# **Quantitative Security**

### Colorado State University Yashwant K Malaiya CS 559 Risk and its components



CSU Cybersecurity Center Computer Science Dept

# FAQ

- Questions from last week
- The GTA will briefly address some of these.
- You can send your questions to <u>cs559@cs.colostate.edu</u>

Today

- Risk and its components
  - Visualization using Risk matrix
  - FAIR
- Insurance



# **Risk: Formal definition**

#### Definition: The Risk due to an adverse event e<sub>i</sub> is

Risk<sub>i</sub> = Likelihood<sub>i</sub> x Impact<sub>i</sub>

- Likelihood<sub>i</sub>: Probability of the adverse event i occurring within a specific time-frame.
  - The time-frame is often chosen to be a year. Note that the probability of an adverse event happening depends on the duration of the time-frame.
  - Probability is a number between 0 and 1.
- Impact<sub>i</sub>: The impact of the adverse event, measured in monetary terms.
  - Note that impact me be direct or indirect.
  - Common units are dollars (US\$)#.

**#** US\$ is a common and convenient scale. Non-monetary losses, including <u>human life</u>, can be converted into US\$, if you are a business or insurance company.



# **Risk: Possible Actions**

How to handle risk?

Example: Credit card fraud

- Risk acceptance
  - Ex: fraud cost paid through fees charged to merchants
- Risk mitigation
  - Ex: install anti-fraud technology, adds to costs
- Risk avoidance
  - downgrade high-risk cardholders to debit or require additional verification: lost time/business
- Risk transfer
  - buy cyber-insurance to cover excess losses



## Risk as a composite measure

Formal definition:

• **Risk** due to an adverse event e<sub>i</sub>

Risk<sub>i</sub> = Likelihood<sub>i</sub> x Impact<sub>i</sub>

- A specific time-frame, perhaps a year, is presumed for the likelihood.
- Likelyhood<sub>i</sub> may be replaced by frequency<sub>i</sub>, when it may happen multiple times a year.
- This yields the expected value. Sometimes a worst-case evaluation is needed.

In classical risk literature, the internal component of Likelihood is termed "Vulnerability" and external "Threat". Both are probabilities. There the term "vulnerability" does not mean a security bug, as in computer security.



## Risk as a composite measure

Likelihood can be split in two factors

Likelihood<sub>i</sub> =  $P{A \text{ security hole}_{I} \text{ is exploited}}$ .

= P{hole<sub>i</sub> present}.

P{exploitation|hole<sub>i</sub> present}

- P{hole<sub>i</sub> present}: an internal attribute of the system.
- P{exploitation|hole<sub>i</sub> present}: depends on circumstances outside the system, including the adversary capabilities and motivation.
- In the literature, the terminology can be inconsistent.

Caution: In classical risk literature, the internal component of Likelihood is termed "Vulnerability" and external "Threat". Both are probabilities. There the term "vulnerability" does not mean a security bug, as in computer security.



# Annual Loss Expectancy (ALE)

Note the terminology is from the Risk literature.

Single loss expectancy (SLE)

SLE = AV x EF,

- AV is the value of the asset. EF is exposure factor which describes the loss that will happen to the asset as a result of the threat, expressed as fractional (or %) value.
- Annual loss expectancy (ALE)

 $ALE = SLE \times ARO$ 

- Where ARO is Annualized rate of occurrence.
- Example: Asset value is \$100,000, exposure factor is 30%, and ARO is 0.5 (once every two years). Thus
  - ALE =  $(\$100,000 \times 0.30) \times 0.5 = \$15,000$ .
- Note that ALE is essentially what we term as "risk", with an annual time frame.



# Annual value of the countermeasure

Cost/benefit analysis of countermeasures

A countermeasure reduces the ALE by reducing one of its factors.

COUNTERMEASURE\_VALUE = (ALE\_PREVIOUS – ALE\_NOW) – COUNTERMEASURE\_COST

Where ALE\_PREVIOUS: ALE before implementing the countermeasure. ALE\_NOW: ALE after implementing the countermeasure COUTERMEASURE\_COST: *annualized* cost of countermeasure

• The COUNTERMEASURE\_VALUE should be positive.



# Likelihood & Impact scales

- Quantitative or descriptive levels
  - Number of levels may depend on resolution achievable
- Scale: Logarithmic, Linear or combined
  - A logarithmic scale is natural when the numbers involved vary by several orders of magnitude.
- Risk = Likelihood x Impact
  - May be rewritten as

Log(Risk) = Log(Likelihood) + Log(Impact)

- If the term "Score" is proportional to Log value
  - Risk score = Likelihood score + Impact score
  - Adding scores valid if scores represent logarithmic values.
  - Example:
    - Likelihood = 10%, impact = \$100,000 ⇒ Risk = \$10,000
    - Scores: Log(0.10) = -1, log (100000) = 5 ⇒ Risk score = 4

 $10^2 = 100$ Log<sub>10</sub> 100 = 2 Log implies base 10, if not specified



# **Risk Matrix**

- Likelihood and Impact divided into levels
  - Each level quantitatively/qualitatively defined
- Cells marked by the overall risk
  - Low, Medium, High, Extreme etc.
- *Equal risk regions* along the diagonal, valid provided score scales are logarithmic.

|                |               | c     |          |            |        |
|----------------|---------------|-------|----------|------------|--------|
| Likelihood     | Insignificant | Minor | Moderate | ,<br>Major | Severe |
| Almost certain | м             | н     | н        | E          | E      |
| Likely         | м             | м     | н        | н          | E      |
| Possible       | L             | м     | м        | н          | E      |
| Unlikely       | L             | м     | м        | м          | н      |
| Rare           | L             | L     | м        | м          | н      |



# **Risk Matrix: Example**

| LIKELIHOOD                                                      |                                                               | C                                                                    | ONSEQUENCE                                                    | S                                                               |                                                                       |                                       |
|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|
| (probability)<br>How likely is<br>the event to<br>occur at some | What is the Se<br>event act                                   |                                                                      |                                                               |                                                                 |                                                                       |                                       |
| (Linear Scale time                                              | Insignificant                                                 | Minor                                                                | Moderate                                                      | Major                                                           | Catastrophic                                                          |                                       |
|                                                                 | No Injuries First Aid<br>No Envir Damage<br><< \$1,000 Damage | Some First Aid<br>required<br>Low Envir Damage<br><< \$10,000 Damage | External Medical<br>Medium Envir Damage<br><<\$100,000 Damage | Extensive injuries<br>High Envir Damage<br><<\$1,000,000 Damage | Death or Major Injuries<br>Toxic Envir Damage<br>>>\$1,000,000 Damage | Example:                              |
| Almost certain -                                                | MODERATE                                                      | HIGH                                                                 | HIGH                                                          | CRITICAL                                                        | CRITICAL                                                              | Likelv x Moderate                     |
| expected in normal<br>circumstances (100%)                      | RISK                                                          | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  | = (10/100) x \$100<br>= \$10,000 High |
| Likely –                                                        | MODERATE                                                      | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |                                       |
| probably occur in<br>most circumstances<br>(10%)                | RISK                                                          | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |                                       |
| Possible –                                                      | LOW                                                           | MODERATE                                                             | HIGH                                                          | HIGH                                                            | CRITICAL                                                              |                                       |
| might occur at some<br>time. (1%)                               | RISK                                                          | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |                                       |
| Unlikely –                                                      | LOW                                                           | MODERATE                                                             | MODERATE                                                      | HIGH                                                            | HIGH                                                                  |                                       |
| could occur at some<br>future time (0.1%)                       | RISK                                                          | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |                                       |
| Rare -                                                          | LOW                                                           | LOW                                                                  | MODERATE                                                      | MODERATE                                                        | HIGH                                                                  |                                       |
| Only in exceptional<br>circumstances 0.01%)                     | RISK                                                          | RISK                                                                 | RISK                                                          | RISK                                                            | RISK                                                                  |                                       |
|                                                                 |                                                               |                                                                      |                                                               | C                                                               | blorado                                                               | tate Univers                          |

### Scales

#### Note the use of logarithmic scales.

| Likelihood        |         |
|-------------------|---------|
| Almost<br>certain | ≈ 100%  |
| Likely            | ≈ 10%   |
| Possible          | ≈ 1%    |
| Unlikely          | ≈ 0.1%  |
| Rare              | ≈ 0.01% |



# **Advantages of Risk Matrices**

- Visual representation of distribution of risks in a system.
  - Similar to "Heat Maps" for the stocks in a market
- Change in overall risk due to a system redesign can be visualized.
  - Attempt to move risks from red region to green region.
- Allow expert estimates to be used instead of exact numbers.
  - Calibration or training may be needed to make estimates more accurate.



# **Visualizing Risk Reduction**



Residual

| Risks reset<br>Risk Title | Business Unit | Risk No | Category            | Subcategory                   | Inherent Rating | Residual Rating |
|---------------------------|---------------|---------|---------------------|-------------------------------|-----------------|-----------------|
| IT Infrastructure Failure | TF Group      | R006    | Operational         | IT Disaster Recovery Planning |                 |                 |
| Bribery and Corruption    | TF Group      | R005    | Conduct of Business | Financial Crime               |                 |                 |
| Loss of Key Staff         | TF Group      | R007    | Strategic           | Loss of Key Staff             |                 |                 |

**RISK MANAGEMENT FOR FINANCIAL SERVICES** 

# Limitations of Risk Matrices

The main limitations of Risk Matrices arise because

- Limited resolution: continuous to discrete scales
- The scales are generally logarithmic
- May rely on subjective judgement, which may not be accurate.

- Cox, L.A., 'What's Wrong with Risk Matrices?', Risk Analysis, April 2008, Vol. 28, No. 2, pp. 497-512
- Julian Talbot, <u>What's right with risk matrices</u> 2018



# **RAMCAP Framework**

- Following Sept 11, 2001, ASME (formerly known as the American Society of Mechanical Engineers) convened more than one hundred industry leaders, at the request of the White House, to define and prioritize the requirements for protecting USA's critical infrastructure.
- Recommendation: a risk analysis and management process to support decisions allocating resources to initiatives to reduce risk.
- Risk Analysis and Management for Critical Asset Protection (RAMCAP, RAMCAP Plus)
- Applicable to any type of risk: terrorism, dam bursts, ..

**ALL-HAZARDS RISK AND RESILIENCE** Prioritizing Critical Infrastructures Using the RAMCAP PlusSM Approach, 2009



# **RAMCAP: Risk and Resilience Defined**

- Risk = Threat x Vulnerability x Consequence
  - Resilience is the ability of an organization, facility or asset to function despite and during an attack or failure or to restore functionality in very short time.
  - Resilience<sub>Owner</sub> = Lost Net Revenue x Vulnerability x Threat
  - Resilience<sub>Community</sub> = Lost Community Economic Activity x Vulnerability x Threat



# The 7-step RAMCAP Plus Process



Risk Analysis and Management for Critical Asset Protection (RAMCAP Plus). Jerry P. Brashear, J. William Jones



# The 7 Steps

- 1 Asset Characterization which assets, if damaged or destroyed, would diminish the facility's ability to meet its mission.
- 2 Threat Characterization the threat scenarios used are identified and described in enough detail to estimate vulnerability and consequences.
- 3 Consequence Analysis Consequence analysis identifies and estimates the worst reasonable consequences generated by each specific asset/threat combination.



# The 7 steps

|                                                      |              | B. Ranges for Estimating Losses to the Owners and to the Community |             |                 |                 |                 |         |                     |           |                   |            |            |                     |              |
|------------------------------------------------------|--------------|--------------------------------------------------------------------|-------------|-----------------|-----------------|-----------------|---------|---------------------|-----------|-------------------|------------|------------|---------------------|--------------|
| Single Point<br>Estimate<br>(\$-million)             |              |                                                                    |             |                 |                 |                 |         |                     |           |                   |            |            |                     |              |
| RAMCAP<br>Consequence<br>Criteria ("Bin<br>Numbers") | 0            | 1                                                                  | 2           | 3               | 4               | 5               | 6       | 7                   | 8         | 9                 | 10         | _11_       | 12                  | 13           |
| Owner's Financial<br>Loss<br>(in \$-million)         | 0<br>-<br>25 | 26<br>-<br>50                                                      | 51 –<br>100 | 101<br>-<br>200 | 201<br>-<br>400 | 401<br>-<br>800 | 801<br> | 1,601<br>-<br>3,200 | 3,201<br> | 6,401 –<br>12,800 | 12,801<br> | 25,601<br> | 51,201 –<br>102,400 | 102,401<br>+ |

- 4 Vulnerability Analysis estimates the likelihood of each specific threat or hazard to overcome the defenses of the asset to the level identified in the consequence estimate for that threat/asset combination.
  - Tools: Direct expert elicitation, Vulnerability logic diagrams (VLDs), Event trees (also called "failure trees")
  - Measured using bins



# The 7 steps

- 5- Threat assessment produces the probability (0.0 to 1.0) that a particular threat will occur in a given time frame.
  - Using historical data other other approaches
- 6 Risk and Resilience Assessment using formulas
- **7 Risk and Resilience Management** improving the risk level, resilience and reliability of the organization.
  - Decide whether the risk and resilience levels for each asset/ threat pair are acceptable;
  - develop countermeasures for each unacceptable asset/threat and estimate their investment and operating costs;
  - Evaluate the options using analysis



#### Criticism of *RISK* = *THREAT* × *VULNERABILITY* × *CONSEQUENCE* FRAMEWORK

Louis Anthony (Tony) Cox, Jr. "Some Limitations of "Risk = Threat × Vulnerability × Consequence" for Risk Analysis of Terrorist Attacks", *Risk Analysis, Vol. 28, No. 6, 2008* 

- Distortions Due to Use of Arithmetic Averages on Logarithmic Scales
- Improper granularity may be used
- Product of Expected Values Not Equal to Expected Value of Product
- Priority Ranking May Not Support Effective Resource Allocation
- "Threat" Is Not Necessarily Well Defined
- "Vulnerability" Can Be Ambiguous and Difficult to Calculate via Event Trees
- "Consequence" Can Be Ambiguous and/or Subjective



#### FAIR Framework

**Factor Analysis for Information Risk**: Developed by Jack Jones (Risk Management Insight LLC) 2005.

• Idea: Divide Risk in factors and then sub-factors which can be estimated.

Basis: Risk = Probably Loss Magnitude x estimated Loss Event Frequency

- Probably Loss Magnitude estimate using worst case loss
- Loss Event Frequency (LEF) = Threat Event Frequency x Vulnerability
- Vulnerability (Vuln) = Threat Capability x lack of Control Strength
  - Threat Capability (Tcap) = The probable level of force that a threat agent is capable of applying against an asset (estimate)
  - Control strength (CS): The expected effectiveness of controls, over a given timeframe, as measured against a baseline level of force: estimate
- Threat Event Frequency (TEF): estimated
- "Multiplication" achieved by using Matrices.



#### Stage 1: Identify Scenario Components

- Identify asset at risk:
- Identify the threat community: externa/internal

Stage 2: Evaluate Loss Event Frequency

• *Threat Event Frequency (TEF):* probable frequency, within a given timeframe

| TEF Ratings    | Description                                        |
|----------------|----------------------------------------------------|
| Very High (VH) | >100 times per year                                |
| High (H)       | Between 10 and 100 times per year                  |
| Moderate (M)   | Between 1 and 10 times per year                    |
| Low (L)        | Between .1 and 1 times per year                    |
| Very Low (VL)  | <.1 times per year (less than once every 10 years) |

An Introduction to FAIR, 2005, archived

Colorado State University

# FAIR: Threat Capability

• *Threat Capability (Tcap):* capability of the attacker to conduct the attack

| Tcap rating    | Description                                                    |
|----------------|----------------------------------------------------------------|
| Very High (VH) | Top 2% when compared against the overall threat population     |
| High (H)       | Top 16% when compared against the<br>overall threat population |
| Moderate (M)   | Average skill and resources (between bottom 16% and top 16%)   |
| Low (L)        | Bottom 16% when compared against the overall threat population |
| Very Low (VL)  | Bottom 2% when compared against the overall threat population  |



# FAIR: Control Strength

• *Estimate Control Strength (CS):* FAIR defines this as the expected effectiveness of controls, over a given timeframe.

| Control Strength<br>rating | Description                                                      |
|----------------------------|------------------------------------------------------------------|
| Very High (VH)             | Protects against all but the top 2% of an avg. threat population |
| High (H)                   | Only protects against bottom 16% of an avg. threat population    |
| Moderate (M)               | Protects against the average threat agent                        |
| Low (L)                    | Only protects against bottom 16% of an avg. threat population    |
| Very Low (VL)              | Only protects against bottom 2% of an avg. threat population     |

### Colorado State University

# FAIR: Looking Up Vulnerability

|      |    | Vulnerability |    |    |    |    |  |  |  |
|------|----|---------------|----|----|----|----|--|--|--|
|      | VH | VH            | VH | VH | н  | М  |  |  |  |
|      | н  | VH            | VH | н  | М  | L  |  |  |  |
| Тсар | М  | VH            | н  | М  | L  | VL |  |  |  |
|      | L  | н             | М  | L  | VL | VL |  |  |  |
|      | VL | М             | L  | VL | VL | VL |  |  |  |
|      |    | VL            | L  | М  | Н  | VH |  |  |  |

**Control Strength** 



## FAIR: Loss Event Frequency



Vulnerability

Colorado State University

## Estimate worst-case loss

| Magnitude        | Range Low End | Range High End |
|------------------|---------------|----------------|
| Severe (SV)      | \$10,000,000  |                |
| High (H)         | \$1,000,000   | \$9,999,999    |
| Significant (Sg) | \$100,000     | \$999,999      |
| Moderate (M)     | \$10,000      | \$99,999       |
| Low (L)          | \$1,000       | \$9,999        |
| Very Low (VL)    | \$0           | \$999          |

• Use worst case loss to identify probable loss.



# **Obtain and Articulate Risk**



PLM: probable loss magnitude, LEF: loss event frequency Risk levels: Critical, High, Medium, Low



#### Appendix: Octave Allegro: Simple Quantitative Perspective

- OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation): developed by Software Engineering Institute (SEI) at Carnegie Mellon University in 1999, CERT
- Octave Allegro, 2007
- Can generate a relative risk score
- We will skip, Read yourself if you need to.

OCTAVE Allegro: Improving the Information Security Risk Assessment Process



# **Quantitative Cyber-Security**

### Colorado State University Yashwant K Malaiya CS 559 Risk and Insurance



Based on ILO (International Labour Organization), 2013

CSU Cybersecurity Center Computer Science Dept

# **Key questions**

- What is risk?
  - What are the different types of risk?
  - What are the sources and consequences of risk?
- How is risk managed?
  - Why do we need insurance?
  - How does insurance work?
  - What is the law of large numbers?
  - What is the J curve in insurance?
- How is probability used in calculating insurance premiums?
- What is asymmetric information?



# What is risk?

- Risk is due to an uncertain event which leads to some monetary loss
- Risk is not uncertainty; we know the possible outcomes but not which one will take place
- E.g. Max and Chris are two brothers, who could be either sick or healthy. Thus, there are four possibilities:

| Max          | Chris |
|--------------|-------|
| $\checkmark$ | ✓     |
| $\checkmark$ | X     |
| X            | ✓     |
| X            | X     |

• Each outcome has a 25% possibility of occurrence



# What is risk?





# What is risk?

- We cannot predict which outcome will take place
- However, we can estimate the probability of a risk for a group of people using actuarial techniques



# **Types of risks: Terminology**

- **Covariant risks:** affect large numbers of people at the same time, e.g. epidemics
- Idiosyncratic risks: affect a small segment of the population
- Minor and major risks:

|            | Probability | Unit cost | Possible<br>consequences |
|------------|-------------|-----------|--------------------------|
| Minor risk | +++         | +         | Consultation             |
| Major risk | +           | +++       | Hospitalization          |

• **Catastrophic risks:** affect a large segment of the population *and have high unit costs* 

### **Sources of risk**

| Natural:     | flood, drought                 |  |
|--------------|--------------------------------|--|
| Health:      | illness, epidemic              |  |
| Life-cycle:  | birth, old age, death          |  |
| Social:      | crime, war                     |  |
| Economic:    | unemployment, financial crisis |  |
| Political:   | riot, coup d'état              |  |
| Environment: | pollution, nuclear disaster    |  |

Social security covers health and life-cycle risks, and some economic risks like unemployment (elaborated in Convention No. 102)



#### **Consequences of risk**

- Risks have various consequences which could affect the person and the family members
- Thus, risk management is important
- E.g. possible consequences of accidents include financial losses, temporary or permanent disability, death











Adapted from R. Holzmann and S. Jørgensen: "Social risk management: A new conceptual framework for social protection and beyond", in International Tax and Public Finance (2001), Vol. 8, No. 4, August, pp. 529-556.

| Prevention                                                                                                                                             | Precaution                                                                                                   | Mitigation                                                                                                                                        | Coping                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>aim to reduce<br/>the chances of<br/>the risk<br/>occurring, in<br/>advance</li> <li>are introduced<br/>before the risk<br/>occurs</li> </ul> | <ul> <li>aim to limit<br/>exposure to risk</li> <li>are introduced<br/>before the risk<br/>occurs</li> </ul> | <ul> <li>aim to reduce<br/>the potential<br/>impact of the<br/>risk, in advance</li> <li>are introduced<br/>before the risk<br/>occurs</li> </ul> | <ul> <li>aim to relieve<br/>the impact of the<br/>risk after it<br/>occurs</li> <li>are introduced<br/>after the risk<br/>occurs</li> </ul> |
| e.g. immunization                                                                                                                                      | e.g. settling in<br>areas less prone to<br>floods                                                            | e.g. building up<br>assets and savings                                                                                                            | e.g. visiting<br>traditional healers<br>to save money,<br>working longer to<br>earn money                                                   |

### Colorado State University

Choosing a risk management strategy depends on various factors:

- past exposure to risks
- person's capacity for action
- cost-effectiveness and impact of the strategy
- characteristics of the risk e.g. whether the risk can be prevented or mitigated
- context and characteristics of the target group e.g. economic status, size, geographic distribution



Ex ante strategies should be favoured over ex post strategies:

- ex ante strategies are more cost-effective and reduce insecurity and vulnerability
- ex post strategies cause greater stress when a risk occurs, especially on women who may have to work more
- households may cope by borrowing money or through child labour, resulting in indebtedness and jeopardizing economic and human development prospects



# **Need for insurance**



But not always!

a broad database

**State University** 

For some risks, individuals, families, communities cannot cope by themselves

There is need for

# **Need for insurance**

| Risk source                                                  | Idiosyncratic | $\longrightarrow$              | Covariant         |  |
|--------------------------------------------------------------|---------------|--------------------------------|-------------------|--|
| Natural                                                      |               | landslide                      | earthquake        |  |
| Health                                                       | illness       | epidemic                       |                   |  |
|                                                              | disability In | formal risk                    | the de            |  |
| Life cycle                                                   | old age       | anagement me<br>n handle these | etnoas<br>e risks |  |
|                                                              | death         | But br                         | eak down here     |  |
| Social                                                       | crime         | terrorism                      | war               |  |
| Economic                                                     | unemployme    | nt                             | recession         |  |
| Political                                                    |               | riots                          |                   |  |
| Environmental                                                |               | deforestation                  |                   |  |
| Source: Holzmann & Jørgensen (2000) Colorado State Universit |               |                                |                   |  |

Source: Holzmann & Jørgensen (2000)

### How does insurance work?



#### A contract!





2. Insurer pays the financial losses suffered by the insured (indemnity) in case of unforeseen events

Colorado State University