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Threads: Reap What You Sow

Care to use more than a core?

       Let threads come to the fore

Maximize your utilizations they will

       Spurn them at your throughputs’ peril
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Topics covered in this lecture

 Wrap-up of HW1 

 Threads

 Rationale

 Contrasting threads with processes

 Thread Creation
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HW1: DISCUSSION
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Overlay topology set up with CR = 4
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Messaging Node

The registry tells each  messaging node who it 
should connect to via the Messaging_Nodes_List
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Overlay topology set up with CR = 4

Registry
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Messaging Node

The registry tells each  messaging node who it 
should connect to via the Messaging_Nodes_List

E.g.: Path From C to I  
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Looking at another overlay topology that could be 

set up  with CR = 4

Registry
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This topology has a partition. The assignment asks you to prevent this. 
Nodes A,B, C, D and E have no way of communicating with F,G,H,I, and J. 
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Avoiding network partitions

 Create a linear topology first, and then start making the required 

number of connections

 A –> B –> C –> D –>E –> F –> G –>H –> I –> J

 Starting off at the point ensures that partitions will not exist



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.8

Other topological aspects

 Necessary and sufficient conditions for a k-regular graph of order n 
to exist? 

 n ≥ k+1 

 nk is even

 During testing we will only specify values where a solution exists
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What is the Minimum Spanning Tree?

 A way of connecting all vertices in a graph using the smallest 

possible total edge weight

 No cycles allowed 

 Every vertex is connected, but no loops are formed

 Think of it as the cheapest network i.e., it is the leanest way to link 

everything together

 For e.g.: designing computer networks, road systems, or electrical grids
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Example of an MST

 Kruskal and Prim are both greedy 

algorithms

 Kruskal works better when

 The graph is sparse

 Also: simpler to implement

 Prim works better when

 Graph is dense (higher number of 

edges)
Image Source: Wikipedia
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Does the MST give you the shortest path between 

two nodes?

 A minimum spanning tree doesn’t guarantee the shortest route 

between two nodes

 An MST  connects all nodes with the minimum total edge weight

 Why not shortest? 

 An MST may choose a longer, indirect route if it helps keep the overall 

weight down

 For e.g., even if a cheap direct edge exists, the MST might bypass it to 

minimize the total cost of the tree
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Your programs will be working with two different 

data representations

 In memory: This is where you have your data structures such as lists, 

arrays, hash tables, trees, etc.

 Data that you will sending over the network?

 You do this as a self-contained sequences of bytes

 Do references or pointers make sense here?

◼ No!

◼ So, the sequence-of-bytes representation will look VERY different from data 

structures in memory
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So, we do need some translation between these 

representations

 Translation from in-memory to network-bound byte sequence

 Marshalling

◼ Also called serialization or encoding

 Translation from network-bound sequence to in-memory representation 

(i.e., restoration of data structure)

 Unmarshalling

◼ Also called deserialization or decoding
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Marshalling and Unmarshalling

 Marshalling

 Pack fields into a byte array

 Unmarshalling

 Unpack byte array and populate fields that comprise the wire format 

message 
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Example: Data Structure                          [1/3] 

public class WireFormatWidget {

 private int type;
 private long timestamp;
 private String identifier;
 private int tracker;

   ...

}
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Example: Marshalling                              [2/3] 

public byte[] getBytes() throws IOException {
  byte[] marshalledBytes = null;
        ByteArrayOutputStream baOutputStream = new ByteArrayOutputStream();
        DataOutputStream dout =
            new DataOutputStream(new BufferedOutputStream(baOutputStream));
        
        dout.writeInt(type);
        dout.writeLong(timestamp);
        
        byte[] identifierBytes = identifier.getBytes();
        int elementLength = identifierBytes.length;
        dout.writeInt(elementLength);
        dout.write(identifierBytes);
        
        dout.writeInt(tracker);
        
        dout.flush();
        marshalledBytes = baOutputStream.toByteArray();

        baOutputStream.close();
        dout.close();
        return marshalledBytes;
 }
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Example: Unmarshalling                           [3/3] 

public WireFormatWidget(byte[] marshalledBytes) throws IOException {
  ByteArrayInputStream baInputStream =
            new ByteArrayInputStream(marshalledBytes);
        DataInputStream din =
            new DataInputStream(new BufferedInputStream(baInputStream));
        
        type = din.readInt();
        timestamp = din.readLong();
        
        int identifierLength = din.readInt();
        byte[] identifierBytes = new byte[identifierLength];
        din.readFully(identifierBytes);

        identifier = new String(identifierBytes);
        
        tracker = din.readInt();
  
        baInputStream.close();
        din.close();
 }
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How to send data

public class TCPSender {

 private Socket socket;
 private DataOutputStream dout;
 
 public TCPSender(Socket socket) throws IOException {
  this.socket = socket;
  dout = new DataOutputStream(socket.getOutputStream());
 }
 
 public void sendData(byte[] dataToSend) throws IOException {
  int dataLength = dataToSend.length;
  dout.writeInt(dataLength);
  dout.write(dataToSend, 0, dataLength);
        dout.flush();
 }
}
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How to receive data                               [1/2]

public class TCPReceiver implements Runnable {

 private Socket socket;
 private DataInputStream din;
 
 
 public TCPReceiver(Socket socket) throws IOException {
  this.socket = socket;
  din = new DataInputStream(socket.getInputStream());
 }
 
 public void run() {
      ...
    }

}
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How to receive data                                [2/2]

public void run() {
        
  int dataLength;
        while (socket != null) {
            try {
            dataLength = din.readInt(); 
           
            byte[] data = new byte[dataLength];
                din.readFully(data, 0, dataLength);
 
            } catch (SocketException se) {
                System.out.println(se.getMessage());
                break;
            }  catch (IOException ioe) {
                System.out.println(ioe.getMessage()) ;
                break;
            }
        }
}
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A simple breakdown of classes                 [1/5]

 csx55.overlay.wireformats

 Protocol

 Event [This is an interface with the getType() and getBytes() defined]

 EventFactory     [Singleton instance]

 Register

 Deregister

 MessagingNodesList

 LinkWeights

 TaskInitiate

 Message

 TaskComplete

 TaskSummaryRequest

 TaskSummaryResponse
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A simple breakdown of classes                 [2/5]

 csx55.overlay.spanning

 MinimumSpanningTree

 RoutingCache
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A simple breakdown of classes                 [3/5]

 csx55.overlay.util

 OverlayCreator

 StatisticsCollectorAndDisplay
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A simple breakdown of classes                 [4/5]

 csx55.overlay.transport

 TCPServerThread

 TCPSender

 TCPReceiverThread
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A simple breakdown of classes                 [5/5]

 csx55.overlay.node

 Node  [Interface with the onEvent(Event)  method]

 Registry

 MessagingNode

 Registry and MessagingNode should both implement the Node interface 

with the onEvent(Event) method in it
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Many hands make light work. John Heywood (1546)
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Why should you care about threads?

 CPU clock rates have tapered off

 Days when you could count on “free” speed-up are long gone

 Manufacturers have transitioned to multicore processors

 Each with multiple hardware execution pipelines

 A single threaded process can utilize only one of these execution 

pipelines

 Reduced throughput

 But more importantly, threads are awesome!
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What we will look at

 Threads and its relation to processes

 Thread lifecycle

 Contrasting approaches to writing threads

 Data synchronization and visibility

 Avoiding race conditions

 Thread safety

 Sharing objects and confinement

 Locking strategies

 Writing thread-safe classes
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What are threads?

 Miniprocesses or lightweight processes

 Why would anyone want to have a kind of process within a process?
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The main reason for using threads

 In many applications multiple activities are going on at once

 Some of these may block from time to time

 Decompose application into multiple sequential threads

 Running concurrently
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Isn’t this precisely the argument for processes?

 Yes, but there is a new dimension …

 Threads have the ability to share the address space (and all of its 

data) among themselves

 For several applications

 Processes (with their separate address spaces) don’t work
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Threads execute their own piece of code 

independently of other threads, but …

 No attempt is made to achieve high-degree of concurrency 

transparency

 Especially, not at the cost of performance

 Only maintains information to allow a CPU to be shared among 

several threads

 Thread context

 CPU Context + Thread Management info

◼ List of blocked threads
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Information not strictly necessary to manage multiple 

threads is ignored

 Protecting data against inappropriate accesses by multiple threads in 

a process?

 Developers must deal with this
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Contrasting items unique & shared across threads

Per process items 
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space

Global variables

Open files

Child Processes

Pending alarms

Signals and signal handlers

Accounting Information

Program Counter

Registers

Stack

State



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.35

A process with multiple threads of control can 

perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack
Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads



THREADS VS. MULTIPLE PROCESSES
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Why prefer multiple threads over multiple 

processes?

 Threads are cheaper to create and manage than processes

 Resource sharing can be achieved more efficiently between threads 

than processes

 Threads within a process share the address space of the process

 Switching between threads is cheaper than for processes

 BUT … threads within a process are not protected from one another
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Other costs for processes

 When a new process is created to perform a task there are other costs

 In a kernel supporting virtual memory the new process will incur page faults

◼ Due to data and instructions being referenced for the first time

 Hardware caches must acquire new cache entries for that particular 

process
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Contrasting the costs for threads               [1/2]

 With threads these overheads may also occur, but they are likely to be 

smaller

 When thread accesses code & data that was accessed recently by other 

threads in the process?

 Automatically take advantage of any hardware or main memory caching
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Contrasting the costs for threads               [2/2]

 Switching between threads is much faster than that between 

processes

 This is a cost that is incurred many times throughout the lifecycle of the 

thread or process
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Implications?

 Performance of a multithreaded application is seldom worse than a 

single threaded one

 Actually, leads to performance gains

 Development requires additional effort

 No automatic protection against each other
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Another drawback of processes is the overheads for 

IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel 
space to user space

Switch context from
process A to B

Switch from 
user space to
kernel space
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A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters, 

  return addresses, 

  and local variables}

max

low
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Why each thread needs its own stack                       [1/2]

 Stack contains one frame for each procedure called but not returned 

from

 Frame contains 

 Local variables 

 Procedure’s return address
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Why each thread needs its own stack                       [2/2]

 Procedure X calls procedure Y, Y then calls Z 

 When Z is executing?

◼Frames for X, Y and Z will be on the stack

 Each thread calls different procedures 

 So has a different execution history
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Each thread has its own stack

Kernel

Stack for 
thread
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Almost impossible to write programs in Java without 

threads

 We use multiple threads without even realizing it
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Blocking I/O: Reading data from a socket

 Program blocks until data is available to satisfy the read() method

 Problems:

 Data may not be available

 Data may be delayed (in transit)

 The other endpoint sends data sporadically

 If program blocks when it tries to read from socket?

 Unable to do anything else until data is actually available
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Three techniques to handle such such situations

 I/O multiplexing

 Take all input sources and use system call, select(), to notify data availability 
on any of them

 Polling

 Test if data is available from a particular source
◼ System call such as poll() is used 

◼ In Java, available() on the FilterInputStream

 Signals

 File descriptor representing signal is set

 Asynchronous signal delivered to program when data is available

 Java does not support this
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Writing to a socket may also block

 If there is a backlog getting data onto the network

 Does not happen in fast LAN settings

 But if it’s over the Internet? Possible.

 So, often handling TCP connections requires both a sender and 

receiver thread
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Writing programs that do I/O in Java?

 Use multiple threads

 Handle traditional, blocking I/O

 Use the NIO library

 Or both
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We are trained to think linearly

 Often don’t see concurrent paths our programs may take

 No reason why processes that we conventionally think of as single-

threaded should remain so
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Thread Abstraction

 A thread is a single execution sequence that represents a separately 

schedulable task

 Single execution sequence 

◼ Each thread executes sequence of instructions – assignments, conditionals, loops, 

procedures, etc. – just as the sequential programming model

 Separately schedulable task

◼ The OS can run, suspend, or resume a thread at any time
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The contents of this slide-set are based on the 

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 1, 2]

 Andrew S Tanenbaum. Modern Operating Systems. 3rd Edition, 2007. Prentice Hall. 

ISBN: 0136006639/978-0136006633. [Chapter 2]
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