
Challenges for Future Computing Systems 
Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford 



Exascale Computing Will Enable 
Transformational Science 

 
 



Climate 

Comprehensive Earth System 
Model at 1KM scale, enabling 
modeling of cloud convection and 
ocean eddies. 



Combustion 

First-principles simulation of 
combustion for new high-efficiency, 
low-emision engines. 



Biology 

Coupled simulation of entire 
cells at molecular, genetic, 
chemical and biological levels. 



Astrophysics 

Predictive calculations for 
thermonuclear and core-collapse 
supernovae, allowing confirmation 
of theoretical models. 



Exascale Computing Will Enable 
Transformational Science 

 
High-Performance Computers are 

Scientific Instruments 



18,688 NVIDIA Tesla K20X GPUs 
27 Petaflops Peak: 90% of Performance from GPUs 
17.59 Petaflops Sustained Performance on Linpack 

TITAN 



Tsubame KFC 4.5GFLOPS/W 
#1 on Green500 List 



US to Build Two Flagship Supercomputers 

Major Step Forward on the Path to Exascale 

 

150-300 PFLOPS Peak Performance 

IBM POWER9 CPU + NVIDIA Volta GPU 

NVLink High Speed Interconnect 

40 TFLOPS per Node, >3,400 Nodes 

2017 

SUMMIT SIERRA 



Scientific Discovery  
and Business Analytics 

Driving an Insatiable Demand for  
More Computing Performance 





2 Trends 
 

The End of Dennard Scaling 
 

Pervasive Parallelism 
 
 



2 Trends 
 

The End of Dennard Scaling 
 

Pervasive Parallelism 
 
 



Moore’s Law doubles processor 
performance every few years, right? 

 
 
 



Moore’s Law doubles processor 
performance every few years, right? 

 
 

Wrong! 



Moore’s Law gives us transistors 
Which we used to turn into scalar 
performance 

Moore, Electronics 38(8) April 19, 1965 



Moore’s Law is Only Part of the Story 

2001: 42M Tx 
2004: 275M Tx 

1993: 3M Tx 

2010: 3B Tx 
2007: 580M Tx 

1997: 7.5M Tx 

2012: 7B Tx 



1 

1.5 

2 

2.5 

3 

1 1.5 2 2.5 3 

Ch
ip

 P
ow

er
 

Chip Capability 

Classic Dennard Scaling  
2.8x chip capability in same power 

2x more 
transistors 

Scale chip features down 0.7x per process generation 

1.4x faster 
transistors 

0.7x 
voltage 

0.7x 
capacitance 



But L3 energy scaling ended in 2005 

Moore, ISSCC Keynote, 2003 



Post Dennard Scaling 
2x chip capability at 1.4x power 

1.4x chip capability at same power 

1 

1.5 

2 

2.5 

3 

1 1.5 2 2.5 3 

Ch
ip

 P
ow

er
 

Chip Capability 

2x more 
transistors 

0.7x 
capacitance 

Transistors are no faster 
Static leakage limits reduction in Vth => Vdd stays constant 



Reality isn’t even this good 
1.8x chip capability at 1.5x power 
1.2x chip capability at same power 

1 

1.5 

2 

2.5 

3 

1 1.5 2 2.5 3 

C
hi

p 
Po

w
er

 

Chip Capability 

1.8x more 
transistors 0.85x energy 

Restrictive geometry rules reduce transistor count 
Energy scales slower than linearly 



“Moore’s Law gives us more transistors… 

Dennard scaling made them useful.” 

Bob Colwell, DAC 2013, June 4, 2013 



ISAT LCC: 24 

Also, ILP was ‘mined out’ in 2000 

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

19%/year 30:1 

1,000:1 
30,000:1 

Dally et al. “The Last Classical Computer”, ISAT Study, 2001 



Result: The End of Historic Scaling 

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011 



The End of Dennard Scaling 

!   Processors aren’t getting faster, just wider 
!   Future gains in performance are from parallelism 

!   Future systems are energy limited 
!   Efficiency IS Performance 

!   Process matters less 
!   One generation is 1.2x, not 2.8x 



Its not about the FLOPs 

16nm chip, 10mm on a side, 200W 

DFMA 0.01mm2 10pJ/OP – 2GFLOPs 
A chip with 104 FPUs: 
100mm2 

200W 
20TFLOPS 
 
Pack 50,000 of these in racks 
1EFLOPS 
10MW  
 



Overhead 
 

Locality 



CPU 
 1690 pJ/flop 
Optimized for Latency 

Caches 

Westmere 
32 nm 

GPU 
140 pJ/flop 

Optimized for Throughput 
Explicit Management 
of On-chip Memory 

Kepler 
28 nm 



Fixed-Function Logic is Even More 
Efficient 

Energy/Op 
CPU 1.7nJ 
GPU 140pJ 
Fixed-Function 10pJ 



How is Power Spent in a CPU? 

In-order Embedded OOO Hi-perf 

Clock + Control Logic 
24% 

Data Supply 
17% 

Instruction Supply 
42% 

Register File 
11% 

ALU   6% 
Clock + Pins 

45% 

ALU 
4% 

Fetch 
11% 

Rename 
10% 

Issue 
11% 

RF 
14% 

Data 
Supply 
5% 

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264) 



Overhead  
980pJ 

Payload 
Arithmetic 

20pJ 



4/11/11 Milad Mohammadi 33 



ORF ORFORF

LS/BRFP/IntFP/Int

To LD/ST

L0Addr
L1Addr

Net

LM 
Bank

0

To LD/ST

LM 
Bank

3

RF
L0Addr
L1Addr

Net

RF

Net

Data
Path

L0
I$

Th
re

ad
 P

Cs
Ac

tiv
e

PC
s

Inst

Control
Path

Sc
he

du
ler

64 threads
4 active threads
2 DFMAs (4 FLOPS/clock)
ORF bank: 16 entries (128 Bytes)
L0 I$: 64 instructions (1KByte)
LM Bank: 8KB (32KB total)



Simpler Cores  
= Energy Efficiency 

Source: Azizi [PhD 2010] 



Overhead  
20pJ 

Payload 
Arithmetic 

20pJ 



SIMT Lanes 

Streaming Multiprocessor (SM) 

Warp Scheduler 

Shared Memory 
32 KB 

15% of SM Energy Main Register File 
32 banks 

ALU SFU MEM TEX 



Hierarchical Register File 

0% 

20% 

40% 

60% 

80% 

100% 

Pe
rc

en
t 

of
 A

ll 
Va

lu
es

 P
ro

du
ce

d 

Read >2 Times 

Read 2 Times 

Read 1 Time 

Read 0 Times 

0% 

20% 

40% 

60% 

80% 

100% 

Pe
rc

en
t 

of
 A

ll 
Va

lu
es

 P
ro

du
ce

d 

Lifetime >3 

Lifetime 3 

Lifetime 2 

Lifetime 1 



Register File Caching (RFC) 

S 
F 
U 

M 
E 
M 

T 
E 
X 

Operand Routing 

Operand Buffering 

MRF 
4x128-bit Banks (1R1W) 

RFC 4x32-bit 
(3R1W) Banks 

ALU 



Energy Savings  
from RF Hierarchy 
54% Energy Reduction 

Source: Gebhart, et. al (Micro 2011) 



Temporal SIMT 

32-wide datapath 

time 

1 
cy

c 

1 warp instruction = 32 threads 

thread 
0 

 thread 
31 

ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  
ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  ld  
ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

ml ml ml ml 
ad ad ad ad 
st st st st 

Spatial SIMT (current GPUs) 

1-wide 

time 

1 
cy

c 

ld  
ld  
ld  
ld  
ld  
ld  
ld  

  0 
(threads) 

  1 
  2 
  3 
  4 
  5 
  6 
  7 ld  

ld  
ld  

  8 
  9 

ld   10 

Pure Temporal SIMT 



Temporal SIMT Optimizations 

Control divergence — hybrid MIMD/SIMT 

 
Scalarization 

Factor common instructions from multiple threads 
Execute once – place results in common registers 

32-wide 
(41%) 

4-wide 
(65%) 

1-wide 
(100%) 



Scalar Instructions in SIMT Lanes 

Scalar instruction 
spanning warp 

Scalar register 
visible to all threads 

Temporal 
execution of Warp Multiple 

lanes/warps Y. Lee, CGO 2013 



Scalarization Eliminates Work 

0.0!

0.2!

0.4!

0.6!

0.8!

1.0!

1.2!

mm
!

nn
!

lav
aM
D!

ga
us
sia
n! bfs

!

ba
ckp
rop
!

str
ea
mc
lus
ter
!

lud
!

sra
d-v
1! fft!

sra
d-v
2!

mr
i-q
!

cu
tcp
!

nw
!

ho
tsp
ot! lbm

!
cfd
!

ste
nc
il!

leu
ko
cyt
e!

pa
thfi
nd
er!

he
art
wa
ll!

sp
mv
!

km
ea
ns
!

av
era
ge
!

(b
) O

ps
 e

xe
cu

te
d!

!

Series2! Series3! Series4! Series5! Series1!

Each group shows results for warp sizes of 4,8,16,32 

Microarchitecture Action Savings (WS=32) 

Instructions issued 41% 

Operations executed 29% 

Registers read 31% 

Registers written 30% 

Memory addresses and cache tag checks 47% 

Memory data elements accessed 38% 

Y. Lee, CGO 2013 



64-bit DP 
20pJ 26 pJ 256 pJ 

1 nJ 

500 pJ Efficient 
off-chip link 

256-bit buses 

16 nJ DRAM 
Rd/Wr 

256-bit access 
8 kB SRAM 50 pJ 

20mm 

Communication Dominates Arithmetic 



Processor Technology 40 nm 10nm 

Vdd (nominal) 0.9 V 0.7 V 

DFMA energy 50 pJ 7.6 pJ 

64b 8 KB SRAM Rd 14 pJ 2.1 pJ 

Wire energy (256 bits, 10mm) 310 pJ 174 pJ 

Memory Technology 45 nm 16nm 

DRAM interface pin bandwidth 4 Gbps 50 Gbps 

DRAM interface energy 20-30 pJ/bit 2 pJ/bit 

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit 

Keckler [Micro 2011], Vogelsang [Micro 2010] 

Energy Shopping List 

FP Op lower bound 
= 

4 pJ 



● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ●

●●
●

●
●

●

●●

●

●

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Maximum Frequency (GHz)

E
n

e
rg

y
 p

e
r 

b
it

 p
e
r 

m
m

 (
fJ

)

● FSI

LSI (200 mV)

LSI (400 mV)

CDI

SCI



DRAM Wordline Segmentation 
!   Local Wordline Segmentation 

(LWS) 
!   Activate a portion of each mat 
!   Activate the same segment in all 

mats 

!   Master Wordline Segmentation 
(MWS) 
!   Activate subset of mats 
!   New data layout such that a DRAM 

atom resides in the activated mats 
!   Multiple narrow subchannels in 

each channel 

LWS 

MWS 



Activation Energy Reduction 

!   LWS+MWS: up to 73%, average 68%  
  

!   LWS: 26% 
Reductions in DRAM Row Energy 

!   MWS: 49% 

0 

2 

4 

6 

8 

10 

12 

b
it
o
n
ic
-s
o
rt
 

d
e
b
a
y
e
r 

ff
t-
1
d
_
k
0
 

ff
t-
2
d
_
k
0
 

ff
t-
2
d
_
k
1
 

ff
t-
2
d
_
k
2
 

ff
t-
2
d
_
k
3
 

gp
u
sv

m
_
k
0
 

gp
u
sv

m
_
k
1
 

gp
u
sv

m
_
k
2
 

gp
u
sv

m
_
k
3
 

im
g_

re
g_

k
0
 

im
g_

re
g_

k
1
 

im
g_

re
g_

k
2
 

im
g_

re
g_

k
3
 

P
E
R
F
E
C
T
 (
a
vg

) 

R
o
d
in

ia
 (
a
vg

) 

p
J
/
b
it

 

Row Energy Consumption  (per bit transferred to/from DRAM) 

Baseline LWS_4 MWS_4 MWS_4 + LWS_4 



GRS Test Chips 

Probe Station 

Test Chip #1 on Board 

Test Chip #2 fabricated on production GPU 

Eye Diagram from Probe Poulton et al. ISSCC 2013, JSSCC Dec 2013 



Circuits: Ground Referenced Signaling 

On-chip Signaling 
! Testsite on GM2xx GPU 
!   <45fJ/bit-mm 

TX 

Repeater 

RX 

Goal: reduce Energy/bit    
200fJ/bit-mm g 20fJ/bit-mm 

With GPU noise 

 

Without GPU noise 

Measurement Results 

 



The Locality Challenge 
Data Movement Energy 77pJ/F 

0 

50 

100 

150 

200 

250 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1K 32K 1M 32M 1G 

pJ
/B

   
pJ

/F
x5

 

B/
F 

B/F 

pJ/B 

pJ/F x5 



Optimized Architecture & Circuits 
77pJ/F -> 18pJ/F 

0 

5 

10 

15 

20 

25 

30 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1K 32K 1M 32M 1G 

pJ
/B

   
pJ

/F
x5

 

B/
F 

B/F 

pJ/B 

pJ/F x5 



Moore’s Law is Only Part of the Story 

2001: 42M Tx 
2004: 275M Tx 

1993: 3M Tx 

2010: 3B Tx 
2007: 580M Tx 

1997: 7.5M Tx 

2012: 7B Tx 



2 Trends 
 

The End of Dennard Scaling 
 

Pervasive Parallelism 
 
 



Processors aren’t getting faster 
just wider 



Thread Count (CPU+GPU) 

2013 (28nm) 2020 (7nm) 

Cell Phone 4+1,000 16+4,000 

Server Node 12+10,000 32+40,000 

Supercomputer 105+108 106+109 



Parallel programming is not inherently any 
more difficult than serial programming 
 
However, we can make it a lot more difficult 



A simple parallel program 

!
forall molecule in set { // launch a thread array!
    forall neighbor in molecule.neighbors { // nested!
        forall force in forces { // doubly nested!
           molecule.force = !
             reduce_sum(force(molecule, neighbor))!
        }!
    }!
}!



Why is this easy? 

!
forall molecule in set { // launch a thread array!
    forall neighbor in molecule.neighbors { // nested!
        forall force in forces { // doubly nested!
           molecule.force = !
             reduce_sum(force(molecule, neighbor))!
        }!
    }!
}!

No machine details 
All parallelism is expressed 
Synchronization is semantic (in reduction) 



We could make it hard 

!
pid = fork() ; // explicitly managing threads!
!
lock(struct.lock) ;  // complicated, error-prone synchronization!
// manipulate struct!
unlock(struct.lock) ;!
!
code = send(pid, tag, &msg) ;  // partition across nodes!



Programmers, tools, and architecture 
Need to play their positions 

Programmer 

Architecture Tools 

!
forall molecule in set { // launch a thread array!
    forall neighbor in molecule.neighbors { //!
        forall force in forces { // doubly nested!
           molecule.force = !
             reduce_sum(force(molecule, neighbor))!
        }!
    }!
}!

Map foralls in time and space 
Map molecules across memories 
Stage data up/down hierarchy 
Select mechanisms 

Exposed storage hierarchy 
Fast comm/sync/thread mechanisms 
 



Target-
Independent 

Source 

Mapping 
Tools 

Target-
Dependent 
Executable 

Profiling & 
Visualization 

Mapping 
Directives 



Optimized Circuits 
77pJ/F -> 18pJ/F 

0 

5 

10 

15 

20 

25 

30 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1K 32K 1M 32M 1G 

pJ
/B

   
pJ

/F
x5

 

B/
F 

B/F 

pJ/B 

pJ/F x5 



Autotuned Software 
18pJ/F -> 9pJ/F 

0 

5 

10 

15 

20 

25 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

1K 32K 1M 32M 1G 

pJ
/B

   
pJ

/F
x5

 

B/
F 

B/F 

pJ/B 

pJ/F x5 



Conclusion 

!   Power-limited: from data centers to cell phones 
! Perf/W is Perf 

!   Throughput cores 
!   Reduce overhead 

!   Data movement 
!   Circuits: 200 -> 20 
!   Optimized software 

!   Parallel programming is simple – we can make it hard 
!   Target-independent programming – mapping via tools 




