Sanjay Rajopadhye
Colorado State University

MÉLANGE: Spring 2018

Plan for today

- Introductions
 - Name, year, status

- PARRIC: Polyhedral Acceleration of RNA-RNA Interaction Computations

- Future directions
RNA-RNA Interaction (RRI) is an important scientific challenge

- Potential cure for cancer
- Computational models of RRI (piRNA, IRIS) are important but very expensive in
 - Time: $\theta(N^3M^3)$ for lengths M and N
 - Space $\theta(N^2M^2)$
- We will show 100-million-fold speedup

Need for Speed

- piRNA is slow and a memory hog
 - For two sequences of length 100 each, piRNA takes 3.5 hours on a 64-core machine with 512GB RAM
 - Cannot handle sequences longer than 200 ($N^*M > 40k$)
 - Machine goes unresponsive must be rebooted
- For whole genome analysis:
 - 30,000 genes (~2k length)
 - 500 “interesting” small RNAs (length ~100)
 - i.e., 15 million calls to piRNA
 - Each call to piRNA would take 3.5*8000 hrs
 - On an 8 Terabyte machine
 - 15 million calls would take 50 million years
 - We will do it in six months on 100 department machines
How to get there

- Easy parallelization (use 10^6 “large enough” machines on the cloud) is too expensive
- Make piRNA run efficiently on small RAM machines (e.g., 16GB)
- Speed it up on 100 machines in the department
 - Need 10^6-fold speedup on each machine
 - 1000-fold by using locality/parallelism/vectorization
 - 1000-fold by filtering on only 0.1% interesting pairs of sequences
 - Still needs 1000-fold speedup of filtering program

WE can get there

- Showed 100-fold speedup of “miniapp” called (OSP)2
- 100-times simpler than piRNA
- On small (fits in RAM) problem sizes
- We have the expertise to do this on multi-cores & also GPUs
Abstractions

Six abstractions
- Algorithms (Alg)
- Applications (App)
- Programming Languages and Systems (PLS)
- Architecture and Systems (Arch)
- Extensible Distributed Systems (EDS)
- Performance Portability (Perf)

Explain which abstractions you break, what you propose, and how you will validate.

Existing Abstractions

For application specialist (e.g., piRNA author)

\[Q_{i,j} = \sum_{i \leq k_1 < k_2 \leq j} Q_{k_1,k_2}^b Q_{k_2,j} \]

Recurrence Equations

Colorado State University
Who does What

Colorado State University

Shared Memory (OpenMP/Cilk/X, ...)

GPUs (CUDA/OpenCL)

FPGAs/Reconfigurable Hardware

CODE

RUN / MEASURE

PROFILE

PERFORMANCE

DATA

ANALYZE

OPTIMIZATION

STRATEGY

BOTTNECKOLOGY

PERFORMANCE

MODEL

iterate

iterate

iterate

Colorado State University
Polyhedral Model (Zorro)

Polyhedral Challenges

- **piRNA** is beyond current tools (few tens of lines to kLoC)
- **Multilevel tiling**: virtual memory, DRAM, caches, (and 2-levels of parallelism: cores & vector units)
- Legality of tiling: all six dimensions must be tiled: is that legal?
 - GKT: middle serialization (known since 1979, still not fully automatic)
- **Raise** the level of abstraction:
 - Sloppy Equations: Hamid should write ~100 eqns, not kLoC in C++
- Simultaneously schedule & tile reductions
 - On (OSP)^2 PLuTO slows down the program (mostly)
Possible Projects

- Three orthogonal choices
 - Algorithm/Program:
 - Matrix multiplication: MM
 - Matrix multiplication on max-plus semiring MPMM
 - Optimal String Parenthesization: OSP
 - Square of that: OSP^2
 - Others
 - Platform: CPU or GPU or FPGA or ???
 - Problem size: standard (fits in DRAM) or large (needs virtual memory)
 - Bottleneckology: take it as far as you can