CS575: Parallel Processing Sanjay Rajopadhye CSU

Lecture 2: Parallel Computer Models

Course Topics

- Introduction, background
- Complexity, orders of magnitude, recurrences
- Models of parallel computing \& communication
- Performance, efficiency \& speedup
- Amdahl, Gustaffson, strong/weak scaling
- Parallel algorithms
- Dense linear algebra, prefix sums, graph algorithms, FFT
- Slides/lectures complement the text and web resources

Course Organization

- Streamline 475-575 flow
- Focus on algorithms and analysis
- Separate courses on distributed systems, networking
- Advanced CUDA programming
- Performance tuning
- Using roofline techniques
- Guided by analysis
- Beyond CUDA

Sequential Algorithms

- Efficient Sequential Algorithms
- Optimize for time or space (memory)
- Performance is portable
- Efficient program on Pentium ~ Efficient program on Opteron
- Algorithmic analysis enabled separation of concerns
- Asymptotic analysis: problem size N

Parallel Algorithms

- Two independent parameters
- Problem size N same as before
- Processor count P also grows asymptotically
- Cost of parallelism:
- Communication
- Synchronization
- Efficient parallel algorithms (machine/model dependent)
- Start with the best sequential algorithm
- (almost) always the best strategy
- Recomputation (redundant computation) is sometimes better

Speedup \& efficiency

- Definitions
- Bounds
- "superlinear"
- Why is that wrong
- Ideal speedup
- Isoefficency

// Programming Paradigms

- Sequential Paradigms: imperative, object oriented, declarative (functional, relational), ...
- Parallel paradigms
- Language style (same as seq)
- Parallelism style:
- Implicit parallelism
- Explicit parallelism
- Shared memory
- Distributed memory

Implicit Parallelism

- Sequential Paradigms: Super compilers
- Extract parallelism from sequential code
- Programmer has to do nothing, compiler distributes data, creates and schedules tasks
- Very limited success (only in niche domains)
- Implicit parallelism with declarative programs
- Parallel logic languages
- Parallel functional programming

Functional Languages

- No side effects, order of execution less constrained
- $F(P(x, y), Q(y, z)) P$ and Q can be executed in parallel
- Simple single assignment memory model:
- no pointers, no write after read or write after write hazards (dataflow semantics)
- FP was long doomed as too high level too inefficient, because the simple memory model causes lots of copies
- FP is coming back: MapReduce approach in data centers (Google) is a data parallel functional paradigm

Explicit Parallelism

- Multithreading:
- OpenMP \& CUDA
- $P(x, y), Q(y, z)$) P and Q can be executed in parallel
- Message Passing (distributed memory)
- MPI
- Programming becomes more complicated
- Synchronization (semaphores, locks, messages)
- creation, allocation, scheduling of processes
- data partitioning

Background: algorithm analysis

- References:
- "Introduction to Algorithms," Cormen Rivest Leiserson Stein
- Other texts and/or wiki
- Topics:
- Intro, asymptotic growth of functions, summations recurrences
- Optional/advanced:
- Average case analysis
- Amortized analysis

Orders of magnitude

O, θ and Ω

- A function $f(n)=O(g(n))$ iff \exists positive constants c and n_{0} such that $\forall n \geq n_{0}$ (i.e., eventually/asymptotically) $f(n)<g(n)$ So, g is an upper bound on f
- A function $f(n)=\Omega(g(n))$ iff \exists positive constants c and n_{0} such that $\forall n \geq n_{0}$ (i.e., eventually/asymptotically) $f(n)>g(n)$ So, g is a lower bound on f
- A function $f(n)=\theta(g(n))$, i.e., g is a tight bound on f (and vice versa) iff $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

Algorithmic complexity

Complexity of

- some property (e.g., execution time, memory requirement, etc.)
- of algorithm(s) to solve a problem
- specific algorithm (complexity of the algorithm)
- lower bounds, quantified over all algorithms (universal quantifier) to solve that problem: complexity of the problem

A problem may be "closed" $\mathrm{LB}=\theta(\mathrm{UB})$ or "have a gap"

Recurrence Relations

- Algorithmic complexity often described using recurrence relations:

$$
f(n)=g(f(1), f(2), \ldots f(n-1))
$$

- Two common classes:
- Linear:
- constant number of occurrences of f and argument of each one is just a some constant less than n
- g is a linear function, with possibly one additional term
- D\&C (divide and conquer)
- constant number of occurrences of f and argument of each one is just a some constant factor of n
- Covered in CS 420 (\& CS420dl)

Repeated Substitution

- Simple recurrence relations (one recurrent term in the rhs) can sometimes be solved using repeated substitution
- Two types: Linear and D\&C
- $F(n)=a F(n-d)+g(n)$, base: $F(1)=v_{I}$
- $F(n)=a F(n / d)+g(n)$, base: $F(1)=v_{1}$
- Two questions:
- what is the pattern
- how often is it applied until we hit the base case

Linear Example

$$
\begin{aligned}
\mathrm{M}(\mathrm{n}) & =2 \mathrm{M}(\mathrm{n}-1)+1, \mathrm{M}(1)=1 \quad \text { recognize this one? } \\
& =22 \mathrm{M}(\mathrm{n}-2)+1)+1 \\
& =4 \mathrm{M}(\mathrm{n}-2)+2+1=42 \mathrm{M}(\mathrm{n}-3)+1+2+1 \\
& =8 \mathrm{M}(\mathrm{n}-3)+4+2+1=\ldots \text { inductive step } \ldots \\
& =2^{k} \mathrm{M}(\mathrm{n}-\mathrm{k})+2^{\mathrm{k}-1}+2^{\mathrm{k}-2}+\ldots+2+1
\end{aligned}
$$

Hit the base case for $\mathrm{k}=\mathrm{n}-1$:

$$
\begin{aligned}
& =2^{\mathrm{n}-1} \mathrm{M}(1)+2^{\mathrm{n}-1}+2^{\mathrm{n}-2}+\ldots+2+1 \\
& =2^{\mathrm{n}}-1
\end{aligned}
$$

D\&C Example

Merge sort:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 T(\mathrm{n} / 2)+\mathrm{n}, \mathrm{~T}(1)=1 \text { (and } \mathrm{n}=2 \mathrm{k}) \\
&=22(T(\mathrm{n} / 4)+\mathrm{n} / 2)+\mathrm{n} \\
&=4 T(\mathrm{n} / 4)+2 \mathrm{n} \\
&=8 T(n / 8)+3 n \ldots \text { inductive step } \ldots \\
&=2 k T(n / 2 k)+k n \\
& \text { hit base for } k=\log n \\
&=n+k n=O(n \log n)
\end{aligned}
$$

Another one: binary search

$$
\begin{aligned}
& G(n)=G(n / 2)+c, G(1)=1(\text { and } n=2 k) \\
& =G(n / 4)+c)+c \\
& =G(n / 4)+2 c \\
& =G(n / 8)+3 c \ldots \text { inductive step } \ldots \\
& =G(n / 2 k)+k c \\
& \text { hit base for } \mathrm{k}=\log \mathrm{n} \\
& =\mathrm{G}(1)+\mathrm{c} \log \mathrm{n}=\mathrm{O}(\log \mathrm{n})
\end{aligned}
$$

Master Method

- Cookbook solution, based on repeated substitution for a number of common cases
$\mathrm{f}(\mathrm{n})=\mathrm{cf}(\mathrm{n} / \mathrm{d})+\mathrm{k} \mathrm{n}^{\mathrm{p}}$
- if $\mathrm{C}<\mathrm{d}^{\mathrm{p}}$
then $A_{n}=O\left(n^{p}\right)$ e.g., $A_{n}=3 A_{n / 2}+n^{2}$
- if $C=d^{p}$
then $\mathrm{A}_{\mathrm{n}}=\mathrm{O}\left(\mathrm{n}^{\mathrm{p}} \log (\mathrm{n})\right)$
e.g., $A_{n}=2 A_{n / 2}+n$
- if $\mathrm{C}>\mathrm{d}^{\mathrm{p}}$
then $A_{n}=O\left(n^{\log _{d} C}\right)$
e.g., $A_{n}=3 A_{n / 2}+n$
- Covered in CS 420 (\& CS420dl)
- Do

Examples

- Merge Sort

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}, \mathrm{~T}(\mathrm{1})=1 \\
& \mathrm{C}=? \mathrm{~d}=? \mathrm{p}=? \mathrm{~d}^{\mathrm{p}=?} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}(? ? ?) \\
& \mathrm{Binary} \text { search } \\
& \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n} / 2)+\mathrm{c} \quad \mathrm{f}(1)=1 \\
& \mathrm{C}=? \mathrm{~d}=? \mathrm{p}=? \mathrm{~d}^{\mathrm{p}}=? \\
& \mathrm{f}(\mathrm{n})=\mathrm{O}(? ? ?)
\end{aligned}
$$

Questions

- How do threads and thread blocks get allocated to SMPs
- How do they synchronize/communicate
- How do they disambiguate memory addresses
- Which thread writes/reads-from where?
- What if the addresses are in conflict?
- How are things different at the two levels of memory?
- What about caches?

Thread allocation

Static allocation

- Program declares a number of (virtual) thread blocks many more than number of SMs
- Run time system allocates them (details unspecified) to thread blocks - main idea non-preemptively scheduled, each TB runs through to completion
- Within a TB - program has a (virtual) number of threads each thread knows of two parameters - its thread id within the TB and the TBs id within the grid.
- Code is parametric, so
- programmer's responsibility to write code so the algorithm is correctly implemented by this virtual collection of threads.

Thread Allocation

Static Allocation

- Program declares a (virtual)

