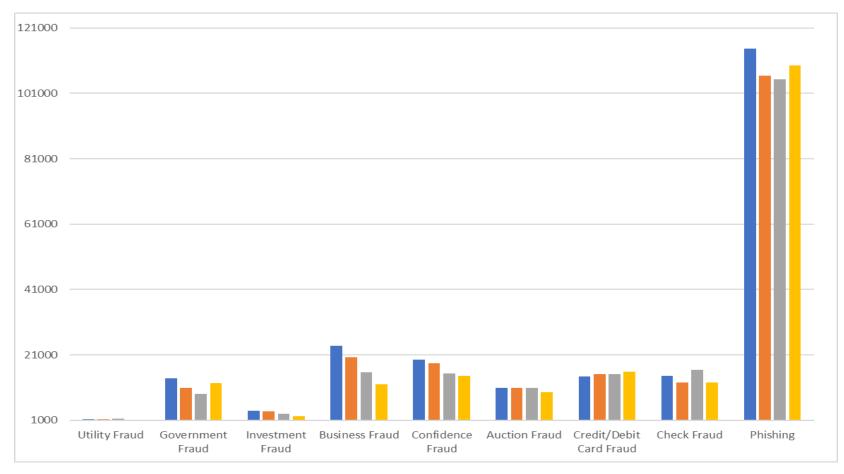

LITERATURE REVIEW

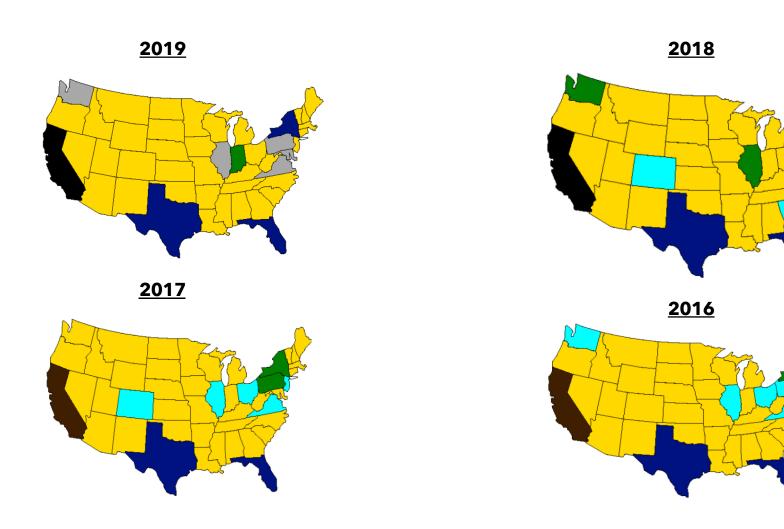
- Kokolakis et.al: Utilized IT risk with the help of BPM(Business Process Modeling).
- Pernul et al.: Developing a secured business process based on security requirements.
- Halliday et al.: Conducted **risk analysis** with high level business strategy.
- Rodriguez et. al.: Elaborated the analysis of Business Process Modelling Notation(BPMN) with security requirements.
- Majuca et. al.: Explains the evolution of cyber insurance in 2005.
- Mukhopadhyay et. al.: Developed Utility Based Preferential Pricing(UBPP) in distinguishing cyber insurance pricing policy.
- Ulrik Franke: Documented the **empirical study of cyber** insurance market in Sweden.

RQ1: HOW DANGEROUS IS CYBER RISK?



\$3846.48 - Avg. amount of cyber attacks of businesses of all size


\$6216.34 - Avg. amount of cyber attacks of **businesses of medium and large sizes**


Number of victims

- Number of Victims in 2019 Number of Victims in 2018
- Number of Victims in 2017 Number of Victims in 2016

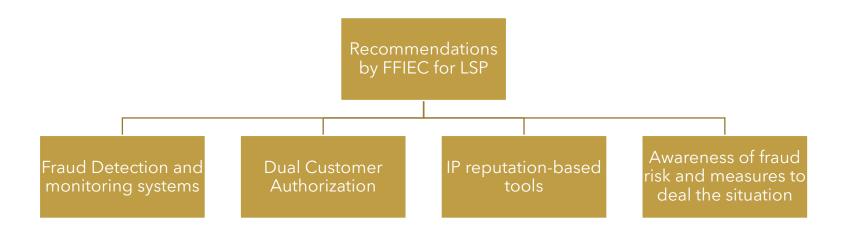
FIELDS AFFECTED DUE TO CYBER RISK FROM 2019 TO 2016

CYBER RISK INSURANCE

- Cyber Risk Insurance is developed in such a way to reduce the losses from various cyber incidents like data breaches, or network interruptions.
- A **robust** cyber risk insurance involves:
 - ➤ Improving the usage of preventative measures for more coverage.
 - ➤ Encouraging the usage of best practices by premiums on insurer's level of self protection.

RQ2: WHAT WERE THE SEVERAL WAYS IN HANDLING CYBER RISK BY INSURERS?

- Cyber security insurance as a "**stand alone** " line if coverage.
- Coverages includes 1st party coverage, liability coverage and other benefits includes securityaudit, post-incident and criminal rewards.
- Annual gross premiums for cyber risk insurance in United States: From \$1.3 billion to \$2.5 billion.
- Thus, there is a **fledgling market** compared with others streamlines of insurance business.


PERSPECTIVES ON CYBER RISK AND INSURANCE

- Federal Financial Institutions Examination Council
- Guidelines they follow: **Provide a risk management framework** for Internet based products to customers.

The 2005 Guidance provided a risk management framework for financial institutions offering Internet-based products and services to their customers. It stated that institutions should use effective methods to authenticate the identity of customers and that the techniques employed should be commensurate with the risks associated with the products and services offered and the protection of sensitive customer information.

LAYERED SECURITY PROTOCOL(LSP) FOR CYBER RISK

- Use of **different scenario**s at different during a transaction process.
- Enhance overall security for internet-based products and services.

INDUSTRIAL PERSPECTIVES ON CYBER RISK AND REGULATIONS

- RSA mentioned in their report a term named GAP which explained an approach to assess, diagnose vulnerabilities between IT fields and security fields.
- Risk managers and senior executives are not interested to specify the kind to attack and vulnerability according to perspective of IT fields.

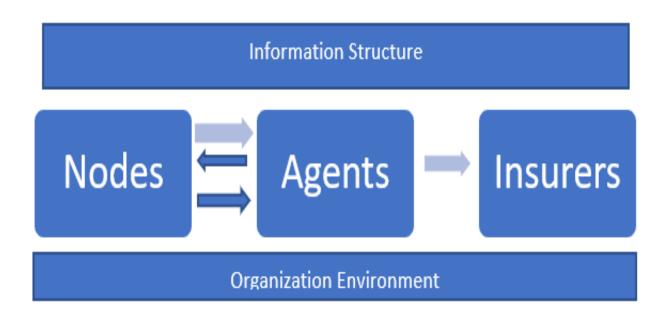
• Whereas **IT team** and **security team** do not focus on type of cyber breach that leads Tools that

to high loss impacts.

organizations use after an argument on this issue Firewalls. IDS/IPS Addition of security and A/V inclusion protocols

RQ3:WHAT ARE THE CHALLENGES FACED IN INSURANCE MARKETS IN THE RECENT YEARS?

- Reactionary strategies are not designed well with affected process of the business.
- Not placing a **formal method** to collect and analyze data regarding cyber insurance market.
- Business developments are involved outside the IT sphere which only allows to see in loss point of view rather than the information point of view.
- **95%** of cyber risk happens due to misinterpretations by business team and IT team.
- By **2022**, there can be huge increase in **\$140 billion**, If they do not follow the regulations.



SOLUTION TO THESE CHALLENGES

- Organizations must look over interests of **both the groups**.
- Being proactive.
- Educating your employees on dealing with data

ANY REFINEMENTS OF THE PROPOSAL OBJECTIVES AS A RESULT OF THE PAST STUDY

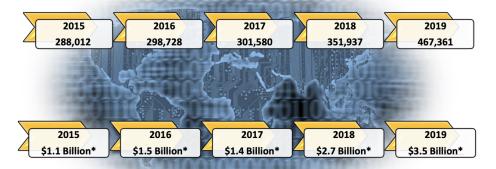
REFERENCES

- 1. S. Kokolakis, A. Demopoulos and E. Kiountouzis, "The use of business process modeling in information systems security analysis and design," Inf.Manag. &Comp. Security, 8, 2000, p. 107-116.
- 2. Herrmann, G., & Pernul, G. (1998, January). Towards security semantics in workflow management. In Proceedings of the Thirty-First Hawaii International Conference on System Sciences (Vol. 7, pp. 766-767). IEEE.
- 3. S. Roehrig and K. Knorr, "Security Analysis of Electronic Business Processes," Electronic Commerce Research, vol. 4, 2004, P. 59-81.
- 4. C. Ribeiro and P. Guedes, "Verifying Workflow Processes against Organization Security Policies," 8th IEEE International Workshops on Enabling Technologies, 1999, P. 190-191.
- 5. S. Halliday, K. Badenhorst and R. von Solms, "A business approach to effective information technology risk analysis and management" Information Management Computer Security, vol. 4/1, 1996, P. 19–31.
- 6. A. Rodriguez, E. Fernandez-Medina and M. Piattini, "A BPMN Extension for the Modeling of Security Requirements in Business Processes," IEICE Trans. INF. & SYST., vol. E90–D, Apr. 2007.
- 7. B. Suh und I. Han, "The IS risk analysis based on a business model," Information & Management, vol. 41, 2003, P. 149–158.
- 8. R.K. Rainer, C.A. Snyder and H.H. Carr, "Risk Analysis for Information Technology," Journal of Management Information Systems, vol. 8, 1991, P. 129-147.
- 9. Böhme R, Schwartz G. Modeling cyber-insurance: towards a unifying framework. In: Workshop on the Economics of Information Security (WEIS). Cambridge, MA: Harvard University, 2010.
- 10. Marotta, A., Martinelli, F., Nanni, S., & Yautsiukhin, A. (2015). A survey on cyber-insurance. Technical Rep. IIT TR-17/2015. Istituto di Informatica e Telematica, Consiglio Nazionale delle Richerce, Pisa.
- 11. Majuca, R. P., Yurcik, W., & Kesan, J. P. (2006). The evolution of cyberinsurance. arXiv preprint cs/0601020.
- 12. Woods, D., Agrafiotis, I., Nurse, J. R., & Creese, S. (2017). Mapping the coverage of security controls in cyber insurance proposal forms. Journal of Internet Services and Applications, 8(1), 8.
- 13. Romanosky, S., Ablon, L., Kuehn, A., & Jones, T. (2017). Content analysis of cyber insurance policies: How do carriers write policies and price cyber risk?. Available at SSRN 2929137.
- 14. Mukhopadhyay, A., Chatterjee, S., Saha, D., Mahanti, A., & Sadhukhan, S. K. (2013). Cyber-risk decision models: To insure IT or not?. Decision Support Systems, 56, 11-26.
- 15. Herath, H., & Herath, T. (2011). Copula-based actuarial model for pricing cyber-insurance policies. Insurance markets and companies: analyses and actuarial computations, 2(1), 7-20.
- 16. Franke, U. (2017). The cyber insurance market in Sweden. Computers & Security, 68, 130-144.
- 17. Gartner Inc. (n.d.). Forecast Analysis: Information Security, Worldwide, 2018 Update. Retrieved November 08, 2020, from https://www.gartner.com/en/documents/3889055
- 18. Symantec Security Center. (n.d.). Retrieved November 08, 2020, from https://www.broadcom.com/support/security-center
- 19. Böhme, R., & Schwartz, G. (2010, June). Modeling Cyber-Insurance: Towards a Unifying Framework. In WEIS.\
- 20. Romanosky, S., Ablon, L., Kuehn, A., & Jones, T. (2019). Content analysis of cyber insurance policies: how do carriers price cyber risk?. Journal of Cybersecurity, 5(1), tyz002.
- 21. Falco, G., Eling, M., Jablanski, D., Miller, V., Gordon, L. A., Wang, S. S., ... & Donavan, E. (2019). A research agenda for cyber risk and cyber insurance. In Workshop on the Economics of Information Security (WEIS)...
- 22. Camillo, M. (2017). Cyber risk and the changing role of insurance. Journal of Cyber Policy, 2(1), 53-63.
- 23. Anon. Internet Crime Complaint Center(IC3): Home Page. Retrieved November 30, 2020 from https://www.ic3.gov/
- 24. Shetty, N., Schwartz, G., Felegyhazi, M., & Walrand, J. (2010). Competitive cyber-insurance and internet security. In Economics of information security and privacy (pp. 229-247). Springer, Boston, MA.
- 25. Podolak, G. D. (2014). Insurance for Cyber Risks: A Comprehensive Analysis of the Evolving Exposure, Today's Litigation, and Tomorrow's Challenges. Quinnipiac L. Rev., 33, 369.

The Severity of Cybercrimes and Methods to Prevent

Ya-Hsin Cheng

Outline

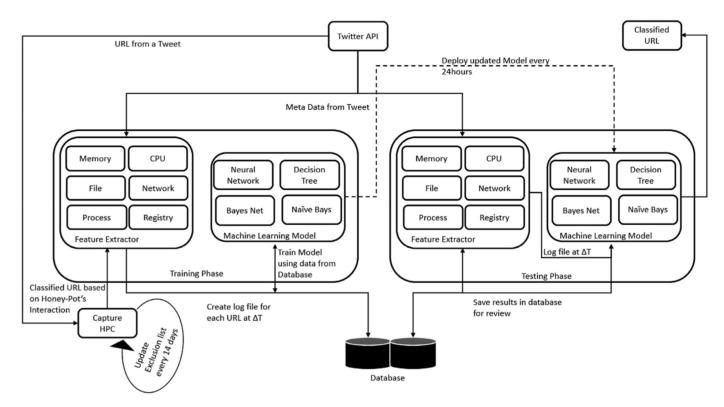

- Introduction
 - Cybercrimes
 - Cybercriminals
- Schemes and Models
 - Machine Learning
 - Data Mining
- Advantages and Disadvantages
- Conclusion

Introduction

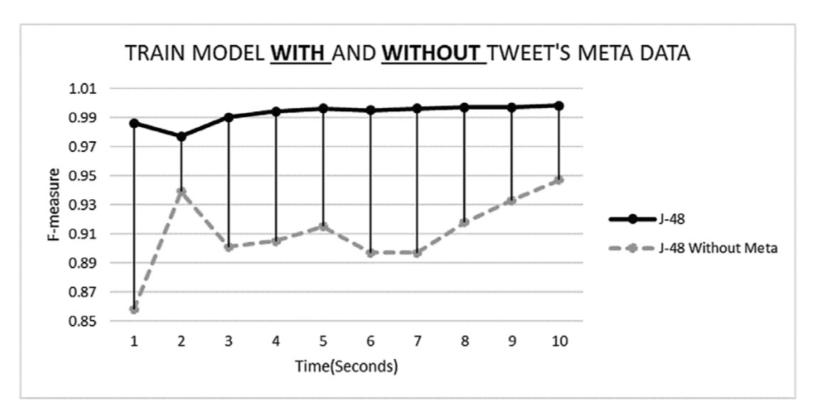
- Cybercrimes
 - Cybercrime can be divided into several types: data theft, child pornography, cyber bullying, cyber hacking
 - Social media crimes
 - Data Theft
- Cybercriminals
 - Build by Social Ties as Base
 - Build by Forums as Base

IC3 Complaint Statistics Last Five Years

1,707,618 TOTAL COMPLAINTS


\$10.2 Billion TOTAL LOSSES*

(Rounded to the nearest million)


The statistical results from FBI's Internet Crime Complaint Center (IC3)

Schemes and Models

- Machine Learning
 - Malicious URLs from Twitter Posts
 - Metadata (username, user screen name, user id, follower count, friends count, and age of account, etc.)
 - Detect Data Breach from Underground Forums
- Data Mining
 - Hospital data leakage

Architecture of predictive model

F-Measure score (with or without metadata)

Advantages and Disadvantages

- Advantages
 - Machine Learning
 - Reduce the time to find
 - Predict the attack
 - Data Mining
 - Find the weak part of system and strengthen it
 - The collected data can use as the train set for machine learning

Advantages and Disadvantages

- Disadvantages
 - Machine Learning
 - Need a lot of data for training
 - Might exist the misjudgment
 - Data Mining
 - Need the time to analyze the reason
 - It can't predict the attack

Conclusion

- Data mining can be helpful for finding the problem of data leaking
- Data mining can be a helper for machine learning
- If choose the suitable Machine learning model, it can be a powerful tool to prevent cybercrimes from happening

REFERENCES

- [1] W. A. Al-Khater, S. Al-Maadeed, A. A. Ahmed, A. S. Sadiq and M. K. Khan, "Comprehensive Review of Cybercrime Detection Techniques," in IEEE Access, vol. 8, pp. 137293-137311, 2020, doi: 10.1109/ACCESS.2020.3011259.[Online]. Available: https://ieeexplore.ieee.org/document/9146148/
- [2] "Cost of a Data Breach Report 2020," IBM. [Online]. Available: https://www.ibm.com/security/digital-assets/cost-data-breach-report/. [Accessed: 11-Oct-2020].
- [3] H. Landi, "Average cost of healthcare data breach rises to \$7.1M, according to IBM report," FierceHealthcare, 29-Jul-2020. [Online]. Available: https://www.fiercehealthcare.com/tech/average- cost-healthcare-data-breach-rises-to-7-1m-according-to-ibm-report. [Accessed: 11-Oct-2020].
- [4] T. Floyd, M. Grieco and E. F. Reid, "Mining hospital data breach records: Cyber threats to U.S. hospitals," 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, 2016, pp. 43-48, doi: 10.1109/ISI.2016.7745441.[Online]. Available: https://ieeexplore.ieee.org/iel7/7739307/7745427/07745441.pdf[Accessed: 11-Oct-2020]
- [5] M.Furdek,C.Natalino,F.Lipp,D.Hock,A.D.GiglioandM.Schiano, "Machine Learning for Optical Network Security Monitoring: A Practical Perspective," in Journal of Lightwave Technology, vol. 38, no. 11, pp. 2860-2871, 1 June, 2020, doi: 10.1109/JLT.2020.2987032.[Online]. Available: http://ieeexplore.ieee.org/document/9064530[Accessed: 11- Oct-2020].
- [6] R.Sabillon, J.Cano, V.Cavaller, J.Serra. "Cybercrime and Cybercriminals: A Comprehensive Study," International Journal of Computer Networks and Communications Security, vol. 4, no. 6, pp. 165–176, June 2016. [Online]. Available: http://openaccess.uoc.edu/webapps/o2/bitstream/10609/78507/1/p1 4- 6.pdf[Accessed: 11-Oct-2020].
- [7] T. S. Sudha and C. Rupa, "Analysis and Evaluation of Inte- grated Cyber Crime Offences," 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2019, pp. 1-6, doi: 10.1109/i-PACT44901.2019.8960187.[Online]. Available: https://ieeexplore.ieee.org/document/8960187[Accessed: 11-Oct-2020].
- [8] R.Ch, T.R.Gadekallu, M.H.Abidi, A.Al-Ahmari. "Computational Sys- tem to Classify Cyber Crime Offenses using Machine Learning," SUSTAINABILITY, vol. 12, no. 10, May 2020.[Online]. Available: https://www.mdpi.com/2071-1050/12/10/4087/pdf [Accessed: 11-Oct- 2020].

REFERENCES

[9] Z. Abbass, Z. Ali, M. Ali, B. Akbar and A. Saleem, "A Framework to Predict Social Crime through Twitter Tweets By Using Machine Learning," 2020 IEEE 14th International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 2020, pp. 363-368, doi: 10.1109/ICSC.2020.00073.[Online]. Available: https://ieeexplore.ieee.org/iel7/9022806/9031442/09031496.pdf[Accessed: 11-Oct-2020].

[10] Y.Fang, Y.Guo, C.Huangand L.Liu, "Analyzingand Identifying Data Breaches in Underground Forums," in IEEE Access, vol. 7, pp. 48770- 48777, 2019, doi: 10.1109/ACCESS.2019.2910229.[Online]. Available: https://ieeexplore.ieee.org/document/8686093[Accessed: 11-Oct-2020].

[11] A.Javed, P.Burnap, O.Rana, "Prediction of Drive-by Download Attacks on Twitter." in Information processing management, vol. 56, Issue 3, pp. 1133-1145, May 2019.[Online]. Available: https://www-sciencedirect-com.ezproxy2.library.colostate.edu/science/article/pii/S0306457317305824 [Accessed: 06-Nov-2020].

[12] E.R.Leukfeldt, E.R.Kleemans, W.P.Stol, "Cybercriminal Networks, Social Ties and Online Forums: Social Ties Versus Digital Ties Within Phishing and Malware Networks", in The British Journal of Criminology, vol. 57, Issue 3, pp. 704–722, 1 May 2017.[Online]. Available: https://academic-oupcom.ezproxy2.library.colostate.edu/bjc/article/57/3/704/2624001 [Accessed: 06-Nov-2020].

[13] E.R.Leukfeldt, E.R.Kleemans, W.P.Stol, "Origin, growth and criminal capabilities of cybercriminal networks. An international empirical anal- ysis", in Crime Law Soc Change 67, 39–53, Feb 2017.[Online]. Avail-

able: https://doi-org.ezproxy2.library.colostate.edu/10.1007/s10611-016-

9663-1 [Accessed: 06-Nov-2020].

[14] J.Davis, "FBI: \$3.5B Lost to Cybercrime in 2019, Led by Business

Email Compromise", in HealthITSecurity.[Online]. Available: https://healthitsecurity.com/news/fbi-3.5b-lost-to-cybercrime-in-2019- led-by-business-email-compromise [Accessed: 06-Nov-2020].

[15] E.R.Leukfeldt, E.R.Kleemans, W.P.Stol,"A typology of cybercrimi- nal networks: from low-tech all-rounders to high-tech specialists" in Crime Law Soc Change 67, 21–37, Nov 2017.[Online]. Avail- able: https://doi-org.ezproxy2.library.colostate.edu/10.1007/s10611-016- 9662-2 [Accessed: 06-Nov-2020].

[16] "Full Report: 2019 Internet Crime Report", in FBI News, February, 2020.[Online]. Available: https://pdf.ic3.gov/2019 IC3Report.pdf [Ac- cessed: 06-Nov-2020].

ANALYSIS OF COST AND CAUSE OF U.S. GOVERNMENT SECURITY BREACHES

AUSTEN WEAVER

CS559

AUSTEN.WEAVER@COLOSTATE.EDU

INTRODUCTION

- Due to the nature of any government hard numbers were not found.
- Cost directly associated with dollar amounts.
- Cost associated with global standing.
 - Militarily
 - Economically
 - Politically
- Cause or weaknesses exploited
- Analysis compared to industry security standards

DIRECT COST

R&D of military technology

- Many military technologies take over a decade of R&D before becoming operational.
- Data breaches of this technology help foreign adversaries leap forward without putting in the same time and resources.
- C-17 took 14 years of development and \$6+ billion. The Y-20 took ~8 years(05-13) and an unknown amount of money. (Su Bin hack 2009-2014)

Man hours

 Any private organization suffers a data breach they include the FBI and other government agencies in investigations.

• Legal fees & Damages

 In the case of the OPM breach many lawsuits have been filed against the federal government.

Figure 1: U.S. C-17 on the left, Chinese Y-20 on the right

INDIRECT COST

- Military
- F-22 and J-20
 - \$32 billion vs ~\$4.5 billion
 - ~20 year development vs ~15 years
- F-35 and J-31
- \$400 billion vs ~Unknown however china is marketing it for less than half the cost of a f-35.
- ~18 year development vs In development since ~2011

Figure 3: Chinese J-20

Figure 4: U.S. F-35

Figure 5: Chinese J-31

INDIRECT COST CONT.

- Economically
 - Technology stolen from private companies for foreign adversaries to copy and resale at a lower price.
 - Companies affected:
 - Apple self driving car tech.
 - Micron Technologies DRAM
 - T-Mobile Cell phone tech.
 - American Superconductor Inc. (AMSC) Wind turbine
 - And agricultural development companies seed corn varieties
- Politically
 - Loss of influence on the global stage

GOVERNMENT PRACTICES

- Levels of Classification
 - All require security clearance
- Need to know
 - Mixture of connected and air gapped networks
- Secret
 - Air gapped networks situated in hardened rooms or buildings
 - No communication devices allowed
- Top-Secret
 - Restricted to those with top-secret security clearance

- Every branch is treated like independent companies
 - All must abide by security policies set at the top, but not all are enforced
- Contractors
 - Too often lowest bid receives contract
 - Priority Bias
- Due to cost of developing technology, projects are sourced out to allied countries thus spreading the data around.
- Underqualified personal managing these small networks

CAUSE

- Legacy Systems
 - "Security through antiquity"
 - Software written in languages that are hard to find skilled developers in.
- Social Engineering
- Phishing attempts
 - Cause of 2016 F-35 data breach
- Many government data breaches have not disclosed how adversaries were able to access their networks.

Table 1: The 10 Most Critical Federal Legacy Systems in Need of Modernization						
Table 1. The 10 Most Chitical Federal Legacy Systems in Need of Modernization						
Agency	System name ^a	System description ^a	Age of system, in years	Age of oldest hardware, in years	System criticality (according to agency)	Security risk (according to agency)
Department of Defense	System 1	A maintenance system that supports wartime readiness, among other things	14	3	Moderately high	Moderate
Department of Education	System 2	A system that contains student information	46	3	High	High
Department of Health and Human Services	System 3	An information system that supports clinical and patient administrative activities	50	Unknown ^b	High	High
Department of Homeland Security	System 4	A network that consists of routers, switches, and other network appliances	Between 8 and 11°	11	High	High
Department of the Interior	System 5	A system that supports the operation of certain dams and power plants	18	18	High	Moderately high
Department of the Treasury	System 6	A system that contains taxpayer information	51	4	High	Moderately low
Department of Transportation	System 7	A system that contains information on aircraft	35	7	High	Moderately high
Office of Personnel Management	System 8	Hardware, software, and service components that support information technology applications and services	34	14	High	Moderately low
Small Business Administration	System 9	A system that controls access to applications	17	10	High	Moderately high
Social Security Administration	System 10	A group of systems that contain information on Social Security beneficiaries	45	5	High	Moderate

Figure 6: GAO Analysis of government systems

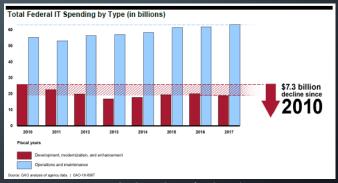


Figure 7: GAO Analysis of IT Spending

OFFICE OF PERSONAL MANAGEMENT(OPM) BREACH

- 21.5 million individuals Social Security Numbers, 19.7 million background reports of which 5.6 million contained fingerprints.
- Security failure on many levels
- Unqualified InfoSec Personnel
- Legacy System
 - Data was not encrypted
- No Two-factor Authentication
- Many systems had not renewed OTA
 - Failed to pass security renewal
- Untimely Patch Management
- Primary breach was through two contractors which allowed for a backdoor malware to be uploaded to the network.

Cyber-Attacks over Time

Figure 8: Significant Cyber-attacks tracked by CSIS

CURRENT COVID-19 OBSTACLES

- Any employee working on a classified project cannot work from home.
- No method of accessing air gapped networks
- Attempt to transition some air gapped networks to VPN access with 2FA

REQUIRED GOVERNMENT CHANGES

- Enforce existing security policies across the entire Federal government
- More stringent contractor vetting
- Consolidate data
- Modernize
- Implement modern security network analyzers

CONCLUSION

- Crucial to modernize all systems
- Implement a system of vetting contractors for security while also stipulating that a contractor must maintain a level of security competent staff.
- Cannot let departments fall behind in OTA approval

FUTURE WORK

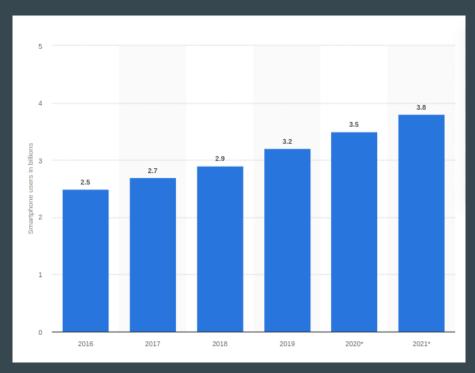
Investigate new government security breaches and revise analysis and solutions accordingly

REFERENCES

- [1] J. Fruhlinger, "The OPM hack explained: Bad security practices meet China's Captain America," csoonline.com, 12 February 2020. [Online]. Available: https://www.csoonline.com/article/3318238/the-opm-hack-explained-bad-security-practices-meet-chinas-captain-america.html. [Accessed 20 November 2020].
- [2] T. T. Pham, "OPM Security Audit: No Two-Factor Authentication," duo.com, 10 June 2015. [Online]. Available: https://duo.com/blog/opm-security-audit-no-two-factor-authentication. [Accessed 18 November 2020].
- [3] U.S. Government Accountability Office, "Agencies Need to Develop Modernization Plans for Critical Legacy Systems," U.S. Government Accountability Office, Washington D.C., 2019.
- [4] U.S. Government Accountability Office, "Federal Agencies Need to Address Aging Legacy Systems," U.S. Government Accountability Office, Washington D.C., 2016.
- [5] The Council of Economic Advisers, "The Cost of Malicious Cyber Activity to the U.S. Economy," The Council of Economic Advisers, Washington D.C., 2018.
- [6] J. Bambenek, "Nation-state attacks: the new normal," Network Security, pp. 8-10, 1 October 2017.
- [7] P. Bischoff, "Government breaches can you trust the US Government with your data?," 24 July 2019. [Online]. Available: https://www.comparitech.com/blog/vpn-privacy/us-government-breaches/. [Accessed 8 October 2020].
- [8] H. T. Min-Seok Pang, "Strategic Roles of IT Modernization and Cloud Migration in Reducing Cybersecurity Risks of Organizations: The Case of U.S. Federal Government," ssrn.com, vol. 0, no. 0, pp. 1-39, 2019.
- [9] J. Moore, "Here Are 10 of the Oldest IT Systems in the Federal Government," 25 May 2016. [Online]. Available: https://www.nextgov.com/cio-briefing/2016/05/10-oldest-it-systems-federal-government/128599/. [Accessed 8 10 2020].
- [10] OPM, "Cybersecurity Incidents," opm.gov, [Online]. Available: https://www.opm.gov/cybersecurity/cybersecurity-incidents/. [Accessed 8 10 2020].
- [11] S. Romanosky, "Examining the costs and causes of cyber incidents," Journal of CyberSecurity, vol. 0, no. 0, pp. 1-15, 2016.
- [12] A. Haizler, "The United States' Cyber Warfare History: Implications on Modern Cyber Operational Structures and Policymaking," *Cyber, Intelligence, and Security*, vol. 1, no. 1, pp. 31-45, 2017.
- [13] Center for Strategic & International Studies, "Significant Cyber Incidents Since 2006," 2020.
- [14] Stilgherrian, "Secret F-35, P-8, C-130 data stolen in Australian defense contractor hack," zdnet.com, 11 October 2017. [Online]. Available: https://www.zdnet.com/article/secret-f-35-p-8-c-130-data-stolen-in-australian-defence-contractor-hack/. [Accessed 20 November 2020].

Smartphone Security Model and Vulnerabilities

CS559: Quantitative Security


Shree Harini Ravichandran

Outline

- Introduction
- Literature Review
- Smartphone Security Threats
- Smartphone Security Model: iOS, Android, Windows, Blackberry
- Smartphone Market Share
- Smartphone Vulnerabilities

Introduction

- Improvement from a basic and feature phone
- Combines cellular features and computations
- Smartphone users in 2020 is 3.5 billion

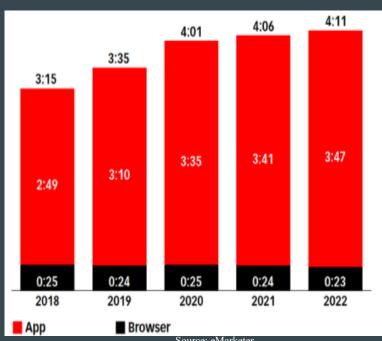
Source: Statista

Literature Review

- Milad et al [7], review the security in different operating systems, threats and vulnerabilities in smartphones
- Chuanxiong Guo et al [8], in their paper discuss how smartphone attacks take place and how to defend them
 - Attacks: Compromise of smartphones and smartphone attacks against the telecommunication networks
 - Defense mechanisms: Smartphone hardening, protection features from the internet and protection services
- Mohamed et al [9], primarily discuss the factors influencing the security in Android and iOS devices
 - o iOS reports more vulnerabilities than android
 - o malware attacks are more in Android than in iOS

Smartphone Security Threats

- User
- Applications
- Device
- Network

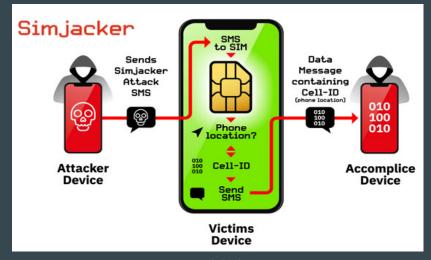


1. Users

- First point of security
- Attacks:
 - Phishing: Fraudulent attempt to obtain sensitive information or data
 - URL Obfustication: Legitimate web location is modified to conceal and obtain information
 - o Homograph attack: Domain name is changed slightly and a malicious site is developed

2. Applications

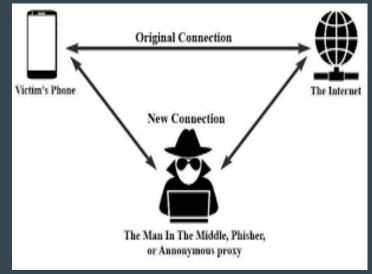
- Most widely used and spent time on everyday
- Attacks:
 - Malware: Hidden in applications
 - Sideloading: Happens when are installed from places other than official app store


Source: eMarketer

3. Devices

 Most of the attacks on devices do not require physical access to the devices

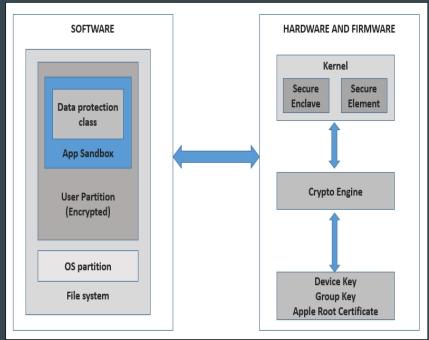
• Attacks:


 SIM-jacking: Perpetrators get personal information from social media or persuade victims to tell

Source: thehackernews.com

4. Network

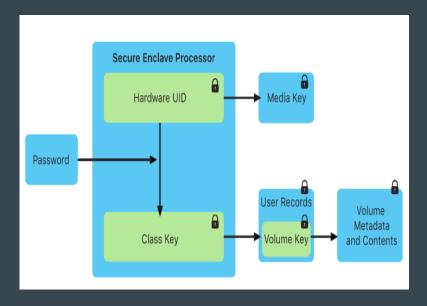
- Similar to attacks in IOT applications
- Attacks:
 - Man in the middle attack (MITM): Can
 happen through public WiFis
 - MITM Types: IP, DNS, ARP, Https Spoofing,
 SSL hijacking, stealing browser cookies and
 WiFi eavesdropping


Source: Google Images

Smartphone Security Model

- iOS
- Android
- Windows
- Blackberry

iOS


- Known for their security features and quality assurance
- Device security: Prevents unauthorized access to the device
- Data security: Protects the data present in the device Network security includes networking protocols and encryption techniques
- Application security: Includes many protective layers to protect from malware attacks

Security Architecture of an iOS device. Source: O'reilly

iOS

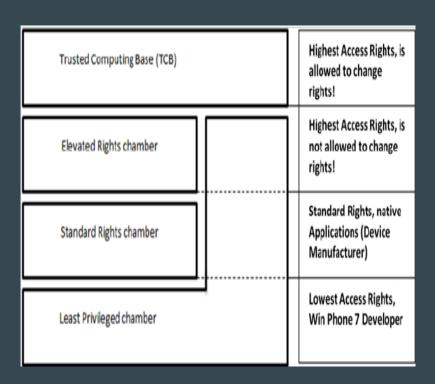
- T2 chip and an AES hardware engine to power encryption as files are written or read
- Special co-processor: Allows Touch and Face
 ID to provide secure authentication and keeps
 the biometric data secure
- iOS sandboxing: Protects the data and prevents accessing of this data from one application to another

Secure Enclave Processor on Apple Devices, Source: Apple

Android

- Open source
- Security components have to be considered for various levels in the android software stack
- Mainly based on permissions and sandbox

Android Software Stack, Source: Android.com


Android

Security Features:

- Linux kernel: Process isolation, user based permission model and interprocess communication
- Android sandboxing: Prevent interaction of malicious programs with applications that are protected
- Android OS: Implements user ID for application access control
- To secure the data: Includes security library that allows two classes of data encryption

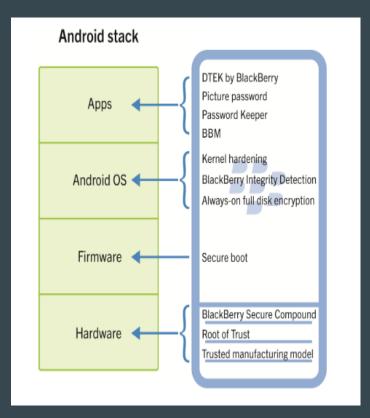
Windows

- Four categories: chambers, capabilities, sandbox and application deployment
- Chambers: Trusted Computer Base (TCB),
 Elevated Rights Chamber(ERC), Standard
 Rights Chamber(SRC) and Least Privileged
 Chamber (LPC)
- Capabilities: GPS support, camera, microphone,
 WiFi and Bluetooth access
- Along with the chambers, applications also get sandboxed when it is running

Chambers of the Windows Phone 7 security model

Windows

Windows Phone 8.1 Security Features:

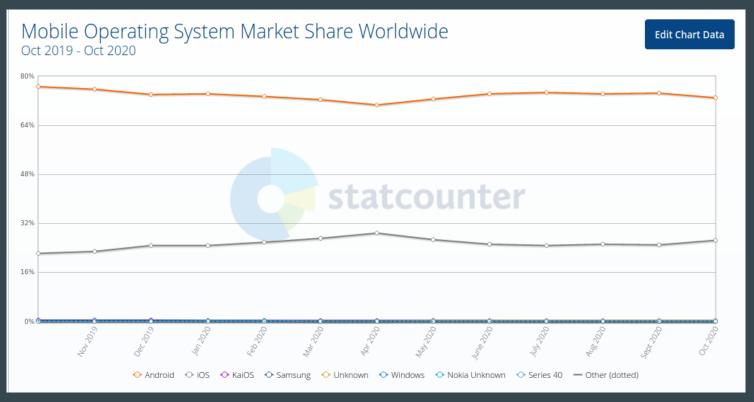

- Encryption of applications
- Malware resistance
- Address space layout randomization

Windows 10 Mobile Security Features::

- Identity access and control, Data protection, Malware resistance, Application platform security
- Windows Hello: Incorporates multi factor authentication
- Bitlocker technology for encryption purposes

Blackberry

- Blackberry Secure Integrated Manufacturing services, Blackberry Secure Identity Services
- Blackberry Integrity Detection monitors the events which could lead to compromise
- Address space layout randomization: Prevents exploitation of device memory corruption
- Linux kernel is hardered with security patches

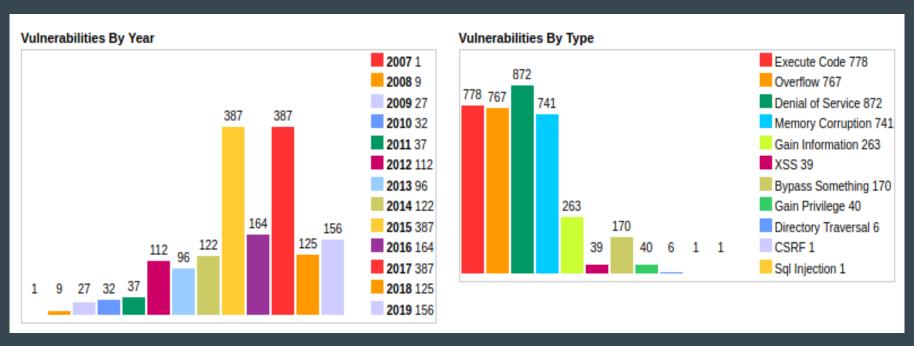


Blackberry Security Model

Blackberry

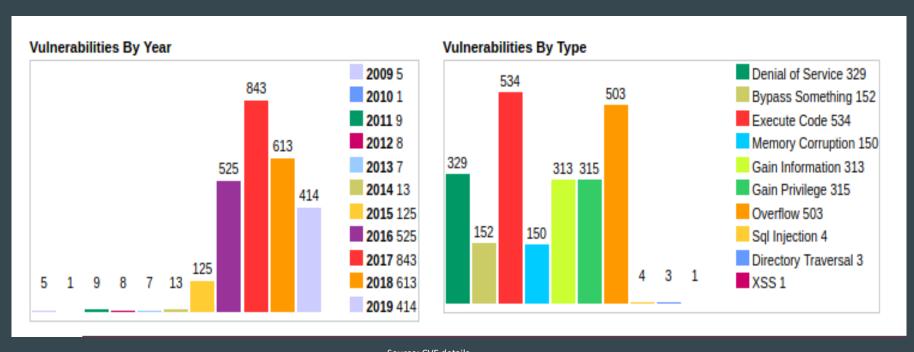
- Supports picture passwords helps in addressing brute force attacks
- DTEK by Blackberry analyses and evaluates security features set up in the phone and assigns an overall security rating
- Password keeper feature stores passwords, usernames and security questions

Smartphone Market Share



Source: Statcounter

Android VS iOS


Region	Android	iOS
Africa	86.74%	10.66%
Asia	83.24%	16.17%
Europe	67.81%	31.77%
North America	46.06%	53.73%
South America	87.59%	12.14%
Oceania	48.13%	51.49%

Smartphone Vulnerabilities - iOS

Source: CVE details

Smartphone Vulnerabilities - Android

Source: CVE details

References

- 1. Accessed on: Oct, 09, 2020 [Online]. Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
- 2. Y. Wang, K. Streff and S. Raman, "Smartphone Security Challenges," in Computer, vol. 45, no. 12, pp. 52-58, Dec. 2012, doi: 10.1109/MC.2012.288.
- 3. Y. Wang, C. Hahn and K. Sutrave, "Mobile payment security, threats, and challenges," 2016 Second International Conference on Mobile and Secure Services (MobiSecServ), Gainesville, FL, 2016, pp. 1-5, doi: 10.1109/MOBISECSERV.2016.7440226.
- 4. Debnath, Biswajit and Das, Sanchari and Das, Ankita, Study Exploring Security Threats in Waste Phones a Life Cycle Based Approach (August 19, 2019). In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. IEEE., Available at SSRN: https://ssrn.com/abstract=3443923
- 5. Accessed on: Nov, 06, 2020 [Online]. Available: https://usa.kaspersky.com/resource-center/threats/top-seven-mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-the-future-has-in-store
- 1. Sharma K., Gupta B.B. (2018) Attack in Smartphone Wi-Fi Access Channel: State of the Art, Current Issues, and Challenges. In: Lobiyal D., Mansotra V., Singh U. (eds) Next-Generation Networks. Advances in Intelligent Systems and Computing, vol 638. Springer, Singapore. https://doi.org/10.1007/978-981-10-6005-2 56
- 2. Taleby Ahvanooey, Milad & Li, Qianmu & Rabbani, Mahdi & Rajput, Ahmed. (2017). A Survey on Smartphones Security: Software Vulnerabilities, Malware, and Attacks. International Journal of Advanced Computer Science and Applications. 8. 30-. 10.14569/IJACSA.2017.081005.
- 3. Guo, Chuanxiong, Helen J. Wang, and Wenwu Zhu. "Smart-phone attacks and defenses." In hotnets III. 2004.
- 4. I. Mohamed and D. Patel, "Android vs iOS Security: A Comparative Study," 2015 12th International Conference on Information Technology New Generations, Las Vegas, NV, 2015, pp. 725-730, doi: 10.1109/ITNG.2015.123.
- 5. Shabtai, A. & Fledel, Y. & Kanonov, U. & Elovici, Yuval & Dolev, Shlomi. (2009). Google Android: A State-of-the-Art Review of Security Mechanisms. Neural Networks. abs/0912.5.
- 6. Accessed on: Nov 08, 2020 [Online]. Available: https://support.apple.com/guide/security/welcome/web
- 7. Accessed on: Nov 08, 2020 [Online]. Available: https://enterprise.verizon.com/resources/reports/mobile-security-index/
- 8. Haber, Morey J. "Attack Vectors." In Privileged Attack Vectors, pp. 65-85. Apress, Berkeley, CA, 2020.
- 9. Francis L., Hancke G., Mayes K., Markantonakis K. (2010) Practical NFC Peer-to-Peer Relay Attack Using Mobile Phones. In: Ors Yalcin S.B. (eds) Radio Frequency Identification: Security and Privacy Issues. RFIDSec 2010. Lecture Notes in Computer Science, vol 6370. Springer, Berlin, Heidelberg.