
1/24/14	

1	

CS575: Parallel Processing
Sanjay Rajopadhye CSU

Lecture 2: Parallel Computer Models

1/23/14 CS575 lecture 1

Course Topics

�  Introduction, background
�  Complexity, orders of magnitude, recurrences

�  Models of parallel computing & communication

�  Performance, efficiency & speedup
�  Amdahl, Gustaffson, strong/weak scaling

�  Parallel algorithms
�  Dense linear algebra, prefix sums, graph algorithms, FFT

�  Slides/lectures complement the text and web resources

1/23/14 CS575 lecture 1 2

1/24/14	

2	

Course Organization

�  Streamline 475-575 flow

�  Focus on algorithms and analysis
�  Separate courses on distributed systems, networking

�  Advanced CUDA programming
�  Performance tuning

�  Using roofline techniques

�  Guided by analysis

�  Beyond CUDA

1/23/14 CS575 lecture 1 3

Sequential Algorithms

�  Efficient Sequential Algorithms
�  Optimize for time or space (memory)

�  Performance is portable
�  Efficient program on Pentium ~ Efficient program on

Opteron

�  Algorithmic analysis enabled separation of concerns

�  Asymptotic analysis: problem size N

1/23/14 CS575 lecture 1 4

1/24/14	

3	

Parallel Algorithms

�  Two independent parameters
�  Problem size N same as before
�  Processor count P also grows asymptotically

�  Cost of parallelism:
�  Communication
�  Synchronization

�  Efficient parallel algorithms (machine/model dependent)
�  Start with the best sequential algorithm

�  (almost) always the best strategy

�  Recomputation (redundant computation) is sometimes
better

1/23/14 CS575 lecture 1 5

Speedup & efficiency

�  Definitions

�  Bounds

�  “superlinear”

�  Why is that wrong

�  Ideal speedup

�  Isoefficency

1/23/14 CS575 lecture 1 6

1/24/14	

4	

// Programming Paradigms

�  Sequential Paradigms: imperative, object oriented,
declarative (functional, relational), …

�  Parallel paradigms
�  Language style (same as seq)

�  Parallelism style:
�  Implicit parallelism

�  Explicit parallelism
�  Shared memory

�  Distributed memory

1/23/14 CS575 lecture 1 7

Implicit Parallelism

�  Sequential Paradigms: Super compilers
�  Extract parallelism from sequential code

�  Programmer has to do nothing, compiler distributes
data, creates and schedules tasks
�  Very limited success (only in niche domains)

�  Implicit parallelism with declarative programs
�  Parallel logic languages

�  Parallel functional programming

1/24/14 CS575 lecture 1 8

1/24/14	

5	

Functional Languages

�  No side effects, order of execution less constrained

�  F (P(x,y), Q(y,z)) P and Q can be executed in parallel

�  Simple single assignment memory model:
�  no pointers, no write after read or write after write hazards

(dataflow semantics)

�  FP was long doomed as too high level too inefficient,
because the simple memory model causes lots of copies

�  FP is coming back: MapReduce approach in data centers
(Google) is a data parallel functional paradigm

1/24/14 CS575 lecture 1 9

Explicit Parallelism

�  Multithreading:
�  OpenMP & CUDA

�  P(x,y), Q(y,z)) P and Q can be executed in parallel

�  Message Passing (distributed memory)
�  MPI

�  Programming becomes more complicated
�  Synchronization (semaphores, locks, messages)

�  creation, allocation, scheduling of processes

�  data partitioning

1/24/14 CS575 lecture 1 10

1/24/14	

6	

Background: algorithm
analysis

�  References:
�  “Introduction to Algorithms,” Cormen Rivest Leiserson

Stein
�  Other texts and/or wiki

�  Topics:
�  Intro, asymptotic growth of functions, summations

recurrences

�  Optional/advanced:
�  Average case analysis
�  Amortized analysis

1/23/14 CS575 lecture 1 11

Orders of magnitude

O, θ and Ω

�  A function f(n) = O(g(n)) iff ∃ positive constants c and
n0 such that ∀ n ≥ n0 (i.e., eventually/asymptotically)
f(n) < g(n) So, g is an upper bound on f

�  A function f(n) = Ω(g(n)) iff ∃ positive constants c and
n0 such that ∀ n ≥ n0 (i.e., eventually/asymptotically)
f(n) > g(n) So, g is a lower bound on f

�  A function f(n) = θ(g(n)), i.e., g is a tight bound on f
(and vice versa) iff f(n) = O(g(n)) and f(n) = Ω(g(n))

1/23/14 CS575 lecture 1 12

1/24/14	

7	

Algorithmic complexity

Complexity of

�  some property (e.g., execution time, memory
requirement, etc.)

�  of algorithm(s) to solve a problem
�  specific algorithm (complexity of the algorithm)

�  lower bounds, quantified over all algorithms (universal
quantifier) to solve that problem: complexity of the
problem

A problem may be “closed” LB=θ(UB) or “have a gap”

1/23/14 CS575 lecture 1 13

Recurrence Relations

�  Algorithmic complexity often described using recurrence
relations:

 f (n) = g(f (1), f (2), … f (n-1))

�  Two common classes:
�  Linear:

�  constant number of occurrences of f and argument of each
one is just a some constant less than n

�  g is a linear function, with possibly one additional term

�  D&C (divide and conquer)
�  constant number of occurrences of f and argument of each

one is just a some constant factor of n
�  Covered in CS 420 (& CS420dl)

1/23/14 CS575 lecture 1 14

1/24/14	

8	

Repeated Substitution

�  Simple recurrence relations (one recurrent term in the
rhs) can sometimes be solved using repeated
substitution

�  Two types: Linear and D&C
�  F(n) = a F(n-d) + g(n), base: F(1)=v1
�  F(n) = a F(n/d) + g(n), base: F(1)=v1

�  Two questions:
�  what is the pattern

�  how often is it applied until we hit the base case

1/23/14 CS575 lecture 1 15

Linear Example

M(n) = 2M(n-1)+1, M(1)=1 recognize this one?
 = 2(2M(n-2)+1)+1
 = 4M(n-2)+2+1 = 4(2M(n-3)+1)+2+1

 = 8M(n-3)+4+2+1= … inductive step …

 = 2kM(n-k)+2k-1+2k-2+...+2+1

Hit the base case for k = n-1:

 = 2n-1M(1)+2n-1+2n-2+...+2+1

 = 2n-1

1/23/14 CS575 lecture 1 16

1/24/14	

9	

D&C Example

Merge sort:

T(n) = 2T(n/2) + n, T(1)=1 (and n = 2k)

 = 2(2(T(n/4) + n/2) + n

 = 4T(n/4) + 2n

 = 8T(n/8) + 3n ... inductive step …

 = 2kT(n/2k) + kn

hit base for k = log n
 = n + kn = O(n log n)

1/23/14 CS575 lecture 1 17

Another one: binary search

G(n) = G(n/2) + c, G(1)=1 (and n = 2k)

 = (G(n/4) + c) + c

 = G(n/4) + 2c

 = G(n/8) + 3c ... inductive step …

 = G(n/2k) + kc
hit base for k = log n

 = G(1) + c log n = O(log n)

1/23/14 CS575 lecture 1 18

1/24/14	

10	

Master Method

�  Cookbook solution, based on repeated substitution for a
number of common cases

 f(n) = c f(n/d) + k np

�  if C < dp then An = O(np)
 e.g., An = 3 An/2+n2

�  if C = dp then An = O(nplog(n))
 e.g., An = 2An/2+n

�  if C > dp then An = O(nlogdc)
 e.g., An = 3 An/2+n

�  Covered in CS 420 (& CS420dl)

�  Do

1/23/14 CS575 lecture 1 19

Examples

�  Merge Sort
 T(n) = 2T(n/2) + n, T(1)=1

 C=? d=? p=? dp=?

 T(n) = O(???)

�  Binary Search
 f(n) = f(n/2)+c f(1)=1

 C=? d=? p=? dp=?

 f(n) = O(???)

1/23/14 CS575 lecture 1 20

1/24/14	

11	

shared
memory

thread
block

GPU Programming

1/23/14 CS575 lecture 1 21

grid of thread blocks

memcpy
global memory

host

host
 memcpy-s data
 launches kernels
 on threads

host memory

Questions

� How do threads and thread blocks get
allocated to SMPs

� How do they synchronize/communicate
� How do they disambiguate memory

addresses
�  Which thread writes/reads-from where?
�  What if the addresses are in conflict?

� How are things different at the two levels
of memory?

� What about caches?
1/23/14 CS575 lecture 1 22

1/24/14	

12	

Thread allocation

Static allocation
�  Program declares a number of (virtual) thread blocks –

many more than number of SMs
�  Run time system allocates them (details unspecified) to

thread blocks – main idea non-preemptively scheduled,
each TB runs through to completion

�  Within a TB – program has a (virtual) number of threads
each thread knows of two parameters – its thread id
within the TB and the TBs id within the grid.

�  Code is parametric, so
�  programmer’s responsibility to write code so the

algorithm is correctly implemented by this virtual
collection of threads.

1/23/14 CS575 lecture 1 23

Thread Allocation

Static Allocation

�  Program declares a (virtual)

1/23/14 CS575 lecture 1 24

