



CSU Cybersecurity Center Computer Science Dept

### **Research Objective**

- Become familiar with technical topic of current interest
  - Current state of the art
  - Where the field is going (thus what to expect next)
- Become an expert in the field
  - Should be able to answer important questions
- Original contributions
  - What needs to be done
  - Suggest how it would be addressed
- Present your work
  - Briefly (presentation) and in detail (paper)



### **Project type**

- A thorough survey of a topic, with original insight
- A development of a new scheme
  - or a fresh implementation of an existing scheme
- Modeling and analysis of an existing scheme.
- A meaning combination



### **Steps for Identifying Sources**



https://xrds.acm.org/article.cfm?aid=2627954



#### **Search Databases**

#### Specific sources: database indexes

- Google Scholar
  - Forward links: <u>Paper X Cited by</u>
  - Backward Links: <u>Paper X cites</u>
- Researcher sites
  - Personal/Group Website
  - DBLP
  - Google Scholar: <u>researcher</u>
- CSU Library etc.
- General (accessible through CSU Library)
- ACM Digital Library
- IEEEXplore Digital Library
- ScienceDirect etc



### **Source types**

- Journals: published several times a year
  - Rigorously reviewed, long publication delay
  - Journal, Transactions, ...
- Conferences: held once a year, proceedings published
  - Conference, Symposium, ...
- Research groups
  - Industry, academic, consultants: web site
- Industry publications
  - Magazines, blogs, white papers, product website
- Books: often well known stuff



#### How to Read a Paper: THE THREE-PASS APPROACH

- The first pass: Read
  - the title, abstract, and introduction
  - section and sub-section headings, but ignore everything else
  - the conclusions
- The second pass: Read
  - figures, diagrams and other illustrations
  - mark relevant unread references for further reading
  - Do you need to read it in detail?
- The third pass: Read critically
  - identify and challenge assumption and views
  - Loop up references needed

Keshav, S., How to Read a Paper, ACM SIGCOMM, http://ccr.sigcomm.org/online/files/p83-keshavA.pdf



#### **Avoid Prior Bias**





September 3, 2020

Fault Tolerant Computing ©Y.K. Malaiya

### **Key Questions**

- What problem are you trying to solve?
  - Why is it important?
- What recent advances or interesting ideas are there?
  - what have others done?
  - what have others not done yet?
- What have you done (so far)?
  - What is your next step?
  - how does it relate to your goal?
  - why is it important?
- How will you know when ...
  - you've made progress?
  - you're done?

William J. Rapaport, How to Write



### **Proper formatting**

- Proper citations: <u>IEEE/</u>ACM format
  - Including authors, title, publication, page numbers, date.
- <u>Two column IEEE/ACM format</u>
  - Title, name(s) of the author(s), name of the class and professor
  - Abstract
  - Your contribution and what is new
  - Introduction (background & related work, objectives & methods),
  - Assumptions/schemes/models/problem-formulation
  - Comparison/discussion/derivation etc. of the results,
  - Conclusions and suggestions for improvements
  - References.
  - Appendixes (if need)

Must have diagrams and hard technical info (equations/tables/plots/screen-shots etc)



### **Evaluation**

Similar to paper review for conferences/journals

- Significance and originality
- Thoroughness of research
- Depth of understanding displayed
- Presentation
- Final report is submitted through TurnItIn using Canvas
  - Checks for overlap with other documents (plagiarism)
  - Some overlap OK
  - Cite sources of definitions, ideas, data, figures etc.
  - Any text copied and pasted must be enclosed in quotes and cited
    - Exception: references (cite only those you have seen)



### **Typical Original Research Process**





September 3, 2020

Fault Tolerant Computing ©Y.K. Malaiya



#### Yashwant K. Malaiya Colorado State University



### **Research Objective**

- Become familiar with technical topic of current interest
  - Current state of the art
  - Where the field is going (thus what to expect next)
- Become an expert in the field
  - Should be able to answer important questions
- Original contributions
  - What needs to be done
  - Suggest how it would be addressed
- Do it (if your expertise and time allows)
- Present your work
  - Briefly (presentation) and in detail (paper)



#### **Deliverables**

- A one-page proposal
  - motivation, brief scope of study and some specific references.
  - Identify key sources of information
- Progress report: should have completed a major part of the project.
- Slides based on findings thus far
  - Post in Canvas Discussions and present in class
  - Should demonstrate
    - thoroughness of literature search
    - Understanding of the key technical concepts
  - Peer review required
- Final report (two column format)



### **Progress report**

• Documentation:

http://www.cs.colostate.edu/~cs530dl/f18/project

- **Progress report (3-5 pages)** It should indicate that you have finished at least half of the work.
- Partial version of the final report
- Abstract, Background
- Summary of the findings
- What the final report will contain , any refinements of the objectives as a result of the recent study,
- Applicable references in proper format.



### You Must Do Research

#### Not enough:

- Summary of a couple of papers
- Summary of work of a single research group
- Rephrasing of existing surveys

# You must know (and should be able to answer related questions):

- Current state of the art
- Alternative approaches and how they can be evaluated
- Technology trend
- Find data describing the technology
- Existing issues and challenges



## **Citing Sources**

#### "IEEE" "ACM" etc:

- These are professional organizations that organize numerous conferences and published journals
- You must specify the author, title of paper, specific names of conference/journal, associated details, date, page numbers
- A simple URL is not a valid citation
- URL not needed for conference, journal publications. Needed for on-line publications (Organizational reports, Industrial white-papers, News etc)

Omar H., Alhazmi and Yashwant K. Malaiya, "Application of vulnerability discovery models to major operating systems", IEEE Transactions on Reliability, Volume: 57, Issue: 1, pp. 14-22, March 2008,

Ambrose Andongabo, Ilir Gashi, "vepRisk - A Web Based Analysis Tool for Public Security Data", 13th European Dependable Computing Conference (EDCC) 2017, pp. 135-138, 2017.



#### You must include

- Title, your name, class, year, professor's name
- Abstract: What does it include and why is it important
- Background: Other existing work and background ideas
- Technical discussion: detailed discussion of findings with non-text material (charts, plots, tables. algorithms etc)
- Discussion & Summary
- References



## **Quantitative Security**

#### **Colorado State University**

#### Yashwant K Malaiya

#### CS 559

#### Frameworks



**CSU Cybersecurity Center** 

**Computer Science Dept** 

#### **List-based vs Quantitative Approaches**

**Management Approaches** 

- List based approach (binary/compliance):
  - Compile lists of all possible things, actions.
  - Subdivide items into finer sub-items to make sure everything is considered.
  - Identify policies/standards to ensure everything is covered.
  - Check the boxes.
- Quantitative approach
  - Includes lists of items/sub-items
  - Quantitatively evaluate possible outcomes and assign weights.
  - Compute overall figure of merit. Optimize if possible.



#### **Quantitative Approaches**

- Determine exact/approximate numbers using measurements or models.
  - Numbers may be hard to get
- Use intuitive numbers (perhaps 0-10) etc using some description.
- No numbers, but use mental quantification based on past experiences.
- Binary: Yes/No, Done/Not Done



#### **Security Frameworks**

Several frameworks/standards have been identified to organize security concerns and controls. Major frameworks include

- NIST Cybersecurity Framework (CSF) for Critical Infrastructures (V 1.0 Feb 2014)
- PCI: Payment Card Industry Data Security Standard v2.0
- Center for Internet Security (CIS) Critical Security Controls (CSC)

Note: Managers use/understand jargon specific in the field. You may need to translate jargon into what you understand. Talmud.



#### **NIST Cyber security Framework**

**NIST: National Institute of Standards and Technology** 

- Agency of U.S. Department of Commerce
  - Federal, non-regulatory agency around since 1901
- develops and promotes measurement, standards and technology to enhance productivity, facilitate trade, and improve the quality of life.

**NIST Cybersecurity** 

- Cybersecurity since the 1970s
- Computer Security Resource Center csrc.nist.gov

The Framework for Improving Critical Infrastructure Cybersecurity, April 2018



#### **NIST Framework - Motivation**

- The NIST framework is "Risk-based" (semiquantitative) and not compliance based.
- Core "Functions"
  - Identify: defines the actions related to the understanding of policies, governance, assets, risks, and priorities.
  - Protect: activities related to the development and implementation of safeguards and training
  - Detect: monitoring and detection activities to identify events.
  - Respond: activities related to actions to respond to detected cybersecurity event.
  - Recover: plans and processes to recover.
- Functions are divided into categories.





#### **Framework Categories**

|                       | Function | Category                                      |
|-----------------------|----------|-----------------------------------------------|
| What processes and    | Identify | Asset Management                              |
|                       |          | Business Environment                          |
| assets need           |          | Governance                                    |
| protection?           |          | Risk Assessment                               |
| protection            |          | Risk Management Strategy                      |
|                       |          | Supply Chain Risk Management <sup>1.1</sup>   |
|                       |          | Identity Management, Authentication and       |
|                       |          | Access Control <sup>11</sup>                  |
|                       |          | Awareness and Training                        |
| What safeguards are   | Drotoct  | Data Security                                 |
| available?            | Protect  | Information Protection Processes & Procedures |
|                       |          | Maintenance                                   |
|                       |          | Protective Technology                         |
| What techniques can   |          | Anomalies and Events                          |
| identify in sidents2  | Detect   | Security Continuous Monitoring                |
| identify incidents?   |          | Detection Processes                           |
|                       |          | Response Planning                             |
| What techniques can   |          | Communications                                |
| contain impacts of    | Respond  | Analysis                                      |
| incidents?            |          | Mitigation                                    |
|                       |          | Improvements                                  |
| What techniques can   |          | Recovery Planning                             |
| restore conshilities? | Recover  | Improvements                                  |
| restore capabilities? |          | Communications                                |

0000000

#### **Implementation Levels**

**Quantification Approaches by Dedeke '17** 

- **1. Implementation Level**
- fully implemented (76–100),
- largely implemented (51–75),
- somewhat implemented (26–50),
- partially implemented (1–25),
- not implemented (0).

Cybersecurity Framework Adoption: Using Capability Levels for Implementation Tiers and Profiles, Dedeke, IEEE Security & Privacy, Sept/Oct 2017



### **Maturity Levels**

# Characterize an organization's practices over a range

- from Partial (Tier 1) to Adaptive (Tier 4)
  - Partial: risks are managed in an ad hoc manner
  - Risk Informed: Risk management practices are approved by management but may not be established as organizational-wide policy.
  - Repeatable: Risk management practices are formally approved and expressed as policy.
  - Adaptive: The organization adapts its cybersecurity practices based on lessons learned and predictive indicators derived from previous and current cybersecurity activities.
- Reflect a progression from informal, reactive responses to approaches that are agile and risk-informed.
- Ex: Maturity level 2 means that 70 percent or more of the categories are assigned a capability level 2 rating, and so on (Dedeke '17)

Compare with SEI CCMM Capability Maturity Model



#### **Effort Priorities Needed**

- For each category, assess current and target capability levels
- Assign a weight to each capability.
- Compute weighted capability improvement need.
- An example by Dedeke next.



#### **Computing priorities**

#### Table 3. Example of an organization's current and target profiles based on capability levels.

|          |                                  | Current               |                        | Target                |                  |                       |               |                     |
|----------|----------------------------------|-----------------------|------------------------|-----------------------|------------------|-----------------------|---------------|---------------------|
| Function | Category                         | Capability<br>profile | Maturity               | Capability<br>profile | Maturity         | Capability<br>gap (G) | Weight<br>(W) | Priority<br>(W * G) |
| Detect   | Anomalies and events             | 20                    | 20 Level 1 55<br>20 65 | 55                    | Level 3 35<br>15 | 35                    | 3             | 105                 |
|          | Security continuous monitoring   | 20                    |                        | 65                    |                  | 15                    | 2             | 30                  |
|          | Detection processes 10           |                       | 50                     |                       | 40               | 3                     | 120           |                     |
| Respond  | ond Response planning 28 Level 2 | 35                    | Level 2                | 7                     | 3                | 21                    |               |                     |
|          | Communication                    | 25                    |                        | 35                    |                  | 10                    | 2             | 20                  |
|          | Analysis                         | 30                    |                        | 55                    |                  | 25                    | 2             | 50                  |
|          | Mitigation                       | 35                    |                        | 60                    |                  | 25                    | 2             | 50                  |
|          | Improvements                     | 12                    |                        | 20                    |                  | 8                     | 1             | 8                   |
| Recover  | Recovery planning                | 25                    | Level 1                | 35                    | Level 2          | 10                    | 3             | 30                  |
|          | Improvements                     | 20                    |                        | 30                    |                  | 10                    | 2             | 20                  |
|          | Communication                    | 10                    |                        | 28                    |                  | 10                    | 1             | 18                  |



## **CIS Critical Security Controls**

- 20 Critical High-Level Controls
  - 148 sub-controls
  - 125 Foundational, 23 Advanced
  - 9 System, 5 Network and 6 Application
- 96 Measures, metrics and thresholds
  - Each Measure has lower, moderate and higher risk thresholds
- 30 Effectiveness tests
- 4 Governance items and 15 Governance topics
- 23 Attack Types

Implementing the Center for Internet Security (CIS) Critical Security Controls (CSC), Richard D. Condello, November 30, 2017



#### Top 20 **CIS Critical Security Controls** Center for Internet Security (CIS) Critical Security Controls (CSC)

#### **Basic**, Foundational, Organizational

- 1. Inventory of Authorized and Unauthorized Devices
- 2. Inventory of Authorized and Unauthorized Software
- 3. Secure Configurations for Hardware and Software on Mobile Devices, Laptops, Workstations and Servers
- 4. Continuous Vulnerability Assessment and Remediation
- 5. Controlled Use of Administrative Privileges
- 6. Maintenance, Monitoring and Analysis of Audit Logs
- 7. Email and Web Browser Protections
- 8. Malware Defenses
- 9. Limitation and Control of Network Ports
- 10. Data Recovery Capability

- 11. Secure Configurations for Network Devices such as Firewalls, Routers, and Switches
- 12. Boundary Defense
- 13. Data Protection
- 14. Controlled Access Based on the Need to Know
- 15. Wireless Access Control
- 16. Account Monitoring and Control
- 17. Security Skills Assessment and Appropriate Training To Fill Gaps
- 18. Application Software Security
- 19. Incident Response and Management
- 20. Penetration Tests and Red Team Exercises



### **CIS Critical Security Controls**





### Mapping among frameworks

- Frameworks attempt to ensure everything is covered.
- Some components of a framework may correspond to a component in another framework, partially or completely.
- An organization may choose to follow a framework based on its need.



# Quantitative Security Colorado State University Yashwant K Malaiya

#### CS 559

#### **Risk and its components**



**CSU Cybersecurity Center** 

**Computer Science Dept** 

#### Perspective

Technological advances are driven by economics.

- Intel's x86 architecture with upward compatibility defeated competing other architectures.
- Moore's law (and other laws) have held well.
- Public clouds.



### **Defining Risk**

An organization needs to identify the security risk and take measures to limit the risk.\*

- Is risk the list of potential attacks?
- Is risk the set of system vulnerabilities?
- Is risk the probability of an attack?
- Is risk the information that may be potentially compromised.
- Is the financial cost of a successful attack?
- Answer: Risk includes all of the above
- What is the dimension of risk value
  - a probability (number between 0 to 1)?
  - Ordinal scale: (Very Low, Low, ... Very High)? Number between 1 to 10?
  - US\$
- Answer: Risk is generally measured in \$/time unit.



## **Defining "Vulnerability"**

- Risk is a well-defined concept in management/finance.
- It makes sense to use the same term/concept in cyber-security
- There is one issue. The term "vulnerability" is used with different meanings in classic risk literature and cyber-security. It can cause great confusion if the term is used with both meanings.
- We will use the term vulnerability only in the computer security sense.
   Definition: A vulnerability is a system bug that can be potentially be exploited to violate security requirements.
- The term is mostly used for software bugs, although it can be used for hardware or system-level bug.
- Note that most software bugs are ordinary bugs, but some software bugs, which are security related are called vulnerabilities. We have found that 1-5% of the software bugs may be vulnerabilities\*.
- A vulnerability is a thing. It is not a quality or a probability.

\* Alhazmi, Malaiya , Ray, "<u>Measuring, Analyzing and Predicting Security Vulnerabilities in Software</u> <u>Systems</u>," Computers and Security Journal, May 2007



## **Googling** "**Risk** ="

 $\rightarrow$ 

- Type in the search bar: "Ris<sub>Apps</sub> suggestions
- It suggests following search

| G | G | "Risk =                          |
|---|---|----------------------------------|
| м | Q | "Risk = - Google Search          |
|   | Q | risk = probability x impact      |
|   | Q | risk = threat x vulnerability    |
|   | Q | risk = threat * vulnerability    |
|   | Q | risk = hazard x exposure         |
|   | Q | risk = probability x severity    |
|   | Q | risk = probability x consequence |
|   | Q | risk = hazard + outrage          |

 What is correct? Many depend on the meaning of the terms. We will use the terminology used in the next slide

\* In classical risk literature the term "vulnerability" has a different meaning.



#### **Risk: Formal definition**

#### Definition: The Risk due to an adverse event e<sub>i</sub> is Risk<sub>i</sub> = Likelihood<sub>i</sub> x Impact<sub>i</sub>

- Likelihood<sub>i</sub>: Probability of the adverse event i occurring within a specific time-frame.
  - The time-frame is often chosen to be a year. Note that the probability of an adverse event happening depends on the duration of the time-frame.
  - Probability is a number between 0 and 1.
- Impact<sub>i</sub>: The impact of the adverse event, measured in monetary terms.
  - Note that impact me be direct or indirect.
  - Common units are dollars (US\$)#.

# US\$ is a common and convenient scale. Non-monetary losses, including <u>human life</u>, can be converted into US\$, if you are a business or insurance company.

#### **Risk: Possible Actions**

How to handle risk?

**Example: Credit card fraud** 

- Risk acceptance
  - Ex: fraud cost paid through fees charged to merchants
- Risk mitigation
  - Ex: install anti-fraud technology, adds to costs
- Risk avoidance
  - downgrade high-risk cardholders to debit or require additional verification: lost time/business
- Risk transfer
  - buy cyber-insurance to cover excess losses



#### **Extent of the problem: IoT**



" THE TOASTER HAS BEEN HACKED INTO THINKING IT'S A BLENDER, "



### Risk as a composite measure

Formal definition:

- Risk due to an adverse event e<sub>i</sub>
   Risk<sub>i</sub> = Likelihood<sub>i</sub> x Impact<sub>i</sub>
- A specific time-frame, perhaps a year, is presumed for the likelihood.
- Likelyhood<sub>i</sub> may be replaced by frequency<sub>i</sub>, when it may happen multiple times a year.
- This yields the expected value. Sometimes a worst-case evaluation is needed.

In classical risk literature, the internal component of Likelihood is termed "Vulnerability" and external "Threat". Both are probabilities. There the term "vulnerability" does not mean a security bug, as in



September 3, 2020

#### **Risk as a composite measure**

• Likelihood can be split in two factors

Likelihood<sub>i</sub> =  $P{A \text{ security hole}_{I} \text{ is exploited}}$ . =  $P{hole_{i} \text{ present}}$ .

P{exploitationlhole<sub>i</sub> present}

- P{hole<sub>i</sub> present}: an internal attribute of the system.
- P{exploitationlhole<sub>i</sub> present}: depends on circumstances outside the system, including the adversary capabilities and motivation.
- In the literature, the terminology can be

Caution: In classical risk literature, the internal component of Likelihood is termed "Vulnerability" and external "Threat". Both are probabilities. There the term "vulnerability"

does not mean a security bug, as in computer security.



### **Risk Components (?)**



An Adoption Guide For FAIR, Jack Jones, RiskLens 2019.

Note that some of the terminology is traditional for Risk literature, and is not the one we are using.



## **Annual Loss Expectancy (ALE)**

Note the terminology is from the Risk literature.

• Single loss expectancy (SLE)

 $SLE = AV \times EF$ ,

- AV is the value of the asset. EF is exposure factor which describes the loss that will happen to the asset as a result of the threat, expressed as fractional (or %) value.
- Annual loss expectancy (ALE)

 $ALE = SLE \times ARO$ 

- Where ARO is Annualized rate of occurrence.
- Example: Asset value is \$100,000, exposure factor is 30%, and ARO is 0.5 (once every two years). Thus
  - ALE = (100,000 x 0.30) x 0.5 = \$15,000.
- Note that ALE is essentially what we term as "risk", with an annual time frame.



#### Annual value of the countermeasure

#### **Cost/benefit analysis of countermeasures**

A countermeasure reduces the ALE by reducing one of its factors.

```
COUNTERMEASURE_VALUE
= (ALE_PREVIOUS – ALE_NOW) –
COUNTERMEASURE_COST
```

Where ALE\_PREVIOUS: ALE before implementing the countermeasure.

ALE\_NOW: ALE after implementing the countermeasure COUTERMEASURE\_COST: *annualized* cost of countermeasure

• The COUNTERMEASURE\_VALUE should be positive.



#### Likelihood & Impact scales

- Quantitative or descriptive levels
  - Number of levels may depend on resolution achievable
- Scale: Logarithmic, Linear or combined
  - A logarithmic scale is natural when the numbers involved vary by several orders of magnitude.
- Risk = Likelihood x Impact
  - May be rewritten as Log(Risk) = Log(Likelihood) + Log(Impact)
- If the term "Score" is proportional to Log value
  - Risk score = Likelihood score + Impact score
  - Adding scores valid if scores represent logarithmic values.
  - Example:
    - Likelihood = 10%, impact = \$100,000 ⇒ Risk = \$10,000
    - Scores: Log(0.10) = -1, log (100000) = 5 ⇒ Risk score = 4



#### **Risk Matrix**

- Likelihood and Impact divided into levels
  - Each level quantitatively/qualitatively defined
- Cells marked by the overall risk
  - Low, Medium, High, Extreme etc.
- Equal risk regions along the diagonal, valid provided score scales are logarithmic.

|                |               |       | -        |       |        |  |  |
|----------------|---------------|-------|----------|-------|--------|--|--|
|                | Consequences  |       |          |       |        |  |  |
| Likelihood     | Insignificant | Minor | Moderate | Major | Severe |  |  |
| Almost certain | м             | н     | н        | E     | E      |  |  |
| Likely         | м             | М     | н        | н     | E      |  |  |
| Possible       | L             | м     | м        | н     | E      |  |  |
| Unlikely       | L             | м     | м        | м     | н      |  |  |
| Rare           | L             | L     | м        | м     | н      |  |  |



| LIKELIHOOD                                                                     | CONSEQUENCES                                                                                                                                                           |                                                                      |                                                               |                                                                 |                                                                       |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| (probability)<br>How likely is<br>the event to<br>occur at some<br>time in the | What is the Severity of injuries /potential damages / financial impacts (if the risk<br>event actually occurs)? (Logarithmic Scale, property industry specific matrix) |                                                                      |                                                               |                                                                 |                                                                       |  |  |
| (Linear Scale time<br>specific matrix)                                         | Insignificant                                                                                                                                                          | Minor                                                                | Moderate                                                      | Major                                                           | Catastrophic                                                          |  |  |
|                                                                                | No Injuries First Aid<br>No Envir Damage<br><< \$1,000 Damage                                                                                                          | Some First Aid<br>required<br>Low Envir Damage<br><< \$10,000 Damage | External Medical<br>Medium Envir Damage<br><<\$100,000 Damage | Extensive injuries<br>High Envir Damage<br><<\$1,000,000 Damage | Death or Major Injuries<br>Toxic Envir Damage<br>>>\$1,000,000 Damage |  |  |
| Almost certain -                                                               | MODERATE                                                                                                                                                               | HIGH                                                                 | HIGH                                                          | CRITICAL                                                        | CRITICAL                                                              |  |  |
| expected in normal<br>circumstances (100%)                                     | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Likely –                                                                       | MODERATE                                                                                                                                                               | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |  |  |
| probably occur in<br>most circumstances<br>(10%)                               | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Possible -                                                                     | LOW                                                                                                                                                                    | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |  |  |
| might occur at some<br>time. (1%)                                              | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Unlikely –                                                                     | LOW                                                                                                                                                                    | MODERATE                                                             | MODERATE                                                      | HIGH                                                            | HIGH                                                                  |  |  |
| could occur at some<br>future time (0.1%)                                      | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Rare -                                                                         | LOW                                                                                                                                                                    | LOW                                                                  | MODERATE                                                      | MODERATE                                                        | HIGH                                                                  |  |  |
| Only in exceptional<br>circumstances 0.01%)                                    | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |



**Scales** 

Note the use of logarithmic scales.

| Likelihood        |         | Consequen ce  |                            |
|-------------------|---------|---------------|----------------------------|
| Almost<br>certain | ≈ 100%  | Insignificant | << \$1,000                 |
| Likely            | ≈ 10%   | Minor         | << \$10,000                |
| Possible          | ≈ 1%    | Moderate      | << \$100,000               |
| Unlikely          | ≈ 0.1%  | Major         | <<<br>\$1,000,000          |
| Rare              | ≈ 0.01% | Catastrophic  | >><br>\$1,000,000<br>death |



| LIKELIHOOD                                                                     | CONSEQUENCES                                                                                                                                                           |                                                                      |                                                               |                                                                 |                                                                       |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| (probability)<br>How likely is<br>the event to<br>occur at some<br>time in the | What is the Severity of injuries /potential damages / financial impacts (if the risk<br>event actually occurs)? (Logarithmic Scale, property industry specific matrix) |                                                                      |                                                               |                                                                 |                                                                       |  |  |
| (Linear Scale time<br>specific matrix)                                         | Insignificant                                                                                                                                                          | Minor                                                                | Moderate                                                      | Major                                                           | Catastrophic                                                          |  |  |
|                                                                                | No Injuries First Aid<br>No Envir Damage<br><< \$1,000 Damage                                                                                                          | Some First Aid<br>required<br>Low Envir Damage<br><< \$10,000 Damage | External Medical<br>Medium Envir Damage<br><<\$100,000 Damage | Extensive injuries<br>High Envir Damage<br><<\$1,000,000 Damage | Death or Major Injuries<br>Toxic Envir Damage<br>>>\$1,000,000 Damage |  |  |
| Almost certain -                                                               | MODERATE                                                                                                                                                               | HIGH                                                                 | HIGH                                                          | CRITICAL                                                        | CRITICAL                                                              |  |  |
| expected in normal<br>circumstances (100%)                                     | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Likely –                                                                       | MODERATE                                                                                                                                                               | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |  |  |
| probably occur in<br>most circumstances<br>(10%)                               | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Possible -                                                                     | LOW                                                                                                                                                                    | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |  |  |
| might occur at some<br>time. (1%)                                              | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Unlikely –                                                                     | LOW                                                                                                                                                                    | MODERATE                                                             | MODERATE                                                      | HIGH                                                            | HIGH                                                                  |  |  |
| could occur at some<br>future time (0.1%)                                      | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |
| Rare -                                                                         | LOW                                                                                                                                                                    | LOW                                                                  | MODERATE                                                      | MODERATE                                                        | HIGH                                                                  |  |  |
| Only in exceptional circumstances 0.01%)                                       | RISK                                                                                                                                                                   | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |  |  |

