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Presentations/Final Report
Th Dec 10 

– Chen, Sirius. Secure container Technologies
– Shang, Tony. Detection DDOS attack based on deep neural networks

Course Overview

Note: final is comprehensive but most of it will be based on the 
material covered after the midterm.

• Today is the last day of classes. Please turn the videos on.
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Notes
• Q15
• Peer Evaluation of Presentations 

– Due Dec 11

• Final Part 1 Raw: Critical peer review of 2 Reports
– Dec 11-Dec 16 4 Pm

• Final Part 2 S 001 Raw - Requires Respondus LockDown
Browser + Webcam
– On-campus/Local: Dec 16, 2-4 PM
– Non-local/Distance: Dec 16, 2 PM- Dec 17, 4 PM
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Advances on virtualization technology of  
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Wei Chen  
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Virtualization technologyDocker container and virtual machine comparison

The impact of Docker Container

Prospects for the development  
trend of containers
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AD D YOU R TI TL E HE R E

PART ONE

Virtualization technology



单击此处添加标题

The virtualization of the server is  
realized by introducing a  virtualization 
layer between the  hardware and the 
operating system  to realize the 
decoupling of the  hardware and the 
operating system.

Server virtualization refers to virtualizing a computer into  
multiple logical computers through virtualization  

technology.

Server virtualization



The container can provide an isolated operating space  for 
the application, including the complete user  environment 
space; changes in one container will not  affect the 
operating environment of other containers

Multiple containers can share the kernel of the same  operating 
system, so that when the same system library is  used by 
multiple containers, the efficiency of memory  usage will be 
greatly improved

In recent years, with the emergence of Docker, container  
technology has had a huge impact on the development of  
cloud computing.

•Docker is a container platform that can simplify and standardize application deployment in different environments.  
There are already many ecosystem software related to distributed containermanagement.

单D击oc此ke处r c添o加nt标ain题er technology
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Docker container and virtual machine  
comparison

PART TWO



单击此处添加标题

Quickly available

Simplify deployment

More efficient virtualization

Microservices

Advantages of Docker



单击此处添加标题

1) Resource isolation problem
2) Security issues
3) Container management needs to be strengthened

4) Compatibility issues
5) Windows containers are not yet mature
6) The container orchestration engine is not yet mature

Disadvantages of Docker
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The impact of Docker Container

PART Three



单击此处添加标题

Docker container uses cgroups technology to greatly  reduce the 
granularity of control system resources, thereby  greatly 
improving the utilization of system resources.

Now public cloud service providers can completely migrate these
applications to containers, which can not only reduce resource
overhead, but also provide better portability.

Another advantage that the CaaS model brings to  enterprises 
is that CaaS enables enterprises to easily and  dynamically 
migrate services between different public  cloud platforms 
without worrying about platform lock-in  issues.

Container as a service
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Prospects for the  
development trend of  
containers

PART Four



单击此处添加标题

Containers and virtualization  
technologies will coexist

Running containers in virtual
machines will become a trend

The era of container-centric  
cloud computing is about to  
begin
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Detect DDOS attack based on 
convolutional neural networks

CS 559 – FINAL PROJECT

Linpeng Shang



Topic

u Introduction

u Attack principle of DDoS

u Convolutional neural networks

u SIP flood attack detection model based on convolutional neural networks



Introduction



Motivation

u Distributed Denial of Service (DDoS) attacks can cause serious harm to hosts, 
servers, and even network infrastructure on a network.

u A peak of 1.35TB/sec traffic hit the developer platform GitHub, the largest 
recorded DDoS attack to date.

u In most cases, attackers use TCP, UDP, and ICMP protocols to launch DDoS 
attacks, which disrupt the business of the attacked company and cause huge 
economic losses.

u Therefore, how to detect and effectively mitigate DDoS attacks in real time has 
become one of the most important research areas in recent years



Related Works

u In 2005, Jian Yuan. Kevin L. Mills proposes a method to identify DDoS attacks using cross-correlation 
and weight vectors to analyze backbone network node traffic and detect various types of traffic, such as 
constant speed traffic and incremental speed traffic [16].

u Gupta et al. propose a neural network detection model to solve the problem of poor stability in identifying 
low-rate attacks, and Saied et al. improve the detection rate of unknown types of DDoS attacks by 
constantly updating the learning samples [17].

u Kale et al. propose combining the classifier output with Neyman P In 2009, Chen C L used two statistical 
t-tests to identify DDoS attacks, the arrival rate of SYN and the number of SYN, ACK groups [16].

u In 2015, Singh.K proposed a DDoS detection method based on the random forest classification model, 
taking the data stream information as the classification criterion and characterizing the three common 
DDoS attacks [17].



Background of 
Neural network

• Neural Network technology originated 
in the 1950s And 1960s as perceptron, 
which has an input layer, an output 
layer, and an implicit layer [7].

• In 2006, Hinton mitigated the local 
optimal solution problem with a pre-
training method that pushed the implicit 
layers to seven, which is the depth of 
the NN [3]. 

• A Convolutional Neural Network (CNN) 
is a feedforward neural network [4].



Distributed Denial Of 
Service (DDoS) Attack



Background of DDoS Attack

u Distributed Denial of Service (DDoS) attack is an attack in which multiple 
attackers in different locations launch attacks against one or more targets 
simultaneously [4][5].

u Since the attack originates from different locations, this type of attack is called a 
distributed denial-of-service attack.

u DDoS is the use of more Zombie computers to launch an attack, attacking the 
victim on a larger scale than before



Structure of 
DDoS attack

The structure of an 
attack by an attacker 
using a zombie 
computer is shown 
in right figure.



DDoS attack can be categorized as follows:

u IP Spoofing

u LAND attack

u ICMP floods

u Application



DDoS attack strength



Convolutional Neural 
Networks (CNNs)



Background of CNNs

u Convolutional neural networks (CNNs) can be traced back to 1986 when 
Rumelhart proposed the BP algorithm, and then to 1989 when LeCun applied the 
BP algorithm to multilayer neural networks [5].

u Ten years later, in 1998, LeCun proposed the LeNet-5 model, and the prototype 
of the neural network was completed [5].

u Convolutional neural networks are introduced to take advantage of the local 
receptive fields, weight sharing, and pooling features of convolutional neural 
networks to improve the learning ability, expression ability, and performance of 
neural networks.



LeNet-5 Convolutional 
Neural Network Model



Convolutional Neural 
Network Based 
Session Initiation 
Protocol(SIP) Flood 
Attack Detection Model

Figure 1e Figure 2



Convolutional 
neural network 
model



Experimental Environment, Analysis, 
and Results

BP Algorithm Sampling Time and 
Results Sampling time and results of the 

algorithm for this study

Figure 1e Figure 2e



At the beginning, the alarm 
time of this method is equal, 
but as the attack speed 
increases, the alarm time of 
this method is faster than the 
BP algorithm.



Conclusion

u Convolutional neural network-based attack detection method to analyze REGISTER registered 
message flow in IMS network.

u The experimental results show that the method can detect SIP flooding attacks in IMS networks 
and has good detection performance.

u In this research, a typical neural network model is chosen and modified as needed. The training of 
the convolutional neural network model is greatly influenced by the initialization parameters, which 
has an impact on the experimental results

u This experiment is conducted under CPU only, and later, I will consider using GPU instead of CPU 
and conduct the experiment again.
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How to prepare
• You have already been preparing
• Review lectures, slides, quizzes, assignments
• Focus on 

– Terms
– Ideas and approaches
– Solving problems

• If interested, locate references cited and read in more 
detail. This is a research-oriented class.

• Please review Respondus information, video. 
Download and install

• Note: weekend quiz likely 

https://tilt.colostate.edu/TestingCenter/Respondus
https://www.youtube.com/watch?v=XuX8WoeAycs&feature=emb_logo
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What we have examined L1-16
Before midterm:
• System basics, firewalls, access control
• Risk, its components and evaluation
• Probability, modeling, regression
• Vulnerability Discovery Models
• Metrics: CVSS 
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Discussed after Midterm (-L24)
• Testing, coverage, tools
• Detectability profile, random and directed testing
• SRGM, Defect density, Coverage based modeling
• Authentication, passwords
• Fuzzing
• Penetration testing
• Attacks
• Security breaches: 

– Probability, Gordon Loeb model
– Cost models, metrics, examples

• Vulnerability markets
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Detectability Profile of a unit under test

• Total M faults, total N possible input 
combinations. The set of faults can be 
partitioned into these subsets:

• 𝐻 = ℎ!, ℎ", … ℎ#
• Where hk is the number of faults 

detectable by exactly k inputs. The 
vector H describes the detectability 
profile.
– h1 is the number of faults that are 

hardest to find.
– As testing and debugging continues, 

harder to find faults will tend to remain. 
Easy to find faults will get eliminated 
soon.

0
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0 5 10 15 20

k
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SRGMs
• Exponential SRGM: assumes bug  finding rate l(t) is 

proportional to remaining bugs at time N(t).

𝜆 𝑡 = −
𝑑𝑁 𝑡
𝑑𝑡

= 𝛽!𝑁(𝑡)
• Exponential defect finding model is

𝜆 𝑡 = 𝛽!𝛽"𝑒#$!%

• β0 represents the initial number of bugs. 
• If the initial defect density is D(0), and the software size 

(measured in 1000 lines of code, i.e. KLOC) is S, then
𝛽" = 𝐷(0)×𝑆

• The initial defect density is a function of the software 
development process and the degree of prior defect 
removal.
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Log-Expo Coverage Model

• Eliminating t and rearranging, 

• For “large” Ci, we can approximate
etc. cov use-p cov,branch : ;parameters:,,

coveragetest : coverage,defect : where
1)],1)(exp(1ln[
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Problem: Password guessing 
• If your keyboard has R= 95 unique characters, 

12-character password, then L = 12.
• 9512= 540,360,087,662,636,962,890,625 passwords 
Entropy = log2(RL) = 78.9 bits assuming passwords are created 
randomly
• Non-randomness makes password guessing easier.
• Measures of password strength proposed and used
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Attacking Salted Passwords

46

hash()
List of 

possible 
password 

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of 
possible 

password 
hashes w/ 

salt a8

List of 
possible 

password 
hashes w/ 

salt 0X

cbw a8
sandi 0X
amislove hz
bob K@

hash(‘0X’ + word)
cbw XXXXsandi YYYY



47

Fuzzing PDF Reader 

• Download 100s of random PDF files
• Mutate content in the PDF file:
- flip bits
- increase size of integers or strings
- remove data

• Limited by the functionality that the 
existing files happened to use —
unlikely to hit less commonly tested 
code paths
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American Fuzzy Lop (AFL)

Input 
queue

Seed 
inputs

Next input

Mutation

Execute 
against 

instrumented
target

branch/edge 
coverage 

increased?Add mutant 
to the queue Periodically culls the queue 

without 
affecting total coverage  



49

Pen Testing Stages

1. Planning and reconnaissance 
• Defining the scope and goals of a test, including the systems to be addressed and the testing methods to be used.
• Gathering intelligence (e.g., network and domain names, mail server) to better understand how a target works and its 

potential vulnerabilities.
2. Scanning
• Network scanning and topology tracing, id OS and applications, Port scanning to find open ports and services, find net 

addresses of live hosts, firewalls, routers, etc. vulnerability scans to id potential vulnerabilities.
3. Gaining access: 
• This stage uses web application attacks, such as cross-site scripting, SQL injection and backdoors, to uncover a target’s 

vulnerabilities. Testers then try and exploit these vulnerabilities, typically by escalating privileges, stealing data, 
intercepting traffic, etc., to understand the damage they can cause.

Sources: 1, 2

https://threatmodeler.com/wp-content/uploads/2019/10/Penetration-Testing.png
https://www.imperva.com/learn/application-security/penetration-testing/
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Pen Testing Stages

4. Maintaining access:     See if the vulnerability can be used to achieve a persistent presence in the 
exploited system— long enough for a bad actor to gain in-depth access. 
• The idea is to imitate advanced persistent threats (APTs), which often remain in a system for 

months in order to steal an organization’s most sensitive data.
5. Analysis and remediation: The results of the penetration test are then compiled into a report with
• Specific vulnerabilities that were exploited,   Sensitive data that was accessed
• The amount of time the pen tester was able to remain in the system undetected
• This information is analyzed help configure an enterprise’s WAF (web protection firewall) settings 

and security solutions to patch vulnerabilities and protect against future attacks.

Sources: 1, 2

https://threatmodeler.com/wp-content/uploads/2019/10/Penetration-Testing.png
https://www.imperva.com/learn/application-security/penetration-testing/
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How many pen tests do you do a year?
a. In 2017, cobalt.io collected data from 75 survey respondents in security, management, 
operations, DevOps, product, and developer roles

b. WHAT IS MOST CHALLENGING ABOUT PEN TESTING APPLICATIONS?

Source of data

https://resource.cobalt.io/hubfs/Pen%20Test%20Metrics%202018.pdf
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Attack Tree Example 1

aa
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Annual Loss Expectancy (ALE)
Note the terminology is from the Risk literature.
• Annual loss expectancy (ALE). (It is a risk measure)

ALE = SLE x ARO
– Where ARO is Annualized rate of occurrence.

• A countermeasure reduces the ALE by reducing one of its factors.

COUNTERMEASURE_VALUE 
= (ALE_PREVIOUS – ALE_NOW) – COUNTERMEASURE_COST

ALE_PREVIOUS: ALE before implementing the countermeasure.
ALE_NOW: ALE after implementing the countermeasure
COUTERMEASURE_COST: annualized cost of countermeasure



54

Breach Probability Model
A proposed model for the probability of a breach for the 
next
P {breach} = 𝐹𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∗ 𝐹𝐵𝐶𝑀 ∗ 𝐹𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 ∗

𝐹𝑏𝑟𝑒𝑎𝑐ℎ$%&'( ∗ 𝐹𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∗ 𝐹𝑝𝑟𝑖𝑣𝑎𝑐𝑦 ∗ a 𝑒𝑥𝑝 −b𝑥
Where a = 0.4405,  b = 4E-05, x the breach size 2015
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Data breach probability by country 

Data breach probability by country (Ponemon data 2015)
A minimum of 10,000 compromised records
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Expected benefits of an investment in information security 

Impact of investment z:
The expected benefits of an investment in information 
security, EBIS, are equal to the reduction in the firm’s 
expected loss attributable to the extra security. 

EBIS(z) = [v − S(z, v)] L
The expected net benefits from an investment in 
information security, ENBIS equal EBIS less the cost of 
the investment, or: 

ENBIS(z) = [v − S(z, v)] L − z

𝑣 − Probability of security breach
𝐿 − Potential Loss. 𝑣𝐿 − Expected Loss
𝑧 − Level of Investment
𝑆[𝑧, 𝑣] − Revised probability of breach
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Cost Metrics
Total Cost of a Breach =

Incident investigation cost
+ Customer Notification/crisis management cost
+ Regulatory and industry sanctions cost
+ Class action lawsuit cost

𝑪𝒐𝒔𝒕 𝒑𝒆𝒓 𝑹𝒆𝒄𝒐𝒓𝒅 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑟𝑒𝑎𝑐ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
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TARGET DATA BREACH ACTUAL REPORTED COSTS

A consolidated approach for estimation of data security breach costs, AM Algarni, YK Malaiya
2016 2nd International Conference on Information Management (ICIM), 26-39
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The breach cost vs. breach size 

Verizon 2015 data, the claim amount vs. breach size
(ranges from single digits to 108 million records) 

Our proposed model
𝑻𝒐𝒕𝒂𝒍 𝒃𝒓𝒆𝒂𝒄𝒉 𝒄𝒐𝒔𝒕 = 𝑎 ∗ 𝑠𝑖𝑧𝑒 ^ 𝑏
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Average total cost of a data breach by organizational size

• Note economy of scale
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Impact of 25 key factors on the average total cost of a data breach 2020
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Cost Metrics
Total Cost of a Breach =

Direct costs + Indirect costs – Recovered costs
Direct costs: funds spent directly

= Incident investigation cost
+ Customer Notification/crisis management cost
+ Regulatory and industry sanctions cost*
+ Class action lawsuit cost*

Indirect costs: lost business opportunity
= loss of goodwill, customer churn#

Recovered costs = Insurance recovery + tax break
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Chang, Gao, Lee 2020 Hypotheses
• Hypothesize 1 (H1). The announcement of a data breach has a 

negative effect on the short-term market value of the breached 
company. 

• Hypothesize 2 (H2). The announcement of data breach has a 
negative effect on the long-term market value of the breached 
company. 

• Hypothesize 3.1 (H3.1). The size of the data breach is positively 
associated with a higher negative return on the short-term 
market value of the breached company. 

• Hypothesize 3.2 (H3.2). The size of the data breach is positively 
associated with a higher negative return on the long-term 
market value of the breached company. 

The Effect of Data Theft on a Firm’s Short-Term and Long-Term Market Value 2020

https://www.mdpi.com/2227-7390/8/5/808/htm


64

Vulnerability flow through markets
64
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Types of Vulnerability Markets

65
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Presentations
• Ransomware
• Phishing, URL identification
• Cybercrime: 

– motivation/methods
– prediction

• Smartphones:  security models/metrics/vulnerabilities
• Mitre ATT&CK threat modeling for ICS
• Cyber Insurance
• Government security breaches
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Topics: Presentations
• Digital payments: protocols
• Penetration testing: effectiveness, tools, OWASP top 10
• Fuzzing
• Security in virtualized/containerized systems
• Cyber security trade-offs


