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CS575: Parallel Processing 
Sanjay Rajopadhye CSU 

Lecture 2: Parallel Computer Models 
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Course Topics 

�  Introduction, background 
�  Complexity, orders of  magnitude, recurrences 

�  Models of  parallel computing & communication 

�  Performance, efficiency & speedup 
�  Amdahl, Gustaffson, strong/weak scaling 

�  Parallel algorithms 
�  Dense linear algebra, prefix sums, graph algorithms, FFT 

�  Slides/lectures complement the text and web resources 
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Course Organization 

�  Streamline 475-575 flow 

�  Focus on algorithms and analysis 
�  Separate courses on distributed systems, networking  

�  Advanced CUDA programming 
�  Performance tuning 

�  Using roofline techniques 

�  Guided by analysis 

�  Beyond CUDA 
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Sequential Algorithms 

�  Efficient Sequential Algorithms 
�  Optimize for time or space (memory) 

�  Performance is portable 
�  Efficient program on Pentium ~ Efficient program on 

Opteron 

�  Algorithmic analysis enabled separation of  concerns 

�  Asymptotic analysis: problem size N 

1/23/14 CS575  lecture 1 4 



1/24/14	  

3	  

Parallel Algorithms 

�  Two independent parameters 
�  Problem size N same as before 
�  Processor count P also grows asymptotically 

�  Cost of  parallelism: 
�  Communication 
�  Synchronization 

�  Efficient parallel algorithms (machine/model dependent) 
�  Start with the best sequential algorithm 

�  (almost) always the best strategy 

�  Recomputation (redundant computation) is sometimes 
better 
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Speedup & efficiency 

�  Definitions 

�  Bounds 

�  “superlinear” 

�  Why is that wrong 

�  Ideal speedup 

�  Isoefficency 
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//  Programming Paradigms 

�  Sequential Paradigms: imperative, object oriented, 
declarative (functional, relational), … 

�  Parallel paradigms 
�  Language style (same as seq) 

�  Parallelism style: 
�  Implicit parallelism 

�  Explicit parallelism 
�  Shared memory 

�  Distributed memory 
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Implicit Parallelism 

�  Sequential Paradigms: Super compilers 
�  Extract parallelism from sequential code 

�  Programmer has to do nothing, compiler distributes 
data, creates and schedules  tasks 
�  Very limited success (only in niche domains) 

�  Implicit parallelism with declarative programs 
�  Parallel logic languages 

�  Parallel functional programming 
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Functional Languages 

�  No side effects, order of  execution less constrained 

�  F ( P(x,y), Q(y,z) )   P and Q can be executed  in parallel  

�  Simple  single assignment memory model: 
�  no pointers, no write after read or write after write hazards 

(dataflow semantics) 

�  FP was long doomed as too high level too inefficient, 
because the simple memory model causes lots of  copies 

�  FP  is coming back:  MapReduce approach in data centers 
(Google) is a data parallel functional paradigm 
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Explicit Parallelism 

�  Multithreading: 
�  OpenMP & CUDA 

�  P(x,y), Q(y,z) )   P and Q can be executed  in parallel  

�  Message Passing (distributed memory) 
�  MPI 

�  Programming becomes more complicated 
�  Synchronization (semaphores, locks,  messages) 

�  creation, allocation, scheduling of  processes 

�  data partitioning 
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Background: algorithm 
analysis 

�  References: 
�  “Introduction to Algorithms,” Cormen Rivest Leiserson 

Stein 
�  Other texts and/or wiki 

�  Topics: 
�  Intro, asymptotic growth of  functions, summations 

recurrences 

�  Optional/advanced: 
�  Average case analysis 
�  Amortized analysis 
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Orders of  magnitude 

O, θ and Ω 

�  A function f(n) = O(g(n)) iff  ∃ positive constants c and 
n0 such that ∀ n ≥ n0 (i.e., eventually/asymptotically) 
f(n) < g(n)  So, g is an upper bound on f  

�  A function f(n) = Ω(g(n)) iff  ∃ positive constants c and 
n0 such that ∀ n ≥ n0 (i.e., eventually/asymptotically) 
f(n) > g(n)  So, g is a lower bound on f  

�  A function f(n) = θ(g(n)), i.e., g is a tight bound on f 
(and vice versa) iff  f(n) = O(g(n)) and  f(n) = Ω(g(n)) 
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Algorithmic complexity 

Complexity of  

�  some property (e.g., execution time, memory 
requirement, etc.) 

�  of  algorithm(s) to solve a problem 
�  specific algorithm (complexity of  the algorithm) 

�  lower bounds, quantified over all algorithms (universal 
quantifier) to solve that problem: complexity of  the 
problem 

A problem may be “closed” LB=θ(UB) or “have a gap” 
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Recurrence Relations 

�  Algorithmic complexity often described using recurrence 
relations: 

 f  (n) = g(f  (1), f  (2), …  f  (n-1)) 

�  Two common classes: 
�  Linear: 

�  constant number of  occurrences of  f  and argument of  each 
one is just a some constant less than n 

�  g is a linear function, with possibly one additional term 

�  D&C (divide and conquer) 
�  constant number of  occurrences of  f  and argument of  each 

one is just a some constant factor of  n 
�  Covered in CS 420 (& CS420dl) 
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Repeated Substitution 

�  Simple recurrence relations (one recurrent term in the 
rhs) can sometimes be solved using repeated 
substitution 

�  Two types:  Linear and D&C 
�  F(n) = a F(n-d) + g(n), base: F(1)=v1 
�  F(n) = a F(n/d) + g(n), base: F(1)=v1  

�  Two questions: 
�  what is the pattern 

�  how often is it applied until we hit the base case 
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Linear Example 

M(n) = 2M(n-1)+1,  M(1)=1        recognize this one? 
  = 2(2M(n-2)+1)+1 
  = 4M(n-2)+2+1 = 4(2M(n-3)+1)+2+1 

   = 8M(n-3)+4+2+1= … inductive step … 

   = 2kM(n-k)+2k-1+2k-2+...+2+1 

Hit the base case for k = n-1: 

   = 2n-1M(1)+2n-1+2n-2+...+2+1 

   = 2n-1 
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D&C Example 

Merge sort: 

T(n) = 2T(n/2) + n,  T(1)=1 (and n = 2k) 

 = 2(2(T(n/4) + n/2) + n 

 = 4T(n/4) + 2n 

 = 8T(n/8) + 3n ... inductive step … 

 = 2kT(n/2k) + kn  

hit base for k = log n 
   = n + kn = O(n log n) 
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Another one: binary search 

G(n) = G(n/2) + c,  G(1)=1 (and n = 2k) 

 = (G(n/4) + c) + c 

 = G(n/4) + 2c 

 = G(n/8) + 3c ... inductive step … 

 = G(n/2k) + kc  
hit base for k = log n 

   = G(1) + c log n = O(log n) 
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Master Method 

�  Cookbook solution, based on repeated substitution for a 
number of  common cases 

 f(n) = c f(n/d) + k np 

�  if  C < dp   then An = O(np) 
     e.g.,   An = 3 An/2+n2 

�  if  C = dp    then An = O(nplog(n)) 
     e.g., An = 2An/2+n 

�  if  C > dp    then An = O(nlogdc) 
     e.g.,  An = 3 An/2+n 

�  Covered in CS 420 (& CS420dl) 

�  Do  
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Examples 

�  Merge Sort 
 T(n) = 2T(n/2) + n,  T(1)=1 

    C=?    d=?  p=?  dp=? 

    T(n) = O(  ???    ) 

�  Binary Search 
 f(n) = f(n/2)+c    f(1)=1 

    C=?    d=?  p=?  dp=? 

    f(n) = O(  ???    ) 
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shared 
memory 

thread 
block 

GPU Programming 
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grid of thread blocks 

memcpy 
global memory 

host 

host  
  memcpy-s data 
  launches kernels 
     on threads 

host memory 

Questions 

� How do threads and thread blocks get 
allocated to SMPs 

� How do they synchronize/communicate 
� How do they disambiguate memory 

addresses 
�  Which thread writes/reads-from where? 
�  What if  the addresses are in conflict? 

� How are things different at the two levels 
of  memory? 

� What about caches? 
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Thread allocation 

Static allocation 
�  Program declares a number of  (virtual) thread blocks – 

many more than number of  SMs 
�  Run time system allocates them (details unspecified) to 

thread blocks – main idea non-preemptively scheduled, 
each TB runs through to completion 

�  Within a TB – program has a (virtual) number of  threads 
each thread knows of  two parameters – its thread id 
within the TB and the TBs id within the grid. 

�  Code is parametric, so 
�  programmer’s responsibility to write code so the 

algorithm is correctly implemented by this virtual 
collection of  threads. 
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Thread Allocation 

Static Allocation 

�  Program declares a (virtual)  
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