Quantitative Cyber-Security

Colorado State University
Yashwant K Malaiya
CS559

L27: Presentations

CSU Cybersecurity Center
Computer Science Dept

Presentations

This is a research-oriented project. Please mention significant
recent work and cite researchers and identify current trends
challenges.

Students with closely related presentations should coordinate
among themselves to minimize overlap.

Everyone: fill the peer-review form, and submit through canvas
on

Final: is two part

— Final a: critial review of two specific project Final Reports
* Assignment should be available Dec 10 and will be due on Dec 15.

— Final b: proctored questions based (somewhat like midterm)
* Dec 16 2-4 PM as scheduled. Perhaps 1 hour.

Colorado State University

Presentations/Final Report

Th Dec 3, 2020

Ravichandran, Shree Harini. Smartphone Security Model
and Vulnerabilities

Pineiro Rivera, Luis. Credit Card & Digital Wallet Security

Padalia, Dhruv. Assessing effectiveness of Penetration
Testing approaches

Mulligan, Brett. Fuzzing Open Source loT Project to ldentify
Novel Security Vulnerabilities

Liu, Zijuan. Security in Virtualized Systems

Kotian, Siddhi. Assessing Effectiveness of Penetration
Testing approaches

Zhao, Qingyi. Quantitative examination of phishing (moved)

Colorado State University

RISK ASSESSMENT: CREDIT
CARD AND DIGITAL WALLET
SECURITY

LuIS E PINEIRO RIVERA

CS559 — QUANTITATIVE SECURITY
DEc 3 2020

) ¢

) 0. 000000000
’ 0000000 (A

X

ﬁbunuLuH
SIS

S 4.

) .00 004

v

) 000000001

otes

SEPLOEV VEOLVLO 910

A

A4

) ¢
o000

v

°0000000

) 0 ¢
%A

RESEARCH GOALS

» GET OUT OF MY COMFORT ZONE

» |IDENTIFY CURRENT TECHNOLOGIES

» RISK ASSESSMENT ANALYSIS PROCESS

» LEAR ABOUT THE STANDARDS ACROSS THE GLOBE

ONLINE CREDIT CARD PAYMENT
PROTOCOLS

» 3D SECURE VERSION 1
» 3D SECURE VERSION 1
> DIGITAL WALLET

A7

3D SECURE VERSION |

ESTABLISHED IN 2000

PROVIDES CREDIT CARD AUTHENTICATION THROUGH CREDIT CARD ACCOUNT
LOGIN WINDOW

» VISA: VERIFIED BY VISA
» AMEX: SAFEKEY
» DISCOVER: MASTERCARD SECURE CODE

USES PROPRIETARY AUTHENTICATION PROTOCOL AND SERVER TO VALIDATE
TRANSACTION

CONS:
> LOGIN POP-UP WINDOW
> CAN BE USED BY MALICIOUS ACTOR TO GRAB CREDIT CART USERNAME AND PASSWORD

3D Secure 1 Authentication Flow

Cardholder

Authenti o] 0—0—0

DServer

£ . 3D SECURE
VERSION 1

ActiveAccess

Payment
Gateway

Control
Issuer Acquirer
| er Acquirer

Domain

Domain

—

&= 3DS Flow

=% Authorisation Floy

3D SECURE VERSION 2

» ESTABLISHED IN 2015

» FRICTIONLESS FLOW: NO MORE AUTHENTICATION WINDOW

» REDUCES CART ABANDONMENT

> ADDITIONAL STANDARDS TO COMPLY WITH EUROPEAN REQUIREMENTS

» NEW FEATURES
> ADDITIONAL INFO COLLECTED DURING EACH TRANSACTION BY MERCHANT
» |IP, MAC ADDRESS, PC HW INFO ETC.
> TO BE USED BY BANK TO AUTHENTICATE VALIDITY OF PURCHASE (RISK MODEL)
» |F BANK DEEMS PURCHASE QUESTIONABLE, THE USER WILL BE CHALLENGED

3D Secure 2 Authentication Flow

3DS Requestor Environment

Cardholder Merchant

-

3D SECURE
VERSION 2

R Payment
ActiveAccess
Gateway

Issuer = S cLaren t Car O = Acquirer

DIGITAL WALLET — APPLE PAY

» 10OS DEVICE BECOMES THE CARD

> CREDIT CARD INFORMATION IS STORED IN SECURE ELEMENT (SE) CHIP OF
THE DEVICE

» ONLY USER HAS ACCESS TO THIS INFORMATION AND NOT APPLE
» SE CHIP — COMMON STANDARD

DIGITAL WALLET — APPLE PAY

» IS IT SECURE?
» USER ENROLLS CREDIT CARD IN DIGITAL WALLET
ISSUING BANK APPROVES
BANK WILL CREATE UNIQUE DEVICE ACCOUNT NUMBER
ENCRYPTED INFORMATION WILL BE STORED IN SE CHIP
NO CREDIT CARD INFORMATION IS STORED ON THE ACTUAL DEVICE

V V V NVON

ONLY BANK CAN DECRYPT THIS INFORMATION

DIGITAL WALLET — APPLE PAY

» HOW DOES IT WORK?

>
>
>
>

IT USES NFC OR APPLE PAY API

IOS DEVICE WILL REQUEST USER AUTHENTICATION (FACE ID, TOUCH ID OR PASSCODE)

SE CHIP GENERATES A TOKEN AND SEND IT ALONG WITH UNIQUE DEVICE ACCOUNT NUMBER
BANK DECRYPTS TOKEN AND VERIFIES DEVICE ACCOUNT NUMBER TO SEE IF THEY MATCH.

> WHAT ABOUT ONLINE PAYMENTS?S

\Vigegs ssesietes i’

VIA APPLE PAY API
APPLE WILL ENCRYPT TOKEN AND DEVICE ACCOUNT NUMBER USING DEVELOPER/BANK KEY
ONLY THE DEVELOPER OR BANK CAN DECRYPT THIS INFORMATION

TOKEN AND DEVICE ACCOUNT NUMBER WILL BE SENT TO BANK FOR DECRYPTION AND
AUTHORIZATION

RISK ASSESSMENT MODEL

» HOW DO WE ASSESS THE RISK RELATED TO EACH PAYMENT MODEL2
» (CREATE RISK TYPES AND ASSESS WEIGHTED IMPACT
» MERCHANT Risk — 30%
> USER Risk — 30%
» TRANSACTION RIsK — 20%
» VULNERABILITY RISk — 20%
» GENERATE RISK VALUES (SCALE 1 TO 10)
» VERY LOW -1
» Low-3
» MEDIUM - 5
» HIGH-8
» VERY HIGH 10
» RISK ASSESSMENT FORMULA:
» Risk = (MR*l) + (UR*I) + (TR*I) + (VR*I)

RISK ASSESSMENT MODEL

» RISk ASSESSMENT

System
3DS1 Medium
3Ds2 Very Low
Apple Pay Very Low

» APPLY Risk FORMULA

System MR UR TR VR Risk

3Ds1
3Ds2

Apple Pay

» RESULTS
> 3DS1 — MEDIUM TO HIGH RISK
> 3DS2 — VERY LOW TO LOW RISK

> APPLE PAY — LOW RISK

FRAMEWORKS AROUND THE
GLOBE

> INDIA - PAYSECURE

» CHINA — UNIONPAY ONLINE PAYMENTS (UPOP)

» RUSSIA - MIR

» EUROPE — DIRECTIVE ON PAYMENT SERVICES (PSD2)

) ¢

JCICICIOICOUOUOU

’ 0000000 (
)

X

Jiijqu-n;'ux 0
JAA LT

VAURY,

) .00 004

) 000000001

QX0

%A
\d
o000

NEVATAVIVE DRV 020 0.

°0000000

p) |

Assessing effectiveness
of Penetration Testing

Approaches

By - Dhruv Padalia

CS559 - Colorado State University

Introduction

L)

What is Penetration Testing?

> Simulated cyber attack
> Types of penetration testing

Network

Web application
Client side
Wireless

Social Engineering
Physical Access

3%
6%

15%

2%3%

37%

18%

HEBEZNENNBR

Industry and energy
Finance
Transportation

IT

E-commerce

Media

Telecom

Education

Social media

PENETRATION TESTING MARKET, BY REGION (USD BILLION)

45

F—
(=
| —
1.7 —
e

2018 2019 2020 2021 2022 2023 2024 2025

® NorthAmerica mEurope WAPAC ®MEA » Latin America

Caiivans l‘AvL-Latn Analcm:n

12% 37%

External Internal
Targets assets A tester with access
visible on the to an application
internet behind its firewall
Example - company 24%
website, email, 27%
DNS

Gain access and

extract valuable
data

External penetration testing
Internal penetration testing

Wireless networks security assessment

Staff awareness assessment
L I

) I

External Penetration
Testing

>

External Penetration Testing:
Insights

> Attempt to gain access and get
valuable data

> In 2018, 92% of the companies was
breached during external
pentesting

25% 75%

Attempt to gain access and get
valuable data

In 2018, 92% of the companies was
breached during external -
pentesting

75% due to poor web application

B web applications
B oOther systems

Use of insecure data transfer protocols

- S 2 %
— 81%

Dictionary passwords
I, /5%
— 50%

Vulnerable software versions

I C 7 %
— 75%

Arbitrary File Upload

., — G 7 %
— 31%

Interfaces for remote access, hardware management,
and DBMS connections are available to any Internet user
I 58 %

— 69%

Storage of sensitive data in cleartext or available to the public

I, — 58 %

— 56%
Excessive application or DBMS privileges
I, — 42%
— 25%
Remote Code Execution
33%
— 19%
No authentication for access to critical resources
I 2 5%
~— 19%
SQL Injection
i —1 RN
— 19%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

[| High or Critical B Medium 2017

100%

External Penetration Testing: Tools
used

> Injection: Manually, Sglmap, DSSS

> Password Cracking: Hashcat, John
the ripper

> Protocol testing: tcpdump,
wireshark

External Penetration Testing:
Remedies

> Enforce strict password policies
> Web application testing using tools
like OWASP ZAP

> Use secure data transfer protocol

4, !

Internal Penetration
Testing

Internal Penetration Testing:
Insights

> @aining full control of infrastructure

> In 2018, 100% of the companies
was breached during internal
pentesting

Dictionary passwords

A, — 100%
+—— 100%

Insufficient protection against recovering credentials from OS memory

e S ——————— R O T
+—— 86%

Protocol security flaws leading to traffic redirection

and interception of network configuration details

1 — 100 %
— 100%

Insufficient protection of privileged accounts

I, — 56 %
— 71%

Storage of sensitive data in cleartext

I 4.4 %
—57%

Excessive application or DBMS privileges
I, 44 %
— 22%

Vulnerable software versions

I — 44 %
— 36%

Arbitrary File Reading
S,

SQL Injection
I 00 %
— 29%

Remote Code Execution

N

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B High or Critical B Medium 2017

Internal Penetration Testing: Tools
used

> Injection: Manually, Sglmap, DSSS

> Password Cracking: Hashcat, John
the ripper

> Open Ports: nmap, masscan

Internal Penetration Testing:
Remedies

> Enforce strict password policies
> Close unused ports

L)

Tools

Sqlmap

Tool that automates the
process of detecting and
exploiting SQL injection flaws
and taking over of database
servers

Nmap

Network Mapper is a network
discovery and security
auditing tool

DSSS

Damn Small SQLi Scanner is a
SQL injection vulnerability
scanner written in under 100
lines of code.

Masscan

Masscan is a internet port
scanner

Nmap vs masscan

. | ' Scans TCP
. Time Taken | .(.:PU. . and UDP
| . Utilization |
['+ protocols
Nmap 113 © 0% = yes

Masscan E 4.06 E 2% E yes

Sglmap vs DSSS

. | CPU i Successfu
o Time 0 ilizatio | I
! Taken ! . Detectio
n
saMap 195 = 11% = yes
Dsss 29s 6% no

Any questions?

[1] Positive Techology,
[2] Kumar R., Tlhagadikgora K. (2019) Internal Network Penetration Testing Using Free/Open Source Tools: Network and System Administration Approach. In: Luhach A., Singh
D., Hsiung PA., Hawari K., Lingras P., Singh P. (eds) Advanced Informatics for Computing Research. ICAICR 2018. Communications in Computer and Information Science, vol 956.

Springer, Singapore.

[3] S.P. Ganesh and G. Anandhi, “Database Security: A Study on Threats And Attacks”, International Journal on Recent and Innovation Trends in Computing and
Communication, vol. 4(6), pp. 512-513, 2015.

[4] P. Shi, F. Qin, R. Cheng and K. Zhu, "The Penetration Testing Framework for Large-Scale Network Based on Network Fingerprint," 2019 International Conference on
Communications, Information System and Computer Engineering (CISCE), Haikou, China, 2019, pp. 378-381, doi: 10.1109/CISCE.2019.00089.

[5] H. M. Z. A. Shebli and B. D. Beheshti, "A study on penetration testing process and tools," 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT),
Farmingdale, NY, 2018, pp. 1-7, doi: 10.1109/LISAT.2018.8378035.

[6] PurpleSec, https://purplesec.us/firewall-penetration-testing/, website.

[7] Campuquip, https://www.compuquip.com/blog/5-firewall-threatsand-vulnerabilities-to-look-out-for, website.
[8] nmap: network port scanner, https://nmap.org/

[9] DSSS, damn small sqgli scanner,

[10] sqlmap: SQL Injectejction, http://sqlmap.org/

[11] Five Types of Penetration Test to Zero in Potential Vulnerabilities, https://www.techbeamers.com/penetration-test-and-types/

https://www.ptsecurity.com/ww-en/analytics/corp-vulnerabilities-2019/
https://doi.org/10.1007/978-981-13-3143-5_22
https://github.com/stamparm/DSSS

Fuzzing
Open Source
loT Projects

55555

wr

Colorado State University

p»

Overview

* Motivation

* Methods

* Results

* Lessons Learned

e Conclusion

@ Colorado State University

Motivation: loT Still on the Rise

Estimated 75 billion lIoT connected devices by 2025 [6]

Phones, mesh networks, sensor networks

Home automation 9 @ @

Swarms & fleets @ N | / <:>
\ /
Popular botnet target [7] @ .

@ Colorado State University

Motivation: MQTT

« Message Queuing Telemetry Transport
« Common loT Protocol [4]
« Designed for low bandwidth, low power, and unreliable connectivity

e Subscriber/Publisher model

NQTT Clent

Publish: 24° C)
Publisher: Temperature Sensor - ‘ ‘—
! temperat
; T

-:,: Publish to topic: temperature E~//“’

= ;

E - /4
Software Under Test i Publish:24°C W Publish: 24° C s ony,

hd ” > B MQTT Client

rib topic: temperatur % Subscr
u

@ Colorado State University

Motivation: Fuzzing

« Fuzzing is a testing technique for finding
vulnerabilities in software applications by

sending unexpected input data to target Steps
of fuzz

systems and then monitoring the results. [2] rasting

« American Fuzzy Lop’s proven record of finding
real vulnerabilities: OpenSSL, Safari, etc.

« Target selected:
« Eclipse Foundation’s Paho MQTT Library

@ Colorado State University

kellofuz
kellofuz
kellofuz
kellofuz

kellofuz
kellofuz
illofuz
hllofuz

hllofuz
hullofuz
hHlofuz

* AFL-Fuzz — grey box, black box (dumb)

american fuzzy lop 2.52b (paho_c_pub)

* Radamsa — black box input generation

6 days, © hrs, 3 min, 28 sec

» N . 0 days, © hrs, @ min, 12 sec 5
e \Varied input generation : Do et 0
ing - @ (0.06%) “hap density : 2.10% / 2.16%
° HTML t 0 (0.06%) ount 1.05 bits/tuple
10w trying : bitflip 2/1 vored paths : 3 (60.98%)
10/63 (15.87%) 2 54@.0@%) ;
. 0 (0 unique
i Text flle EXeC Speed < / - P 0‘ (0 un{_que)
0/0. /0,
° PNG 0/0, 0/0,

6/0, /0,
6/0, /0,
0/0, 0/0

° PDF 55.56%/4,
 Radamsa mutation (text)

* Mosquitto broker, monitor outputs

Colorado State University

AFL Setup

» Installation — AFL site quick start and docs

« Configuration — Ubuntu specific core dumps, instrumenting target with AFL compiler
» Scripts — Ease of use

« Parallel Operation — Improve performance and input coverage

* Monitoring and Interpretation — The real art

Starting the fuzzer...

./afl-fuzz -t 1300 -i ../input/ -o ../findings/ ~/paho.mgtt.c/build/output/samples/paho c pub -t 'test/topic' -f @@

Colorado State University

Parallel Operation

* Each instance only uses one core by design

* Create master and secondary instances to improve test throughput (~2x)

./afl-fuzz -t 1300 -i ../input/ -o ../findings-sync/ -M fuzzer0Ol
~/paho.mgtt.c/build/output/samples/paho c pub -t 'test/topic' -f @G

./afl-fuzz -t 1300 -i ../input/ -o ../findings-sync/ -S fuzzer02
~/paho.mgtt.c/build/output/samples/paho c pub -t 'test/topic' -f @@

@ Colorado State University

Banner: fuzzer01

I n te r p retat i O n Directory: /home/***/findings-sync/fuzzer01
Generated on: Mon 30 Nov 2020 11:42:15 PM EST

160

140

120

100

80

* Monitor AFL as it’s operating %

40

total paths
current path
pending paths
pending favs
cycles done

20

* Use afl-plot to see overall progress 0

Nov 29 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Dec 01 Dec 01
20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00

* Check hangs and crashes throughout 25 uniq crases

20 uniq hangs

or upon completion with AFL fuzzer i e —

10

stats 0=

Nov 29 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Dec 01 Dec 01
20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00

* FUZZGFO].Z 17 unique hangS 25 ©XECS/SeC mmm

* Fuzzer02: 19 unique hangs N R

0.5

Nov 29 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Nov 30 Dec 01 Dec 01
20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00

Fuzzer01: 0.00020078 hangs/exec
Fuzzer02: 0.00018607 hangs/exec

@ Colorado State University

I {eS u ItS start_time : 1606861635
: 1606934344

last_update

fuzzer_pid : 3868907
cycles_done : 18
execs_done : 102111
execs_per_sec : 2.00
: ths_total : 87
« Ahandful of generated inputs caused hangs bathe favored .

paths_found . 77

* Execution longer than given timeout value, t ggihggﬂﬁorted

(1300ms/1800ms) cur_path

pending_favs
pending total
variable paths
stability

of the protocol bitmap_cvg
unique crashes
unique_hangs

 Many of these hangs were in fact valid execution

« MAQTT specification requires the protocol to
drop the connection on NUL char

 No definite vulnerabilities found, yet

* Inputs require further analysis to verify cause

Colorado State University

last_path
last_crash
last_hang

execs_since crash :
exec_timeout

afl_banner
afl_version

target_mode

. 1606934233
: 0
. 1606926345

102111

: 1800

: fuzzere2
: 2.52b

: default

fuzzer_stats for fuzzer02

Lessons Learned

* Fuzzing is very resource intensive (confirmed by [3])
* Fuzzing network protocols adds another layer of latency and complexity

* Take advantage of parallel capabilities

@ Colorado State University

Conclusions

* Fuzzing will not always find something

» Suggests target software has achieved a
baseline of stability

* Vulnerabilities could still be present

e Continue to use the same methods on more

open source projects

* Interesting inputs could be forwarded to the American Fuzzy Lop / wikipedia

developers of tested software

@ Colorado State University

References

1. Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. FIRM-AFL: High-Throughput Greybox Fuzzing of loT Firmware via Augmented
Process Emulation. 2019.

2. S.H. Ramos, M.T. Villalba, and R. Lacuesta. MQTT Security: A Novel Fuzzing Approach. Wireless Communications and Mobile Computing.
2018.

3. J.Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang. Fuzz Testing in Practice: Obstacles and Solutions. SANER. 2018.
4. Use Cases. MQTT. https://mqtt.org/.

5. A. Helin. Radamsa: A General Purpose Fuzzer. https://gitlab.com/akihe/radamsa.

6. Simon loT. The Rise of loT: The History of the Internet of Things. https://www.simoniot.com/history-of-iot/. 2020.

7. J. Fruhlinger. The Mirai botnet explained. CSO Online. IDG Communications, Inc. https://www.csoonline.com/article/3258748/the-mirai-botnet-
explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html. 9 Mar 2018.

8. M. Zalewski. AFL-Fuzz. https://lcamtuf.coredump.cx/afl/.

Colorado State University

https://gitlab.com/akihe/radamsa
https://www.simoniot.com/history-of-iot/
https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
https://lcamtuf.coredump.cx/afl/

Security in Virtualized
System

CS559-Final Project
Zijuan Liu

Topic

Introduction

Security of Hypervisor

Security of Virtual Machine (VM)
Security of Virtual Network

Motivation

More and more virtulized systems are rising, and and Google Drive is the most common

for us.

Care about the security of the Google Drive, so | do a thorough survey about security of
the virtualized system, and main focus on the security issues.

Introduction

Virtualized system is an abstraction of hardware and
software resources allowing heterogeneous architectures to
run on the same hardware.

virtualized system includes the following components:

Hypervisor

Virtual machine
Virtual networks
Host OS

Underlying hardware

One of the most popular virtualized systems

e Cloud computing —— top 11 threats

VM VM

A

; ; Physical server

Other physical
servers

Physical server

VM

VM IVM T

Physical server

VM Repository

Hypervisor

VM Repository User

B

Hypervisor |
Host OS |
4
CHMI/MI v g
"[Launching‘—‘f
" {_ Internet ~ D---
\—“_/‘—/

Management Server

@ :VM image, —) : Attack path number, CHMI: Compromised Hypervisor Management Interface,
E] :Hardware of previous VM, Ml

VM,
ot

:Rouge VM,

: Malicious Insider.

Related Works

Virtualized System Architecture:

” An Exhaustive Survey on Security Concerns and Solutions at Different Components of
Virtualization” -- Rajendra Patil & Chirag Modi (ACM Computing Surveys, 2019)

Cloud Computing:

"Top Threats to Cloud Computing: The Egregious 11” -- Cloud Security Alliance (CSA),
2020

Security of Hypervisor

Vulnerabilities -- Causing hypervisor attack Threats -- caused by vulnerabilities
e Uncontrolled flexibility to create VMs e Uncontrolled growth of VMs
e Misconfiguration e Insertion of malware / rootkits
e Bugs or poor design e Unauthorized access to hypervisor resources
e Weak control over privileged and e Management interface compromise
management interface e Denial of service through resource starvation
® Uncontrolled resource allocation to VM by VM

Class of vulnerabilities

Denial of Service (DoS)
Gain Privilege (GP)
Gain Information (Gl)
Code Execution (CE)

Security of Hypervisor

Attacks -- serious impact on virtualization security

Hyperjacking through VM-based rootkit (VMBR) -- Taking control over a hypervisor
Attacks from the comprised management interface / malicious insider

Attacks from the VM

Attacks from the malicious hypervisor

Launching rouge VM

Security of Virtual Machine

Security of virtual machine has 3 states

e Security of VM in running state
e Security of VM in moving state

® Security of VM in inactive state

Security of VM in Running State

Vulnerabilities Threats
Poor isolation between VM and hypervisor e Rootkit insertionina VM
Poor access control over management e lllegal access from the hypervisor
interface management interface or a malicious insider
Default state of new VMs e Threats from the rouge VM
Poor isolation for shared resources e |Isolation failure among the VMs

Network vulnerabilities e Network threats

Security of VM in
Running State

) 4 Interface with Bug
Attacks Sllghtly /Jhreats
tru“ted VMNetwork [___ ool Communication channel -eceeaaaax CA
layer i
. . ' "
e Attacks from the compromised hypervisor ! /; 0’:?‘::?&':‘:0
i 2 VM layer fr=======nmmmmmmmmnnann. Shared resources = =======--- CA !

e Attacks from the compromised management . ' SomeVMsin AVVMs
: = 1+ virtual network
interface Trustlevel & VM (09) Keme ..o Spemcaks, " : :

e Kernel-level attack -- infected VM images, allow of WM -2 layer structure)" SomeVMsonsame |

)) 0 / : physical server !
viruses, rootkits, and other malware to do damage to ® w VM/Hypervisor _____ Berign sop t/ | :
& Management functionalities S EIRGR e O ' 1
a VM 3 layer / ! /0" same VM ! :
E /] ; 1 1
e lllegal access from the co-hosted VMs > . All VMs on i : i
Hypervisor |- Hypercalls - ==~ A physical server : : !
e C(Classical network attacks layer / i ! I : i
All VMs on ! : H '
physical server ! ! ! H
Highly ~ i ! ' ! i

trusted - L - >

Hypervisor Control Kernel/Kernel ~ Co-hosted ~ Networks

V™M rootkits VM
Attacker / Compromised component —————p

More capable ———————— Attacker capabilities ———————— Less capable

Security of VM in Moving State

Migration of VM plays an important roles in load balancing, hardware maintenance, so it
is also a obvious target for attackers.

Migration of VM could be attack by network sniffing, and malicious code injection.
Besides, some attackers prefer to place themselves in the migration transit path, and
then they can perform MITM attack.

Security of VM in
Inactive State

T /Jmage status
Vulnerability <% Physical hardware |--------------=----. Image destroyed -=----- A
— 1
Threats
= yd :
e Weak access control e Hypervisor |-----=-=-===---- Image run--------- (.:
(1]
e Insecure launching channel 5 / : / i
. a . CIA '
e Untrusted hypervisor g Llaunchingchannel |[------- Image launched ---4 ' '
1
3 | i : / : E
Image repository |--- IMmage _____ CIA ! !
Threats gerep v created ' / : E E
1
CIA : ; :
e Uncontrolled upload, creation, Outdated software and 0 ' H '
T 1 | 1
modification, and usage of VM images known Vl{'"efat_"ht'es. Malicious MITM Malicious Rouge >
e Unauthorized access to a launching in VM image user attacker hypervisor VM
channel and a physical device Attacker >

e Deployment of the image to an
untrusted hypervisor

Security of VM in Inactive State

Attacks

Attacks on VM image contents

Attacks on a VM image in repository

MITM attack on VM image

Attack on VM image at destination hypervisor

VM data remanence attack

Security of Virtual Network

Share mode of network infrastructure increase the Network attacks -- All of the network attacks are
vulnerabilities caused by the network vulnerabilities

DNS servers e Denial of Service (DoS)

DHCP ® Portscanning

IP e Sniffing

ARP protocols e |P/MAC spoofing

vSwitch software bugs
Open ports
Insecure network channels

Security of Cloud Computing

According to Cloud Security Alliance (CSA), “Top
Threats to Cloud Computing: The Egregious 11.”
2020.

e Data breaches

e Misconfiguration and inadequate change
control

e lLack of cloud security architecture and

strategy

Insufficient identity

Credential

Access and key management

Account hijacking,

Insider threat

Insecure interface and APIs

Weak control plane

Metastructure and applistructure failures
Limited cloud usage visibility

Abuse and nefarious use of cloud services

Conclusion

® Security issues have been discussed

e Solution for these issues are not introduced
O Related papers in reference

e Virtualized systems no deadly security issues
o Secure to use for Convenience

o No Important / Sensitive information

Reference

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, |. Pratt, and A.
Warfield. ”Xen and the art of virtualization. In Proceeedings of the ACM SIGOPS Operating Systems
Review”, Vol. 37, pp. 164-177, 2003.

[2] R. Patil, and C. Modi. "An Exhaustive Survey on Security Concerns and Solutions at Different
Components of Virtualization”, ACM Computing Surveys. Vol. 52. No. 1, Article 12, February, 2019.

[3] S. Singh, Y. Jeong, and J. H. Park, “A survey on cloud computing security: Issues, threats, and solutions,”
Journal of Network and Computer Applications, vol. 75, pp. 200-222, 2016.

[4] Modi, Chirag, Patel, Dhiren, Borisaniya, Bhavesh, Patel, Avi, Rajarajan, Muttukrishnan, ”A survey on

security issues and solutions at different layers of cloud computing”. J. Supercomput. vol. 63 (2), pp. 561—
592, 2013.

[5] S. Singh, Y. Jeong, and J. H. Park, “A survey on cloud computing secu- rity: Issues, threats, and
solutions,” Journal of Network and Computer Applications, vol. 75, pp. 200-222, 2016.

[6] D. Zissis, D. Lekkas, "Addressing cloud computing security issues”. Future General Computer System,
vol. 28 (3), pp. 583-592, 2012.

[7] S. Subashini, V. Kavitha, ”A survey on security issues in service delivery models of cloud computing”. J.
Netw. Comput. Appl. vol. 34 (1), pp. 1-11, 2011.

[8] S. T. King and P. M. Chen. "SubVirt: Implementing malware with virtual machines.” Proceeedings of the
|IEEE Symposium on Security and Privacy. pp.1-14. 2006.

[9] A. Desnos, E . Filiol, and I. Lefou. "Detecting (and creating!) a HVM rootkit (aka BluePill-like)".
Computer Virol. vol. 7, pp. 23-49. February 2011.

[10] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco, and A. Warfield. “Breaking up
is hard to do: Security and functionality in a commodity hypervisor.” In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles. pp. 189-202. 2011.

[11] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, H. Guan, and J. Li. “Deconstructing xen.” In
Proceedings of the Network and Distributed System Security Symposium. pp. 1-15. 2017.

[12] A. Jasti, P. Shah, R. Nagaraj, and R. Pendse. “Security in multi-tenancy cloud.” In Proceedings of the
IEEE International Carnahan Conference on Security Technology. pp. 35-41. 2010.

[13] M. Kandias, N. Virvilis, and D. Gritzalis. “The insider threat in cloud computing.” In Proceeedings of
the International Workshop on Critical Information Infrastructures Security. pp. 93-103. 2011.

[14] F. Rocha and M. Correia. ”Lucy in the sky without diamonds: Stealing confidential data in the cloud.”
In Proceeedings of the IEEE/IFIP 41st International Conference on Dependable Systems and Networks
Workshops (DSN-W’11). pp. 129-134. 2011.

Reference

[15] Y. Xia, Y. Liu, H. Chen, and B. Zang. "Defending against vm rollback attack.” Proceeedings of the 42nd
IEEE International Conference on Dependable Systems and Networks Workshops. pp. 1-5. 2012.

[16] S. Shafieian, M. Zulkernine, and A. Haque. ”Attacks in public clouds: Can they hinder the rise of the
cloud?” Cloud Computing. pp. 3—22. 2014.

[17] J. Butler. "Dkom (direct kernel object manipulation).” Black Hat Win- dows Security (2004). 2004.

[18] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu. ”"Dksm: Subverting
virtual machine introspection for fun and profit.” Proceeedings of the 29th IEEE Symposium on Reliable

Distributed Systems. pp. 82-91. 2010.

[19] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and M. Winandy. “Return-oriented
programming without returns.” Proceeed- ings of the 17th ACM Conference on Computer and
Communications Security. pp. 559-572. 2010.

[20] M. Seaborn and T. Dullien. “Exploiting the DRAM rowhammer bug to gain kernel privileges.” Black
Hat (2015). https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn- Exploiting-The-DRAM-
Rowhammer- Bug- To- Gain- Kernel- Privileges.pdf . 2015.

[21] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. “Flip feng shui: Hammering a
needle in the software stack.” Proceeedings of the USENIX Security Symposium. pp. 1-18. 2016.

[22] K. Hashizume, N. Yoshioka, and E. B. Fernandez. "Three misuse patterns for cloud computing.” I1GI
Global, Pennsylvania, United States, pp. 36-53. 2013.

[23] J.Wei,X.Zhang,G.Ammons,V.Bala,andP.Ning.”Managingsecurity of virtual machine images in a cloud
environment.” Proceeedings of the ACM Workshop on Cloud Computing Security. pp. 91-96. 2009.

[24] B. Grobauer, T. Walloschek, and E. Stocker. ”“Understanding cloud computing vulnerabilities.” IEEE
Security Privacy. Vol. 9. pp. 50-57. February, 2011.

[25] A. Pandey and S. Srivastava. ”An approach for virtual machine image security.” Proceeedings of the
International Conference on Signal Prop- agation and Computer Technology. pp. 616—623. 2014.

[26] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and V. Bala. "Opening black boxes: Using
semantic information to combat vir- tual machine image sprawl.” Proceeedings of the 4th ACM
International Conference on Virtual Execution Environments. pp. 111-120. 2008.

[27] B. Albelooshi, K. Salah, T. Martin, and E. Damiani. “Experimental proof: Data remanence in cloud
VMs.” Proceeedings of the International Conference on Cloud Computing. pp. 1017-1020. 2015.

[28] R. Jain and S. Paul. "Network virtualization and software defined net- working for cloud computing:
A survey.” IEEE Community Magazine. Vol. 51, pp. 24-31. November, 2013.

[29] CSA, "Top Threats to Cloud Computing: The Egregious 11.” Cloud Security Alliance (CSA). April, 2020.

End~~

Thanks for Listening

Leave Questions on Discussion

/

) @U

Assessing effectiveness of
Penetration Testing

approaches

By - Siddhi Kotian
CS559 - CSU

S

Penetration Testing

What is penetration testing and its types

2

1.

\

U

—
T
1P
AEEREMEOREDO
LIGIE]EEEEERO00
LEEEMEEMEEDCT]
OO 100 ==

—

g

v

Penetration Testing

find and exploit vulnerabilities
Average cost of data breach - $3.86
Types of Penetration testing:

O Network

o Web Application

O Wireless Network

O Social Engineering

76

Web Application Penetration Testing

Increase in usage of Web Application
Simulating unauthorized attacks
Finding vulnerabilities

77

2

2.

OWASP Top Ten
% AR
.

S—

I o
[[rey P A [P P
I
C b ERENE000
(/| L EEE
|
Q\

I == =
—

OWASP Top Ten

Injection - untrusted data is sent to an interpreter
Broken Authentication - authentication system
implemented incorrectly

Sensitive Data Exposure - Sensitive data not
properly protected

XML External Entities (XXE) - evaluate external
entity references within XML documents

Broken Access Control - what authenticated users
are allowed to do are often not properly enforced

79

80

OWASP Top Ten

Security Misconfiguration - result of insecure
configurations

Cross-Site Scripting XSS - application includes
untrusted data in a new web page without proper
validation

Insecure Deserialization - leads to remote code
execution

Using Components with Known Vulnerabilities
Insufficient Logging & Monitoring

3. \\) :
web application

% security scanner @

]

W / o o
g RNRAAPNAAA AN
y. mEEEEEE N
¢ G BIDEETETO]
4] o
V'

DDDD\:“:"]IIED

OWASP Zed Attack Proxy (ZAP)

Opensource

GUI based application

To access vulnerabilities in web application
Supports Scripting, Spidering and Proxying

82

Nikto

X OpenSource
X Scans For 6,700 potential dangerous files
X Checks For Outdated Software version

83

Comparing ZAP &

&

Nikto

A
I
9 213y e
I 3
OUEEEMEEHEEOC_]
I W -
—

84

Buggy Web Application (b WAPP)

Insecure Web Application
Used for Penetration Testing
PHP as backend & MySQL Database

85

D Choose your Ioug-.

| DWAPP v2.2

Set your gecur‘i’ry level:

an ex+r'emely buaﬂy web opp |10\.\—V|[mcur-r—en+._bw

Clnanae Password Create User Set Secur'i-l-y Level Reset Credits

B\oa Loaou+

JaEoaTal 7

bWAPP, or a buggy web application, is a free and open source deliberately insecure web application.
It helps security enthusiasts, developers and students to discover and to prevent web vulnerabilities.

bWAPP covers all major known web vulnerabilities, including all risks from the OWASP Top 10 project!
It is for security-testing and educational purposes only.

Which bug do you want to hack today?)

bWAPP v2.2

iFrame Injection
LDAP Injection (Search)
Mail Header Injection (SMTP) -

| Hack |

B

(A1 - inection re R
HTML Injection - Reflected (GET) ‘

HTML Injection - Reflected (POST) MISSING 8:
HTML Injection - Reflected (Current URL) EXPI.-OITED
HTML Injection - Stored (Blog)

LDREN

B

Before Bypassing Login
Page

]

o
N] A

(JMEREHEOREDD
I 3 3t e e e
CUEEEMERNEHEROC
i '\Q T I S
@\ ——

Before Adding Cookies Or Authentication

88

B

5.

After Bypassing Login
Page

]

o
N] A

(JMEREHEOREDD
I 3 3t e e e
CUEEEMERNEHEROC
i '\Q T I S
@\ ——

89

After Adding Cookies Or Authentication

15 minutes

21 sec

90

Comparison

ZAP Out Performed Nikto

Nikto did not performed well after bypassing
authentication

5 of the top 10 OWASP vulnerability were found
Nikto takes into the account about the version of
the software used, which is helpful in initial
scanning

ZAP gives the method to break into the
application and what to do to fix it

91

Summary of Alerts

Risk Level

High
Medium
Low

Informational

Alert Detail

Description

URL
Method
Parameter
Attack

Instances

Solution

)

W zAP Scanning Report

Number of Alerts

5
15
23
23

SQL Injection

SAL injection may be possible.

http://10.0.0.5/bWAPP/sqli_1.php?action=search&title=ZAP%27+AND+%271%27%3D%271%27+-+

GET

title

ZAP' OR'"1'="1" -

1

Do not trust client side input, even if there is client side validation in place.

In general, type check all data on the server side.

If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?"

If the application uses ASP. use ADO Command Objects with strong type checking and parameterized queries.

If database Stored Procedures can be used, use them.

Do "not” concatenate strings into queries in the stored procedure. or use ‘exec’, 'exec immediate’, or equivalent functionality!
Do not create dynamic SQL queries using simple string concatenation.

Escape all data received from the client.

Apply an "allow list' of allowed characters, or a ‘'deny list' of disallowed characters in user input.

Apply the principle of least privilege by using the least privileged database user possible.

In particular, avoid using the 'sa’ or 'db-owner’ database users. This does not eliminate SQL injection, but minimizes its impact.

Grant the minimum database access that is necessary for the application.

Thanks!
Any questions?

XTI M)

