Quantitative Cyber-Security

Colorado State University Yashwant K Malaiya CS559 Quick Research Presentations

CSU Cybersecurity Center Computer Science Dept

Tuesday

- Everyone must participate
 - Share questions/comments
 - Take notes
- Presenters: limit yourself to 5 minutes, 1 minute for q/c
 - Upload your slides and be ready to present
- Ujwal will run videos/presentations by some distance students
- The Peer Review Form (Canvas Assignments) due on Sat.
 Novelty/Interest, Technical/Research, Presentation

Presentations Today

T1 Quant. modeling of impact of availability of patches,

Katherine Haynes

T6 Quant. Relationship between Cost of security improvements and the degree of additional security level achieved,

Brett Mulligan

T4 Mitre ATT&CK framework,

Saja Alqurashi,

Suraj Eswaran

Shwetha Gowdanakatte

T12 Economics of ransomware

Jacinda Li

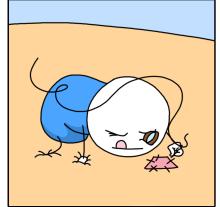
Upakar Paudel

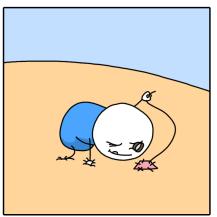
Md Al Amin

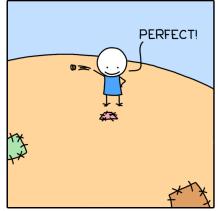
T11 Quant. examination of phishing

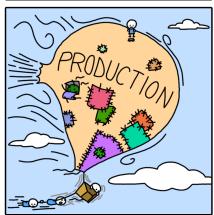
Qingyi Zhao

Tony Shang


Shree Harini Ravichandran

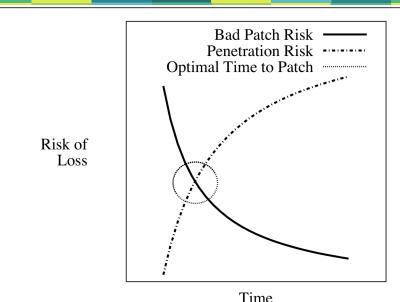



Patches


- Fix security vulnerabilities
- Patch management
 - Process of distributing and applying updates
- Trade-off: benefit vs harm
 - ► Essential in cyber-security
 - Critical to reduce loss risk
 - Crucial process to protect organizations
 - ► Bad patches cause instability

FINAL PATCH

MUNKEYUSER COM

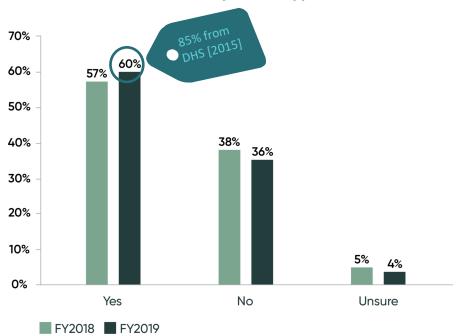

Security Patch Application Timing

Mathematical model using parameterized costs and probabilities evaluated against empirical data

Apply patch as soon as possible to minimize risk

Delay until assured that patch is not likely to cause more damage than it prevents

S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack, Proc. Of LISA'02: 16th System Administration Conference, 2002.


Figure 1: A hypothetical graph of risks of loss from penetration and from application of a bad patch. The optimal time to apply a patch is where the risk lines cross.

Current Status

- Timely patching remains critical to prevent data breaches
- Automation is preferred tool
 - Enable more timely patch deployment
 - Improve vulnerability response

Ponemon Institute LLC, Costs and Consequences of Gaps in Vulnerability Response. Traverse City, MI: ServiceNow, 2020. Patching could have prevented many of these data breaches. As shown in Figure 3, 60 percent of these respondents say one or more of these breaches could have occurred because a patch was available for a known vulnerability but not applied.

FIGURE 3. Did any of these breaches occur because a patch was available for a known vulnerability but not applied?

Recent Work: [1/2]

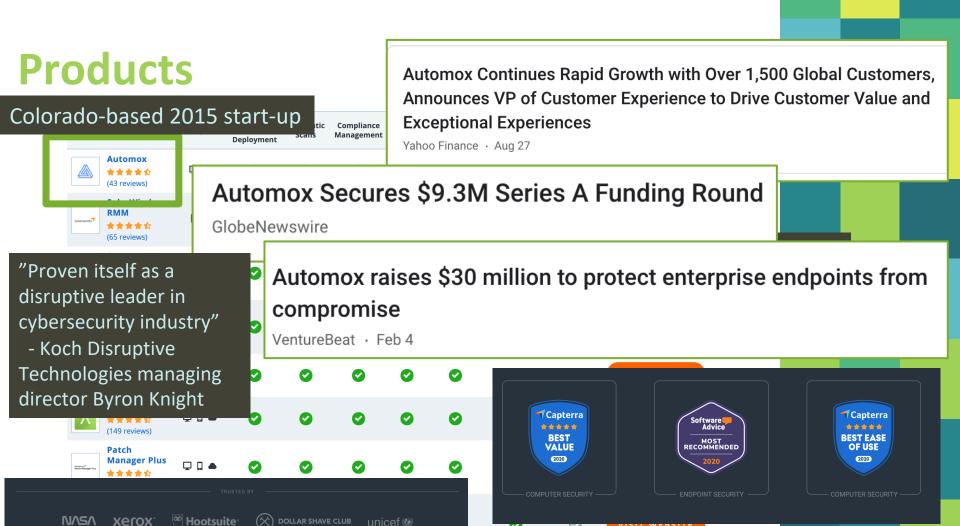
Increasing patch application

- Quantitative models optimizing patch availability time management
 - □ **Game Theoretic Models:** Cavusoglu et al. [2008]; Caulfield and Fielder [2015]; Luo et al. [2015]
 - ☐ Mathematical weighted costs: Dey et al. [2015]
 - Bi-criterion Framework: Narang et al. [2017]
 - Graphical Security Models: Ge et al. [2017];
 Enoch et al. [2019]

Recent Work: [2/2]

Increasing patch application

Quantitative-Based...


- Optimization of patch management methodology Gauci et al. [2017]
- Recommendation of optimal software product Kansal et al. [2016; 2019]
- Impact of faulty or infected patches
 Anand et al. [2019; 2020]
- Economic incentives
 August et al. [2019]; Morgner et al. [2020]

Top Products from Capterra

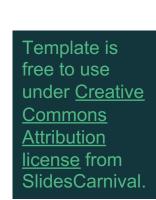
	Product	Deployment	Automatic Patch Deployment	Automatic Scans	Compliance Management	Custom Patches	Network Wide Management	Remote Access/Control	Vulnerability Scanning	
	Automox ★★★★ (43 reviews)	□ •	•	•	•	•	•	•	•	VISIT WEBSITE
solarwinds	SolarWinds RMM ★★★★ (65 reviews)	. •	•	•	•	•	•	•	•	VISIT WEBSITE
syxsense	Syxsense Manage ★★★★ (32 reviews)	₽▲	•	•	•	•	•	•	•	VISIT WEBSITE
\$	ConnectWise Automate ★★★☆ (97 reviews)	□ •	•	•	•	•	•	•	•	VISIT WEBSITE
nín <u>ja</u>	NinjaRMM ★★★★ (94 reviews)	□ 🛭 🌢	•	•	•	•	•	•	•	VISIT WEBSITE
٨	Atera ★★★★ (149 reviews)	□ □ •	•	•	•	•	•	•	•	VISIT WEBSITE
Hansed-upu ²) Patch Hansger Plus	Patch Manager Plus ★★★★ (95 reviews)	□ □ •	•	•	•	•	•	•	•	VISIT WEBSITE
Penaring Control	ManageEngine Desktop Central ★★★★ (85 reviews)	□ □ •	•	•	•	•	•	•	•	VISIT WEBSITE

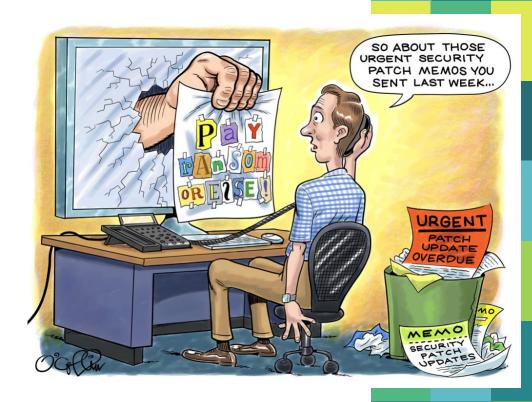
► In 2019, \$535.4 million industry

► Growing 17.8% annually

Products

5-star rated from Managed Service Providers and IT Pros




REFERENCES

- [1] H.K. Browne, W.A. Arbaugh, I. McHugh, W.L. Fithen, "A trend analysis of exploitations," Proceedings 2001 IEEE Symposium on Security and Privacy, 2001, https://doi.org/10.1109/SECPRI.2001.924300.
- [2] B. Schneier, "Full disclosure and the window of vulnerability," Crypto-Gram, 2000, https://www.schneier.com/crypto-gram/archives/2000/0915.html.
- [3] E.Rescorla, "Is finding security holes a good idea?," IEEE Security & Privacy, 2005, https://doi.org/10.1109/MSP.2005.17.
- [4] Y. Beres, J. Griffin, and S. Shiu, "Analyzing the performance of security solutions to reduce vulnerability exposure window, 2008 Annual Computer Security Applications Conference, 2008, https://doi.org/10.1109/ACSAC.2008.42. *
- [5] H. Okhravi and D. Nicol, "Evaluation of patch management strategies," International Journal of Computational Intelligence: Theory and Practice, 3(2), 2008, pp. 109-117.
- [6] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack, "Timing the application of security patches for optimal uptime," Proc. of LISA'02: 16th System Administration Conference, 2002.*
- [7] A. Arora, R. Krishnan, A. Nandkumar, R. Telang, and Y. Yang, "Impact of vulnerability disclosure and patch availability: an empirical analysis," In Third Workshop on the Economics of Information Security, 2004.
- [8] H. Cavusoglu, H. Cavusoglu, and J. Zhang, "Security patch management: share the burden or share the damage?" Management Science, 54(4), 2008, pp. 657-670, https://doi.org/10.1287/mnsc.1070.0784.
- [9] T. Uemura and T. Dohi, "Optimal security patch management policies maximizing system availability," Journal of Communications, 5(1), 2010, https://doi.org/10.4304/jcm.5.1.71-80.
- [10] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, "OPUS: Online patches and updates for security," USENIX Security Symposium, 2005.
 [11] A. Boukerche, R. Machado, K.R.L. Juca, J. B.M. Sobral,
- M.S.M.A. Notare, "An agent based and biological inspired realtime intrusion detection and security model for computer network operations," Computer Communications, 2007, pp. 2649-2660, https://doi.org/10.1016/j.comcom.2007.03.008.
- [12] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, "Dynamic software updating using a relaxed consistency model," IEEE Transactions on Software Engineering, 37(5), https://doi.org/10.1109/TSE.2010.79.
- [13] C. Giuffrida and A.S. Tanenbaum, "Cooperative update: a new model for dependable live update," HotSWUp '09: Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades, 2009, https://doi.org/10.1145/1656437.1656439.
- [14] L. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, "Practical dynamic software updating for C," ACM SIGPLAN Notices, 41(6), 2006, https://doi.org/10.1145/1133255.1133991.
- [15] Ponemon Institute LLC, Costs and Consequences of Gaps in Vulnerability Response. Traverse City, MI: ServiceNow, 2020, https://www.servicenow.com/content/dam/servicenow-assets/public/enus/doc-type/resource-center/analyst-report/ponemon-state-ofvulnerability-response.pdf.*
- [16] Research and Markets, "Patch management market research report: by component, deployment type, feature, industry - global industry size, share and growth forecast to 2030," Report ID 5010715, 2020, https://www.researchandmarkets.com/r/3381f5.
- [17] U.S. Department of Homeland Security Cybersecurity and Infrastructure Security Agency, "Top 30 Targeted High Risk Vulnerabilities," Alert TA15-119A, 2015, https://us-cert.cisa.gov/ncas/alerts/TA15-119A?hootPostID=b6821137ae5173095390bd502ae04892.
- [18] A. Anand, J. Kaur, and S. Inoue, "Reliability modeling of multiversion software system incorporating the impact of infected patching," International Journal of Quality & Reliability Management, 2020, https://doi.org/10.1108/IJQRM-07-2019-0247.
- [19] T. August, D. Dao, and K. Kim, "Market segmentation and software security: pricing patching rights," Management Science, 65(10), 2019, pp. 4575-4597, https://doi.org/10.1287/mnsc.2018.3153.
- [20] T. Caulfield and A. Fielder, "Optimizing time allocation for network defence," Journal of Cybersecurity, 1(1), 2015, pp. 37-51, https://doi.org/10.1093/cvbsec/tvv002.

- [21] D. Dey, A. Lahiri, and G. Zhang, "Optimal policies for security patch management," INFORMS Journal on Computing, 27(3), 2015, pp. 462-477, https://dx.doi.org/10.1287/ijoc.2014.0638.
- [22] S.Y. Enoch, J.B. Hong, and D.S. Kim, "Security modelling and assessment of modern networks using time independent Graphical Security Models," Journal of Network adn Computer Applications, 148, 2019, https://doi.org/10.1016/j.jnca.2019.102448.
- [23] A. Gauci, S. Michelin, and M. Salles, "Addressing the challenge of cyber security maintenance through patch management," 24th International Conference & Exhibition on Electricity Distribution (CIRED), Open Access Proc. J., 2017(1), 2017, pp. 2599-2601, https://doi.org/10.1049/oapcired.2017.0252.
- [24] M. Ge, H.K. Kim, and D.S. Kim, "Evaluating security and availability of multiple redundancy designs when applying security patches," Cornell University, 2017, https://arxiv.org/abs/1705.00128.

 [25] Y. Kansal, P.K. Kapus, and N. Sachdeva, "Determining best patch
- management software using intuitionistic fuzzy sets with TOPSIS," International Journal of Performability Engineering, 15(5), 2019, pp. 1297-1305, http://www.ijpe-online.com/EN/10.23940/ijpe.19.05.p5.12971305.
- [26] C. Luo, H. Okamura, and T. Dohi, "Optimal planning for open source software updates," Journal of Risk and Reliability, 230(I), 2016, pp. 44-53, https://doi.org/10.1177/1748006X15586507
- [27] P. Morgner, C. Mai, N. Koschate-Fischer, F. Freiling, and Z. Benenson, "Security update labels: establishing economic incentives for security patching of IoT consumer products," To appear in the Pro-ceedings of the IEEE Symposium on Security and Privacy, 2020, https://arxiv.org/abs/1906.11094.
- [28] S. Narang, P.K. Kapur, D. Damodaran, and A.K. Shrivastava, "Bi-Criterion Problem to Determine Optimal Vulnerability Discovery and Patching Time," International Journal of Reliability, Quality, and Safety Engineering, 25(1), 2018, http://doi.org/10.1142/S021853931850002X.
- Wiggers, "Automox raises \$30 million to protect enterprise endpoints from compromise," VentureBeat. 2020. https://venturebeat.com/2020/02/04/automox-raises-30-million-toprotect-enterprise-endpoints-from-compromise/

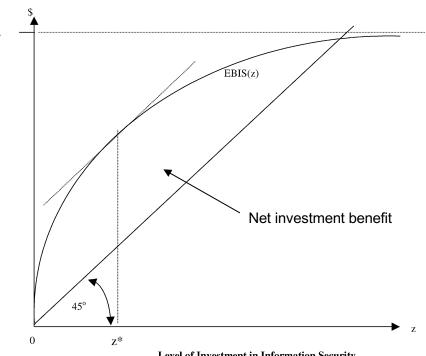
Security Investment Relationship*

Brett Mulligan

Overview

- Previous work
- Recent developments
- Current technologies and products
- Influential groups

Complex Calculation

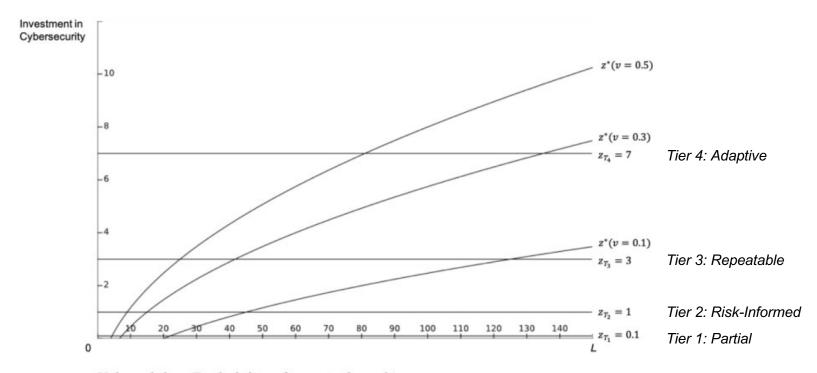

- "Cost" is usually intertwined and difficult to distill
- "Improvement" is also difficult to quantify
- ROI and IRR can be used as alternatives

Early: Gordon-Loeb Model

- Gordon and Loeb 2002 paper
 - The Economics of Information Security Investment
- Security expenses should be directly proportional to value of data and probability of breach
- Showed ideal investment in security was 37% of expected loss (over aiven time period)

$$z^*(v) < (1/e)vL$$

Level of Investment in Information Security


v – Vulnerability (Probability of security breach)

L – Potential loss

vL - Expected loss

z* - Optimal investment level

Now: GL 2020 NIST Integration

v - Vulnerability (Probability of security breach)

L - Potential loss

vL - Expected loss

z* - Optimal investment level

 $z_{T_1}, z_{T_2}, z_{T_3}, z_{T_4}$ – Investment levels to achieve Tiers 1, 2, 3, 4

Figure 1. Optimal cybersecurity investments for different values of L and v, and NIST tier levels.

Tech and Influential Groups

- Gordon and Loeb GL Model of Cybersecurity Investment
 - University of Maryland
- Rok Bojanc, Borka Jerman-Blazic Managing cybersecurity investment paper
- Ponemon Institute The Cost of Phishing (2017, sponsored)
- MIT SCRAM Secure Cyber Risk Aggregation and Measurement
 - CSAIL (Computer Science and Artificial Intelligence Lab)

Summary and Takeaways

- Difficult metric, alternatives
- Gordon-Loeb model
- Possible NIST Framework Integration
- Plenty of room for innovation
- Questions
 - MS Teams (evenings and weekends)
 - brett.mulligan@gmail.com

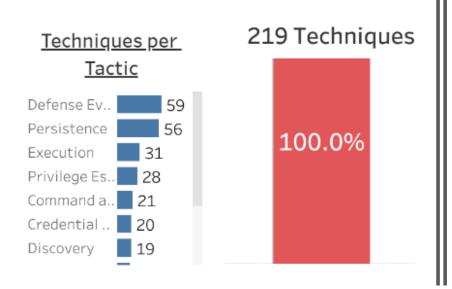
References

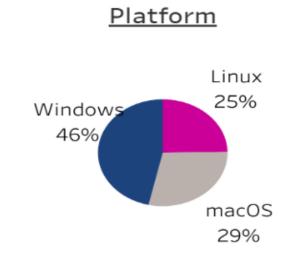
- L. Gordon and M. Loeb, "The economics of information security investment," ACM Transactions on Information and System Security, vol. 5, pp. 105–128, 01 2002.
- L. A. Gordon, M. P. Loeb, and L. Zhou, "Integrating cost–benefit analysis into the NIST Cybersecurity Framework via the Gordon–Loeb Model," Journal of Cybersecurity, vol. 6, no. 1, 03 2020, tyaa005. [Online]. Available: https://doi.org/10.1093/cybsec/tyaa005
- L. de Castro, A. W. Lo, T. Reynolds, F. Susan, V. Vaikuntanathan, D. Weitzner, and N. Zhang, "Scram: A platform for securely measuring cyber risk," Harvard Data Science Review, 7 2020, https://hdsr.mitpress.mit.edu/pub/gylaxji4. [Online]. Available: https://hdsr.mitpress.mit.edu/pub/gylaxji4
- A. Conner-Simons. (2020) Mit news scram article. [Online]. Available: https://news.mit.edu/2020/helping-companies-prioritizecybersecurity-investments-0903
- M. T. Rok Bojanc, Borka Jerman-Blazic, "Managing the investment in information security technology by use of a quantitative modeling," Information Processing and Management, vol. 48, p. 1031–1052, 01 2012.

Mitre ATT&CK Framework

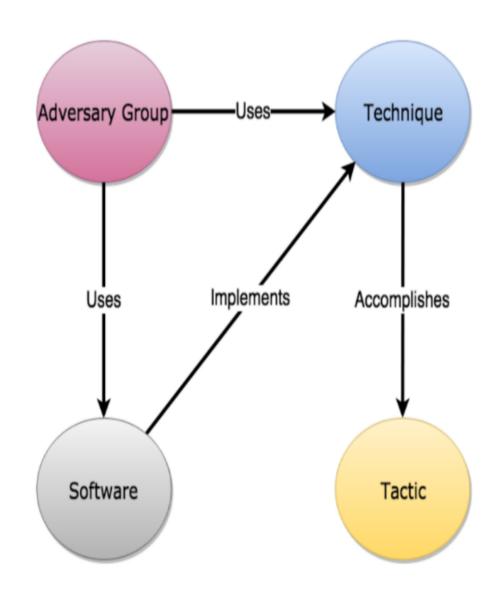
Saja Alqurashi
CS559 Quantitative Security

INTRODUCTION


- MITRE: a nonprofit organization which mainly focuses on Federally Funded Research And Development Centers(FFFRDC).
- Founded in 1958 under the leadership of Clair W.Halligan.
- Several centers like National Security Engineerinig Center, Center for Advanced Aviation System Development, Center for Enterprise Modernization, Homeland Security Systems Engineering and Development Institute are organized in order to safeguard National issues with people in USA.
- One such center, Internal Research and Development deals with several techniques and tools for existing technologies.

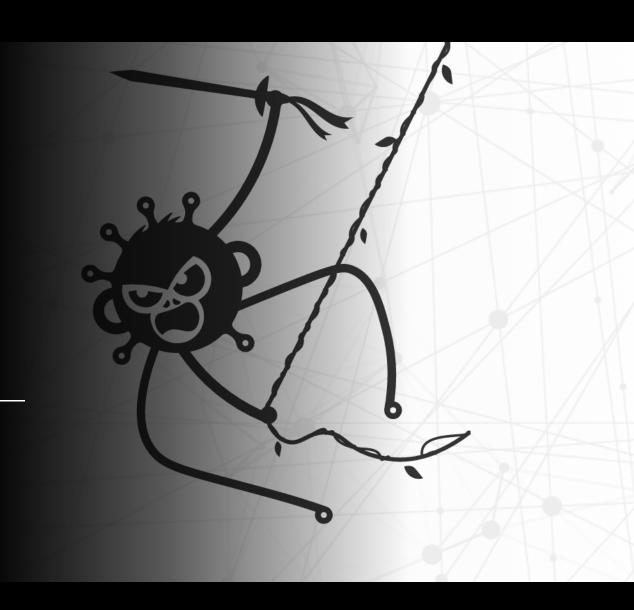

Mitre ATT&CK

Mitre ATT&CK matrices include:


- 1. Tactics
- 2. Techniques
- 3. Mitigation
- 4. Groups

Statistics:

How attack happen


ORGANIZATIONS and INDIVIDUALS CONTRIBUTING TO MITRE ATT&CK

More than 80 organization and individuals have been contributing to the framework

- Microsoft Threat Protection Center (MTP) and McAfee
- Recorded Future : The Recorded Future Security Intelligence Platform
- CAPEC: The Common Attack Pattern Enumeration and Classification
- MAEC: Malware Attribute Enumeration and Characterization (MAEC)
- Infected Monkey

The infected Monkey

Based on Mitre Att&CK

Benefit 1: Automatic Attack Simulation

• Simply infect a random machine with the Infection Monkey and automatically discover your security risks. Test for different scenarios - credential theft, compromised machines and other security flaws.

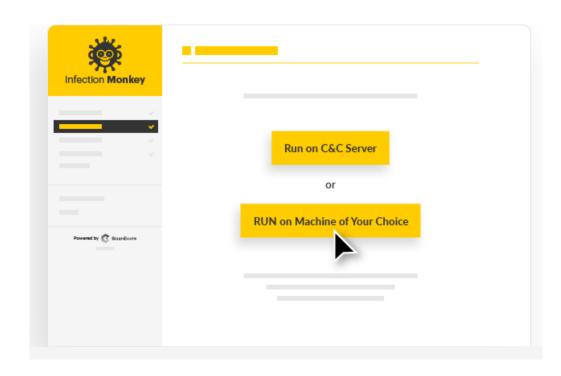
Benefit 2: Continuous & Safe Assessments

• Run the Infection Monkey around the clock to identify new security risks and to validate existing security controls as your environment changes. It is non-intrusive, with no impact on your network.

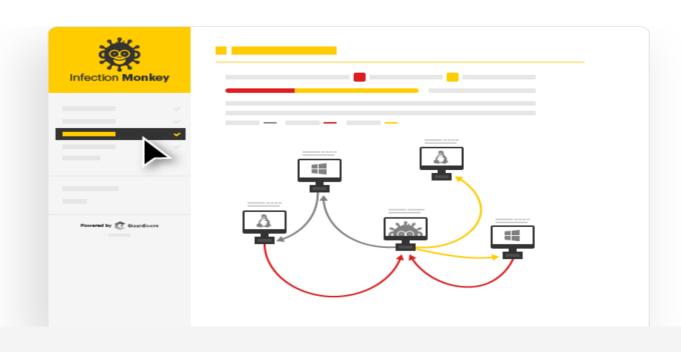
Benefit 3:Actionable Recommendations

• The Infection Monkey assessment produces a detailed report with remediation tips, including a visual map of your network from an attacker's point of view to better understand your network.

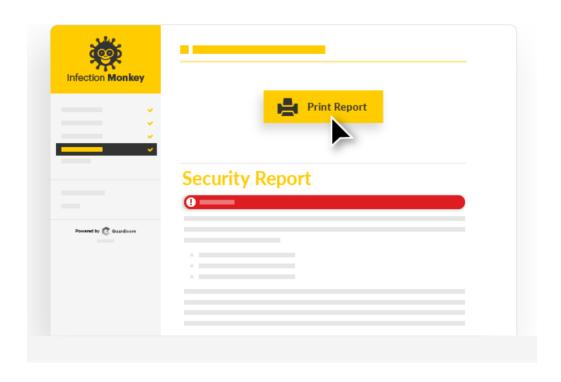
Users OF Infected Monkey

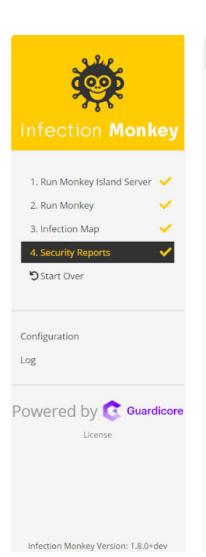

CISO

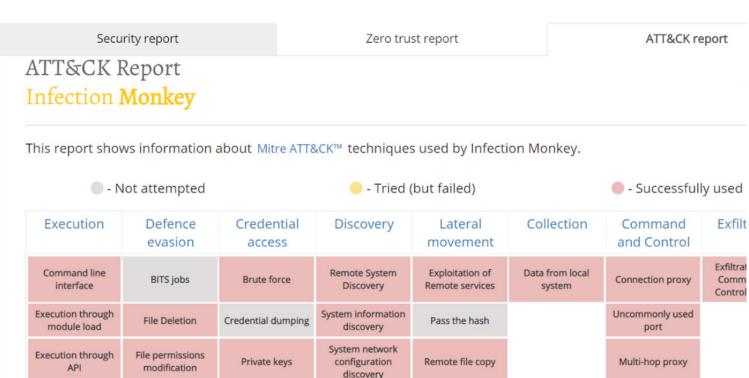
 Provide quantifiable results at the board level on risk exposure and the effectiveness of security investment


Security Researcher

 Analyze attack simulation results to better understand weak spots in your network and prioritize risk mitigation


Launch




Attack

Report

Remote services

Selected technique

Powershell

Scripting

Service execution

None. Select a technique from ATT&CK matrix above.

List of all tachniques

MITRE ATT&CK FRAMEWORK

CS559 Quantitative SecurityResearch Presentation

Professor: Dr. Yashwant K. Malaiya

Name: Suraj Eswaran 832292077

AGENDA

- WHAT IS A MITRE ATT&CK?
- CURRENT ATT&CK MATRIX
- WHAT IS A TACTICS?
 - > PRE ATT&CK TACTICS
 - > ATT&CK ENTERPRISE TACTICS
- WHAT IS A TECHNIQUE?
- TOP 10 TECHNIQUES RECENTLY
- CONCLUSION
- REFERENCE

WHAT IS MITTRE ATT&CK?

- Knowledge matrix that defines the tactics, techniques, and procedures that adversaries will go through when trying to exploit and abuse systems that defenders are trying to protect.
- Mainly focusses on how adversaries penetrate networks and then move laterally, escalate privileges, and generally evade your defenses.
- 1st ATT&CK model was created.
 Focused only on Windows Environment. 2013

Expanded the usage for Linux and MacOS.

Referred as ATT&CK for Enterprise.

ATT&CK for Mobile was also published. ATT&CK for ICS was introduced.

Showcase beahvior against industrial controls systems.

2020

2015

Redefined with internal

research and development

consists of 96 techniques under 9 tactics.

2019

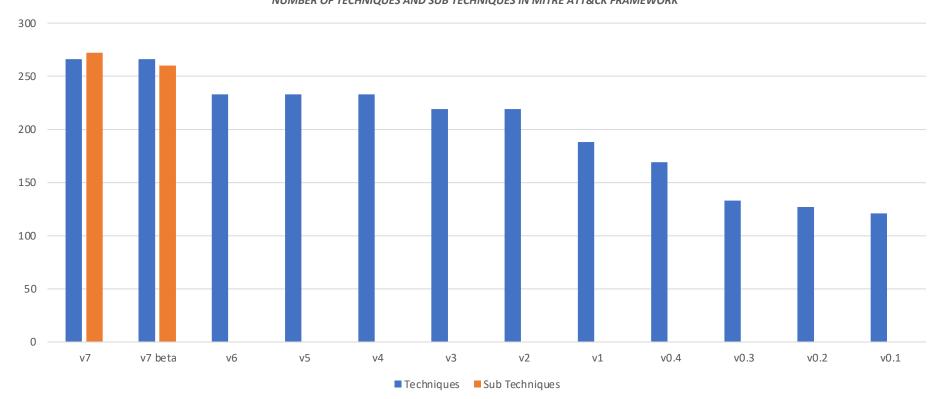
ATT&CK for Cloud was elongated as a part of Enterprises.

CUIRRENT ATT&CK MATRIX

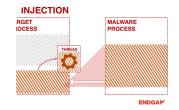
Initial Access	Execution	Persistence	Evesion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Program State	Hooking	Exploitation for Evasion	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/D Module Discovery	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Change Program State	Denial of Control
Engineering Workstation Compromise	Execution through API	Program Download	Masquerading	Network Connection Enumeration	External Remote Services	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Masquerading	Denial of View
Exploit Public-Facing Application	Graphical User Interface	Project File Infection	Rogue Master Device	Network Service Scanning	Program Organization Units	Detect Program State		Block Reporting Message	Modify Control Lagic	Loss of Availability
External Remote Services	Man in the Middle	System Firmware	Rootkit	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Lass of Control
Internet Accessible Device	Program Organization Units	Valid Accounts	Spoof Reporting Message	Remote System Discovery	Valid Accounts	Location identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
Replication Through Removable Media	Project File Infection		Utilize/Change Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
Spearphishing Attachment	Scripting					Point & Tag Identification		Device Restart/Shutdown	Rogue Master Device	Loss of View
Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	Manipulation of Control
Wireless Compromise						Role Identification		Modify Alarm Settings	Spoof Reporting Message	Manipulation of View
	-					Screen Capture		Modify Control Logic	Unauthorized Command Message	Theft of Operational Information
								Program Download		

WHAT IS A TACTIC?

PRE-ATTI&CK TACTICS


Priority Definition Planning	Process of determining KIT and KIQ for key strategic, or key tactical goals.
Target Selection	•Iterative process for determining adversary target by analyzing strategic level.
Information Gathering	Consist of process of determining the technical elements in order to attack.
Weakness Identification	•Identifying and analyzing weaknesses and vulnerabilities
Adversary OpSec	Consist of various technologies to hide or blend with network traffic.
Establish & Maintain Infrastructure	Consist of maintaining several systems and services for conducting cyber operations.
Persona Development	• Has public information , history and appropriate affiliations.
Build Capabilities	•Consists of information of the software, data mad techniques used in various operations.
Test Capabilities	• Takes place when adversaries used to test capabilities to ensure success during an operation.
Stage Capabilities	Consists of operational environment required to start an operations.

ATT&CK ENTERPRISE TACTICS


Adversary is trying to get into your network.
Adversary is trying to run malicious code.
Adversary is trying to maintain their foothold.
Adversary is trying to gain higher-level permissions.
Adversary is trying to avoid being detected.
Adversary is trying to steal account names and passwords.
Adversary is trying to figure out your environment.
Adversary is trying to move through your environment.
Adversary is trying to gather data of interest to their goal.
Adversary is trying to communicate with compromised systems to control them.
Adversary is trying to steal data.
Adversary is trying to manipulate, interrupt, or destroy your systems and data.

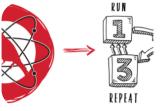
TECHNIQUES

NUMBER OF TECHNIQUES AND SUB TECHNIQUES IN MITRE ATT&CK FRAMEWORK

TOP 10 TECHNIQUES RECENTLY

Process Injection

- 19% of the total malware.
- Tactics: Defense Evasion, Privilege Escalation


PowerShell

- 16% of total malware
- Tactics: Execution

Credential Dumping

- 15% of total malware
- Tactics: Credential Access

Masquerading

- 11% of total malware
- Tactics: Defense Evasion

Command-line Interface

- 9% of total malware
- Tactics: Execution

Scripting

- 7% of total malware
- Tactics: Defense Evasion, Execution

Scheduled Task

- 6% of total malware
- Tactics: Execution, Persistence, Privilege Escalation

Registry Run Keys/ Startup Folder

- 6% of total malware
- Tactics: Persistence

System Information Discovery

- 5% of total malware
- Tactics: Discovery

Disabling Security Tools

- 5% of total malware
- Tactics: Defense Evasion

CONCLUSION

- MITRE ATT&CK delivers a huge and actionable repositories of adversarial tactics, techniques and procedures.
- As per February 2020, MITRE ATT&CK shows about 440 techniques and 27 tactics.
- Each techniques provide a huge scope for describing about the techniques and various procedures for performing it.
- The ATT&CK Framework is considered as a resource for understanding various characteristics and techniques associated with hackers against organizations. Some important cases for the MITRE ATT&CK framework includes:
 - 1. Prioritize the threats in the attack chain of the organization.
 - 2. Evaluate the current telemetry to each detection of the organization.
 - 3. Track the attacker groups.
- Several labs like LogRhythm Labs, Immersive Labs tend to use MITRE ATT&CK framework for their advancements.

REFERENCES

- 1. Maymí, F., Bixler, R., Jones, R., & Lathrop, S. (2017, December). Towards a definition of cyberspace tactics, techniques and procedures. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4674-4679). IEEE.
- 2. Al-Shaer, R., Spring, J. M., & Christou, E. (2020). Learning the Associations of MITRE ATT&CK Adversarial Techniques. arXiv preprint arXiv:2005.01654
- 3. Strom, B. E., Applebaum, A., Miller, D. P., Nickels, K. C., Pennington, A. G., & Thomas, C. B. (2018). Mitre att&ck: Design and philosophy. *Technical report*.
- 4. Strom, B. E., Battaglia, J. A., Kemmerer, M. S., Kupersanin, W., Miller, D. P., Wampler, C., ... & Wolf, R. D. (2017). Finding cyber threats with ATT&CK-based analytics. *The MITRE Corporation, Bedford, MA, Technical Report No. MTR170202*.
- 5. Alexander, O., Belisle, M., & Steele, J. (2020). MITRE ATT&CK® for Industrial Control Systems: Design and Philosophy.
- 6. Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., & Vallina-Rodriguez, N. (2020, May). An analysis of pre-installed android software. In 2020 IEEE Symposium on Security and Privacy (SP) (pp. 1039-1055). IEEE.
- 7. McCabe, A. (2020, March 12). The Fractured Statue Campaign: U.S. Government Agency Targeted in Spear-Phishing Attacks. Retrieved September 10, 2020, from https://unit42.paloaltonetworks.com/the-fractured-statue-campaign-u-s-government-targeted-in-spear-phishing-attacks/
- 8. Crowley, C. (2017). Future SOC: SANS 2017 Security Operations Center Survey. *May-2017*.
- 9. Raybourn, E. M. (2016). *A Metaphor for Immersive Environments: Learning Experience Design Challenges and Opportunities* (No. SAND2016-2988C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
- 10. Miloslavskaya, N. (2020). Stream Data Analytics for Network Attacks' Prediction. Procedia Computer Science, 169, 57-62.

MITRE ATT&CK FRAMEWORK

Shwetha G.C.

MITRE ATT&CK Framework

Abstract:

There are many frameworks are developed for threat modelling and attack prevention and mitigation in the field of cybersecurity. In this paper, we explore MITRE ATT&CK framework, its philosophy, recent developments, its limitations and proposal for improvements.

Index Terms: Cyber Security, Computer Security, Threat modelling, Industrial Control Systems[ICS], Adversarial Tactics, Techniques and Common Knowledge [ATT&CK], Programmable Logic Controllers [PLC], Human Machine Interface[HMI], ATP, Techniques and Procedures [TTP].

Introduction

- ATT&CK Framework is developed by MITRE. The first version was released in 2013.
- It incorporates a comprehensive matrix of tactics and techniques used by threat hunters, read teamers and defenders to classify the attacks in an effective manner and access cyber security risk for an organization.
- As of 2020, ATTCK with sub-techniques has 156 techniques and 272 subtechniques.

Tactics

- Tactics represent the highest level of abstraction within the ATT&CK model. They are listed as below.
- Persistence.
- Privilege Escalation.
- Defense Evasion.
- Credential Access.
- Discovery.
- Lateral Movement.
- Execution.
- Collection.
- Ex-filtration.
- · Command and Control.

Tactics-2

Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Execution	Collection	Exfiltration	Command and Control	
DLL Search Order Hijacking			Brute Force	Account Discovery	Windows Remo	te Management	Automated Collection	Automated Exfiltration	Commonly Used Port	
Legitimate Credentials		Credential	Application	Third-party Software		Clipboard Data	Data Compressed	Communication Through		
Accessibility Features		Binary Padding	Dumping	Discovery			Data Staged	Data Encrypted	Removable Media	
Applnit DLLs		Code Signing	Credential	File and	Deployment Software	Execution through API	Data from Local System	Data Transfer Size Limits	Custom Command and Control Protocol	
Local Port	Monitor	Component Firmware	Manipulation Discover		Exploitation of	Graphical User Interface	Data from Network Shared	Exfiltration Over		
New S	ervice	DLL Side-Loading	Credentials in Files	Local Network Configuration	Vulnerability	InstallUtil	Drive	Protocol	Custom Cryptographic Protocol	
Path Inte	rception	Disabling Security Tools	Input Capture	Discovery	Logon Scripts	PowerShell	Data from Removable	Exfiltration Over		
Schedul	ed Task	File Deletion	Network Sniffing	Local Network Connections	Pass the Hash	Process Hollowing	Media	Command and	Data Obfuscation	
Service File Permi	issions Weakness	File System		Discovery	Pass the Ticket	Regsvcs / Regasm	Email Collection	control channel	Fallback Channels	
Service Registry Permissions Weakness		Logical Offsets	Two-Factor Authentication Interception	Network Service Scanning	Remote Desktop Protocol	Regsvr32	Input Capture	Exfiltration Over Other Network	Multi-Stage Channels	
Web	Shell	Indicator Blocking		Peripheral	Remote File Copy	Rundll32	Screen Capture	Medium	Multiband	
Basic	Expl	oitation of Vulnera	Device Discover		Remote Services	Scheduled Task		Exfiltration Over	Communication	
Input/Output System	Bypass User A	ccount Control		Permission	Replication Through	Scripting		Physical Medium	Multilayer Encryption	
Bootkit	DLL In	jection		Groups Discovery	Removable Media	Service Execution		Scheduled Transfer	Peer Connections	
Change Default		Indicator Removal from		Process Discovery	Shared Webroot	Windows]		Remote File Copy	
File Association		Tools		Query Registry	Taint Shared Content	Management Instrumentation			Standard	
Component Firmware		Indicator Removal on Host		Remote System Discovery	Windows Admin Shares				Application Layer Protocol	
Hypervisor				Security Software					Standard Cryptographic	
Logon Scripts		InstallUtil		Discovery					Protocol	
Modify Existing Service		Masquerading		System Information					Standard Non- Application Layer	
Redundant Access		Modify Registry		Discovery					Protocol	
Registry Run Keys / Start Folder		NTFS Extended Attributes		System Owner/User Discovery					Uncommonly Used Port Web Service	

Techniques

• The techniques in the ATTCK model describe the actions adversaries take to achieve their tactical objectives [Citation]. Each tactics incorporates finite number of actions that will accomplish its goal.

Initial Access 9 techniques	Execution 10 techniques	Persistence 18 techniques	Privilege Escalation 12 techniques	Defense Evasion 34 techniques	Credential Access 14 techniques	Discovery 24 techniques	Lateral Movement 9 techniques	Collection 16 techniques	Command and Control 16 techniques	Exfiltration 9 techniques	Impact 13 techniques
Orive-by Compromise	Command and Scripting	Account Manipulation (4)	Abuse Elevation Control	Abuse Elevation Control Mechanism (4)	Brute Force (4)	Account Discovery (4)	Exploitation of Remote	Archive Collected	Application Layer Protocol (4)	Automated Exfiltration	Account Access Removal
exploit Public-	Interpreter (7) Exploitation for	BITS Jobs	Mechanism (4) Access Token	Access Token Manipulation (5)	Credentials from Password I Stores (3)	Application Window Discovery	Services	Data (3) Audio Capture	Communication Through	Data Transfer	Data Destruction
Application External Remote	Client Execution Inter-Process	Boot or Logon Autostart Execution (11)	Manipulation (5) Boot or Logon	BITS Jobs	Exploitation for Credential	Browser Bookmark Discovery	Spearphishing Lateral Tool	Automated Collection	Removable Media	Size Limits Exfiltration	Data Encrypted for Impact
Services	Communication (2)	Boot or Logon	Autostart Execution (11)	Deobfuscate/Decode Files or Information	Access	Cloud Service Dashboard	Transfer	Clipboard Data	Data Encoding (2)	Over Alternative	Data Manipulation (3)
Hardware Additions	Native API Scheduled	Initialization Scripts (5)	Boot or Logon Initialization	Direct Volume Access	Forced Authentication	Cloud Service Discovery	Remote Service Session Hijacking (2)	Data from Cloud Storage Object	Obfuscation (3)	Protocol (3) Exfiltration	Defacement (2)
Phishing (3) Replication	Task/Job (5) Shared Modules	Browser Extensions	Scripts (5) Create or Modify	Execution Guardrails (1) Exploitation for Defense	Input Capture (4)	Domain Trust Discovery File and Directory	Remote Services (6)	Data from Information	Dynamic Resolution (3)	Over C2 Channel	Disk Wipe (2) Endpoint Denial of
Through Removable	Software	Compromise Client Software	System Process (4)	Evasion	Man-in-the- Middle (1)	Discovery	Replication	Repositories (2)	Encrypted Channel (2)	Exfiltration Over Other	Service (4)
Media Supply Chain	Deployment Tools System Services (2)	Binary	Event Triggered Execution (15)	File and Directory Permissions Modification (2)	Modify Authentication	Network Service Scanning	Through Removable Media	Data from Local System	Fallback Channels	Network Medium (1)	Firmware Corruption
Compromise (3)	User Execution (2)	Account (3) Create or Modify	Exploitation for Privilege	Group Policy Modification	Process (3) Network Sniffing OS Credential	Network Share Discovery	Software Deployment	Data from Network Shared Drive Data from Removable Media	Ingress Tool Transfer	Exfiltration Over Physical Medium (1) Exfiltration Over Web Service (2) Scheduled Transfer	Inhibit System Recovery
Relationship	Windows Management	System Process (4)	Escalation	Hide Artifacts (6)		Network Sniffing	Tools		Multi-Stage		Network Denial of Service (2)
Accounts (4)	Instrumentation	Event Triggered Execution (15)	Group Policy Modification	Hijack Execution Flow (11)	Dumping (8)	Password Policy Discovery	Taint Shared Content		Non-Application		Resource Hijacking
		External Remote Services	Hijack Execution Flow (11)	Impair Defenses (6)	Steal Application Access Token	Peripheral Device Discovery	Use Alternate Authentication Material (4)	Data Staged (2)	Layer Protocol Non-Standard		Service Stop System
		Hijack Execution	Process Injection (11)	Indicator Removal on Host ₍₆₎	Steal or Forge Kerberos	Permission Groups Discovery (3)	ш	Collection (3)	Port Protocol	Transfer Data to	Shutdown/Reboot
		Flow (11) Implant	Scheduled Task/Job (5)	Indirect Command Execution	Tickets (3)	Process Discovery		Man in the	Tunneling	Cloud Account	
		Office	Valid Accounts (4)	Masquerading (6)	Steal Web Session Cookie	Query Registry Remote System		Browser Man-in-the-	Proxy (4)		
		Application Startup (6)	"	Process (3) Modify Cloud Compute Infrastructure (4)	Two-Factor Authentication	Discovery Software Discovery (1)		Middle (1) Screen Capture Video Capture	Software Traffic		
		Pre-OS Boot (3)			Interception Unsecured	System Information			Signaling (1)		
		Scheduled Task/Job (5)	"	Modify Registry	Credentials (6)	Discovery System Network			Web Service (3)		
		Server Software Component (3)	"	Obfuscated Files or Information (5)	11	Configuration Discovery System Network					
		Traffic Signaling (s)	11	Pre-OS Boot (3)	н	Connections Discovery					

Current State of Technology

 Current framework incorporates tactics and techniques for preattack, enterprise and mobile. It provides sets of related intrusion activity that are tracked by a common name in the security community which are known as groups. The latest version of MITRE ATTCK was released in July. The new release added sub techniques. Sub techniques are the additional techniques for each technique in each tactics.

Recent Advancement

• MITRE ATT&CK Framework for ICS attacks

Initial Access	Execution	Persistence	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Program State	Hooking	Exploitation for Evasion	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/O Module Discovery	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Change Program State	Denial of Control
Engineering Workstation Compromise	Execution through API	Program Download	Masquerading	Network Connection Enumeration	External Remote Services	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Masquerading	Denial of View
Exploit Public-Facing Application	Graphical User Interface	Project File Infection	Rogue Master Device	Network Service Scanning	Program Organization Units	Detect Program State		Block Reporting Message	Modify Control Logic	Loss of Availability
External Remote Services	Man in the Middle	System Firmware	Rootkit	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Loss of Control
nternet Accessible Device	Program Organization Units	Valid Accounts	Spoof Reporting Message	Remote System Discovery	Valid Accounts	Location Identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
Replication Through Removable Media	Project File Infection		Utilize/Change Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
pearphishing Attachment	Scripting	1			•	Point & Tag Identification		Device Restart/Shutdown	Rogue Master Device	Loss of Vie
Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	Manipulatio of Control
Vireless Compromise						Role Identification		Modify Alarm Settings	Spoof Reporting Message	Manipulation of View
	-					Screen Capture		Modify Control Logic	Unauthorized Command Message	Theft of Operationa Information
							•	Program Download		•
								Rootkit]	
								System Firmware		
									1	

Recent Advancement

- Rawan Al-Shaer et. all.used ATT&CK framework to implement technique prediction.
- Rawan Al-Shaer et. all [6] developed a novel approach using hierarchical clustering to infer technique associations that represent various technique inter-dependencies in a TTP chain

ORGANIZATIONS CONTRIBUTING TO MITRE ATT&CK

- More than 80 organization and individuals have been contributing to the framework
- Major ones: Microsoft Threat Protection Center (MTP) and McAfee.

Conclusion

- Very useful framework to understand different statics, techniques used by adversaries and mitigation plans.
- Covers large area of cyber industries and major platforms and ICS systems.
- But lacks to incorporate time component for ICS attacks.
- Provides only end point detection. Custom applications need to be implemented using the framework to provide complete protection