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Introduction, background
e Complexity, orders of magnitude, recurrences

Models of parallel computing & communication

Performance, efficiency & speedup
e Amdahl, Gustaffson, strong/weak scaling

Parallel algorithms

® Dense linear algebra, prefix sums, graph algorithms, FET

e Slides/lectures complement the text and web resources
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Streamline 475-575 flow

Focus on algorithms and analysis
® Separate courses on distributed systems, networking

Advanced CUDA programming
® Performance tuning

e Using roofline techniques

® Guided by analysis

Beyond CUDA
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Efficient Sequential Algorithms
e Optimize for time or space (memory)

Performance is portable

e Efficient program on Pentium ~ Efficient program on
Opteron

Algorithmic analysis enabled separation of concerns

Asymptotic analysis: problem size N
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® Two independent parameters
® Problem size /N same as before
® Processor count P also grows asymptotically

® (Cost of parallelism:
o Communication
e Synchronization

e Efficient parallel algorithms (machine/model dependent)
e Start with the best sequential algorithm
® (almost) always the best strategy

® Recomputation (redundant computation) is sometimes
better
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Definitions
Bounds

“superlinear”

Why is that wrong

Ideal speedup

Isoefficency
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® Sequential Paradigms: imperative, object oriented,
declarative (functional, relational), ...

e Parallel paradigms
e [anguage style (same as seq)
® Parallelism style:
e TImplicit parallelism
e Explicit parallelism
e Shared memory
e Distributed memory
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® Sequential Paradigms: Super compilers
e Extract parallelism from sequential code

® Programmer has to do nothing, compiler distributes
data, creates and schedules tasks

® Very limited success (only in niche domains)

¢ Implicit parallelism with declarative programs
e Parallel logic languages

e Parallel functional programming
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No side effects, order of execution less constrained
F (P(x,y), Q(v,z)) P and Q can be executed in parallel

Simple single assignment memory model:

® 1o pointers, no write after read or write after write hazards
(dataflow semantics)

FP was long doomed as too high level too inefficient,
because the simple memory model causes lots of copies

FP is coming back: MapReduce approach in data centers
(Google) is a data parallel functional paradigm
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® Multithreading:
¢ OpenMP & CUDA
* P(x,y), Q(y,z)) P and Q can be executed in parallel

® Message Passing (distributed memory)
e MPI

® Programming becomes more complicated

e Synchronization (semaphores, locks, messages)
® creation, allocation, scheduling of processes
® data partitioning
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® References:

® “Introduction to Algorithms,” Cormen Rivest Leiserson
Stein

e (Other texts and/or wiki

e Topics:
e [ntro, asymptotic growth of functions, summations
recurrences
® (Optional/advanced:
® Average case analysis
® Amortized analysis
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O, 6 and Q

e A function f{n) = O(g(n)) iff 3 positive constants ¢ and
nysuch that V n > n,(i.e., eventually/asymptotically)
fin) <g(n) So, g is an upper bound on f

e A function f{n) = Q@ (g(n)) iff I positive constants ¢ and
n, such that V n > n,(i.e., eventually/asymptotically)
f(n) > g(n) So, gis alower bound on f

e A function f{n) = 6 (g(n)), i.e., g is a tight bound on f
(and vice versa) iff f{n) = O(g(n)) and fin) = Q(g(n))
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Complexity of

® some property (e.g., execution time, memory
requirement, etc.)

e of algorithm(s) to solve a problem
® specific algorithm (complexity of the algorithm)

® Jower bounds, quantified over all algorithms (universal
quantifier) to solve that problem: complexity of the
problem

A problem may be “closed” LB= 6 (UB) or “have a gap”
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Algorithmic complexity often described using recurrence
relations:

S =gf (D), f(Q2), ... f(nD)

Two common classes:
e Linear:

e constant number of occurrences of f and argument of each
one is just a some constant less than #

® g¢is a linear function, with possibly one additional term
® D&C (divide and conquer)

e constant number of occurrences of f and argument of each
one is just a some constant factor of »

® Covered in CS 420 (& CS420d1)
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Simple recurrence relations (one recurrent term in the
rhs) can sometimes be solved using repeated
substitution

Two types: Linear and D&C
® F(n) = a F(n-d) + g(n), base: F(I)=v,
® F(n) =a F(n/d) + g(n), base: F(I)=v,

Two questions:
® what is the pattern

® how often is it applied until we hit the base case
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M(n) = 2M(n-1)+1, M(1)=1 recognize this one?
=2 2M(n-2)+1 +1
= 4M(n-2)+2+1 = 4 2M(n-3)+1 +2+1

= 8M(n-3)+4+2+1= ... inductive step ...

= 2XM(n-k)+2K14-2k24 | 4941

Hit the base case for k = n-1:
= 20 IM(1)+20 142024 +2+1
= 24
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Merge sort:

T() =2T(0/2) + n, T(1)=1 (and n = 2k)
=2 2(T(n/4) +n/2 +n
=4T(n/4) + 2n
= 8T(n/8) + 3n ... inductive step ...
= 2kT(n/2k) + kn

hit base for k = log n
=n + kn = O(n log n)
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G(n) = G(n/2) + ¢, G(1)=1 (and n = 2k)
= G(n/4)+c +c
= G(n/4) + 2c
= G(n/8) + 3c ... inductive step ...
= G(n/2k) + kc

hit base for k = log n
= G(1) + clogn = O(log n)
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Cookbook solution, based on repeated substitution for a
number of common cases
f(n) = c f(n/d) + k nP
o ifC<dr then A, = O(nP)
eg., A,=3A, ,+n?
e ifC=dp then A, = O(nPlog(n))
eg.,A =2A ,+n
o ifC>dr then A, = O(n'°24)
eg, A,=3A, ,+n

Covered in CS 420 (& CS420dI)
® Do
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T(n) = 2T(n/2) + n, T(1)=1
C=? d=? p=? dr=?
T(n)=0( 77 )

f(n) = f(n/2)+c f(1)=1
C=? d=? p=? dr=?
flmy=0( M )
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® How do threads and thread blocks get
allocated to SMPs

® How do they synchronize/communicate

¢ How do they disambiguate memory
addresses

o Which thread writes/reads-from where?
o What if the addresses are in conflict?

® How are things different at the two levels
of memory?

e What about caches?
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Static allocation

® Program declares a number of (virtual) thread blocks —
many more than number of SMs

® Run time system allocates them (details unspecified) to
thread blocks — main idea non-preemptively scheduled,
each TB runs through to completion

Within a TB — program has a (virtual) number of threads
each thread knows of two parameters — its thread id
within the TB and the TBs id within the grid.

e (Code is parametric, SO

® programmer’s responsibility to write code so the
algorithm is correctly implemented by this virtual
collection of threads.
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Static Allocation

® Program declares a (virtual)
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