CSXx55: DISTRIBUTED SYSTEMS [THREADS]

Threads: Reap What You Sow

Care to use more than a core?
Let threads come to the fore

Maximize your utilizations they will
Spurn them at your throughputs’ peril

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Topics covered in this lecture

7 Wrap-up of HW1

o Threads
Rationale
Contrasting threads with processes

Thread Creation

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

2.2

HW1: DISCUSSION

(R%%) COLORADO STATE UNIVERSITY

COMPUTER SCIENCE DEPARTMENT X

Overlay topology set up with C, = 4

The registry tells each messaging node who it

should connect to via the Messaging Nodes List
Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

L2.4

Overlay topology set up with C, = 4

E.g.: Path From C to |

The registry tells each messaging node who it

should connect to via the Messaging Nodes List
Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

L2.5

Looking at another overlay topology that could be
set up with C, = 4

This topology has a partition. The assignment asks you to prevent this.
Nodes A,B, C, D and E have no way of communicating with F,G,H,I, and J.

Professor: SHRIDEEP PALLICKARA
L2.6

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

Avoiding network partitions

Create a linear topology first, and then start making the required
number of connections

A->B->C->D>E->F->G->H->I->J

Starting off at the point ensures that partitions will not exist

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

L2.7

Other topological aspects

Necessary and sufficient conditions for a k-regular graph of order 7
to exist?

n>ktl

nk is even

During testing we will only specify values where a solution exists

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.8

What is the Minimum Spanning Tree?

A way of connecting all vertices in a graph using the smallest
possible total edge weight

No cycles allowed

Every vertex is connected, but no loops are formed

Think of it as the cheapest network i.e., it is the leanest way to link
everything together

For e.g.: designing computer networks, road systems, or electrical grids

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.9

Example of an MST

Kruskal and Prim are both greedy
algorithms

Kruskal works better when
The graph is sparse

Also: simpler to implement

Prim works better when

Graph is dense (higher number of
edges)

Image Source: Wikipedia

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.10

Does the MST give you the shortest path between
two nodes?

A minimum spanning tree doesn’t guarantee the shortest route
between two nodes

An MST connects all nodes with the minimum total edge weight
Why not shortest?

An MST may choose a longer, indirect route if it helps keep the overall
weight down

For e.g., even if a cheap direct edge exists, the MST might bypass it to
minimize the total cost of the tree

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.11

Your programs will be working with two different
data representations

In memory: This is where you have your data structures such as lists,
arrays, hash tables, trees, etc.

Data that you will sending over the network?
You do this as a self-contained sequences of bytes

Do references or pointers make sense here?
No!

So, the sequence-of-bytes representation will look VERY different from data
structures in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS [2.12

So, we do need some translation between these
representations

Translation from in-memory to network-bound byte sequence

Marshalling

Also called serialization or encoding

Translation from network-bound sequence to in-memory representation
(i.e., restoration of data structure)

Unmarshalling

Also called deserialization or decoding

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS [2.13

Marshalling and Unmarshalling

_
1 Marshalling
O Pack fields into a byte array

7 Unmarshalling

O Unpack byte array and populate fields that comprise the wire format
message

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.14

Example: Data Structure [1/3]
e

public class WireFormatWidget {

private int type;

private long timestamp;
private String identifier;
private int tracker;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.15

Example: Marshalling [2/3]

public byte[] getBytes() throws IOException {
byte[] marshalledBytes = null;
ByteArrayOutputStream baOutputStream = new ByteArrayOutputStream();
DataOutputStream dout =
new DataOutputStream(new BufferedOutputStream(baOutputStream));

dout.writelnt(type);
dout.writeLong(timestamp);

byte[] identifierBytes = identifier.getBytes();
int elementlLength = identifierBytes.length;
dout.writelnt(elementLength);
dout.write(identifierBytes);

dout.writelnt(tracker);

dout.flush();
marshalledBytes = baOutputStream.toByteArray();

baOutputStream.close();
dout.close();
return marshalledBytes;

} Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.16

Example: Unmarshalling [3/3]
—

public WireFormatWidget(byte[] marshalledBytes) throws IOException {
ByteArraylnputStream balnputStream =
new ByteArraylnputStream(marshalledBytes);
DatalnputStream din =
new DatalnputStream(new BufferedinputStream(balnputStream));

type = din.readint();
timestamp = din.readLong();

int identifierLength = din.readInt();

byte[] identifierBytes = new byte[identifierLength];
din.readFully(identifierBytes);

identifier = new String(identifierBytes);

tracker = din.readInt();

balnputStream.close();
din.close();

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.17

How to send data
—

public class TCPSender {

private Socket socket;
private DataOutputStream dout;

public TCPSender(Socket socket) throws IOException {
this.socket = socket;
dout = new DataOutputStream(socket.getOutputStream());

}

public void sendData(byte[] dataToSend) throws IOException {
int datalLength = dataToSend.length;
dout.writelnt(dataLength);
dout.write(dataToSend, 0, dataLength);
dout.flush();

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.18

How to receive data [1/2]
S

public class TCPReceiver implements Runnable {

private Socket socket;
private DatalnputStream din;

public TCPReceiver(Socket socket) throws IOException {
this.socket = socket;
din = new DatalnputStream(socket.getInputStream());

}

public void run() {

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.19

How to receive data [2/2]
S

public void run() {

int dataLength;
while (socket != null) {

try {
datalLength = din.readInt();

byte[] data = new byte[datalLength];
din.readFully(data, 0, dataLength);

} catch (SocketException se) {
System.out.printin(se.getMessage());
break;

} catch (IOException ioe) {
System.out.printin(ioe.getMessage()) ;
break;

}

}
}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.20

A simple breakdown of classes [1/5]

csx55.overlay.wireformats
Protocol
Event [This is an interface with the getType() and getBytes() defined]
EventFactory [Singleton instance]
Register
Deregister
MessagingNodesList
LinkWeights
TaskInitiate
Message
TaskComplete
TaskSummaryRequest
TaskSummaryResponse

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.21

A simple breakdown of classes [2/5]
N

11 csx55.overlay.spanning
o MinimumSpanningTree

o1 RoutingCache

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.22

A simple breakdown of classes [3/5]
e

11 csx55.overlay.util
o1 OverlayCreator
o StatisticsCollectorAndDisplay

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.23

A simple breakdown of classes [4/5]
N

11 csxb5.overlay.transport
o TCPServerThread
o TCPSender
o1 TCPReceiverThread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.24

A simple breakdown of classes [5/5]

csx55.overlay.node

Node [Interface with the onEvent(Event) method]
Registry
MessagingNode

Registry and MessagingNode should both implement the Node interface
with the onEvent(Event) method in it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.25

Many hands make light work. John Heywood (1546)

THREADS

COMPUTER SCIENCE DEPARTMENT

R¥5) COLORADO STATE UNIVERSITY

Why should you care about threads?

CPU clock rates have tapered off

Days when you could count on “free” speed-up are long gone
Manufacturers have transitioned to multicore processors
Each with multiple hardware execution pipelines

A single threaded process can utilize only one of these execution
pipelines

Reduced throughput

But more importantly, threads are awesome!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.27

What we will look at
—

o Threads and its relation to processes
o Thread lifecycle
o1 Contrasting approaches to writing threads

-1 Data synchronization and visibility

o1 Avoiding race conditions
o Thread safety
o Sharing objects and confinement
11 Locking strategies

7 Writing thread-safe classes

Professor: SHRIDEEP PALLICKARA ._}‘\l
COLORADO STATE UNIVERSITY (o men SeIENGE DEPARTI L

What are threads?

Miniprocesses or lightweight processes

Why would anyone want to have a kind of process within a process?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.29

The main reason for using threads

In many applications multiple activities are going on at once

Some of these may block from time to time

Decompose application into multiple sequential threads

Running concurrently

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.30

Isn’t this precisely the argument for processes?

Yes, but there is a new dimension ...

Threads have the ability to share the address space (and all of its
data) among themselves

For several applications

Processes (with their separate address spaces) don’t work

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.31

Threads execute their own piece of code
independently of other threads, but ...

No attempt is made to achieve high-degree of concurrency
fransparency

Especially, not at the cost of performance

Only maintains information to allow a CPU to be shared among
several threads

Thread context

CPU Context + Thread Management info
List of blocked threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.32

Information not strictly necessary to manage multiple

threads is ignored
——

11 Protecting data against inappropriate accesses by multiple threads in
a process?

Developers must deal with this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.33

Contrasting items unique & shared across threads

Per process items Per thread items
{Shared by threads with a process} {Items unique to a thread}

Address space Program Counter

Global variables Registers
Open files Stack
Child Processes State

Pending alarms
Signals and signal handlers

Accounting Information

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L2.34

A process with multiple threads of control can

erform more than 1 task at a time
-—

CODE DATA FILES CODE DATA FILES

Traditional Heavy weight process Process with multiple threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.35

THREADS VS. MULTIPLE PROCESSES

Why prefer multiple threads over multiple
pProcesses?

Threads are cheaper to create and manage than processes

Resource sharing can be achieved more efficiently between threads
than processes

Threads within a process share the address space of the process
Switching between threads is cheaper than for processes

BUT ... threads within a process are not protected from one another

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.37

Other costs for processes

When a new process is created to perform a task there are other costs

In a kernel supporting virtual memory the new process will incur page faults

Due to data and instructions being referenced for the first time

Hardware caches must acquire new cache entries for that particular
process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.38

Contrasting the costs for threads [1/2]

With threads these overheads may also occur, but they are likely to be
smaller

When thread accesses code & data that was accessed recently by other
threads in the process?

Automatically take advantage of any hardware or main memory caching

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.39

Contrasting the costs for threads [2/2]

Switching between threads is much faster than that between
processes

This is a cost that is incurred many times throughout the lifecycle of the
thread or process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.40

Implications?

Performance of a multithreaded application is seldom worse than a
single threaded one

Actually, leads to performance gains

Development requires additional effort

No automatic protection against each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.41

Another drawback of processes is the overheads for

IPC (Inter Process Communications)
—

Switch from Process A Process B
user space to ~ _ Switch from kernel
kernel space = ™S, K| _4** space To user space

| "‘\ Switch context from
process A to B

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS [2.42

Operating System

A process in memory

max {Function parameters,
stack return addresses,

f and local variables}

{Memory allocated dynamically

heap during runtime}
data {Global variables}
text {Program code}

low

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.43

Why each thread needs its own stack [1/2]
]

o Stack contains one frame for each procedure called but not returned
from

-1 Frame contains
Local variables

Procedure’s return address

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L 2.44

Why each thread needs its own stack [2/2]

Procedure X calls procedure Y, Y then calls Z

When Z is executing?

Frames for X, Y and Z will be on the stack

Each thread calls different procedures

So has a different execution history

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.45

Each thread has its own stack
N

Stack for
thread

Kernel

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.46

Almost impossible to write programs in Java without

threads
e

1 We use multiple threads without even realizing it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.47

Blocking | /O: Reading data from a socket

Program blocks until data is available to satisfy the read () method

Problems:

Data may not be available
Data may be delayed (in transit)

The other endpoint sends data sporadically

If program blocks when it tries to read from socket?

Unable to do anything else until data is actually available

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.48

Three techniques to handle such such situations

/O multiplexing

Take all input sources and use system call, select (), to notify data availability
on any of them

Polling

Test if data is available from a particular source
System call such as pol1l () is used
In Java, available () onthe FilterInputStream

Signals
File descriptor representing signal is set
Asynchronous signal delivered to program when data is available
Java does not support this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.49

Writing to a socket may also block

If there is a backlog getting data onto the network
Does not happen in fast LAN settings

But if it's over the Internet? Possible.

So, often handling TCP connections requires both a sender and
receiver thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.50

Writing programs that do 1/O in Java?
—

1 Use multiple threads
Handle traditional, blocking | /O

71 Use the NIO library
1 Or both

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.51

We are trained to think linearly

Often don’t see concurrent paths our programs may take

No reason why processes that we conventionally think of as single-
threaded should remain so

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.52

Thread Abstraction

A thread is a single execution sequence that represents a separately
schedulable task

Single execution sequence

Each thread executes sequence of instructions — assignments, conditionals, loops,
procedures, etc. — just as the sequential programming model

Separately schedulable task

The OS can run, suspend, or resume a thread at any time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.53

The contents of this slide-set are based on the
following references

Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 1, 2]

Andrew S Tanenbaum. Modern Operating Systems. 3rd Edition, 2007. Prentice Hall.
ISBN: 0136006639/978-0136006633. [Chapter 2]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L2.54

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Topics covered in this lecture
	Slide 3: HW1: Discussion
	Slide 4: Overlay topology set up with CR = 4
	Slide 5: Overlay topology set up with CR = 4
	Slide 6: Looking at another overlay topology that could be set up with CR = 4
	Slide 7: Avoiding network partitions
	Slide 8: Other topological aspects
	Slide 9: What is the Minimum Spanning Tree?
	Slide 10: Example of an MST
	Slide 11: Does the MST give you the shortest path between two nodes?
	Slide 12: Your programs will be working with two different data representations
	Slide 13: So, we do need some translation between these representations
	Slide 14: Marshalling and Unmarshalling
	Slide 15: Example: Data Structure [1/3]
	Slide 16: Example: Marshalling [2/3]
	Slide 17: Example: Unmarshalling [3/3]
	Slide 18: How to send data
	Slide 19: How to receive data [1/2]
	Slide 20: How to receive data [2/2]
	Slide 21: A simple breakdown of classes [1/5]
	Slide 22: A simple breakdown of classes [2/5]
	Slide 23: A simple breakdown of classes [3/5]
	Slide 24: A simple breakdown of classes [4/5]
	Slide 25: A simple breakdown of classes [5/5]
	Slide 26: Threads
	Slide 27: Why should you care about threads?
	Slide 28: What we will look at
	Slide 29: What are threads?
	Slide 30: The main reason for using threads
	Slide 31: Isn’t this precisely the argument for processes?
	Slide 32: Threads execute their own piece of code independently of other threads, but …
	Slide 33: Information not strictly necessary to manage multiple threads is ignored
	Slide 34: Contrasting items unique & shared across threads
	Slide 35: A process with multiple threads of control can perform more than 1 task at a time
	Slide 36: Threads Vs. Multiple Processes
	Slide 37: Why prefer multiple threads over multiple processes?
	Slide 38: Other costs for processes
	Slide 39: Contrasting the costs for threads [1/2]
	Slide 40: Contrasting the costs for threads [2/2]
	Slide 41: Implications?
	Slide 42: Another drawback of processes is the overheads for IPC (Inter Process Communications)
	Slide 43: A process in memory
	Slide 44: Why each thread needs its own stack [1/2]
	Slide 45: Why each thread needs its own stack [2/2]
	Slide 46: Each thread has its own stack
	Slide 47: Almost impossible to write programs in Java without threads
	Slide 48: Blocking I/O: Reading data from a socket
	Slide 49: Three techniques to handle such such situations
	Slide 50: Writing to a socket may also block
	Slide 51: Writing programs that do I/O in Java?
	Slide 52: We are trained to think linearly
	Slide 53: Thread Abstraction
	Slide 54: The contents of this slide-set are based on the following references

