
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara

Computer Science

Colorado State University

Threads: Reap What You Sow

Care to use more than a core?

 Let threads come to the fore

Maximize your utilizations they will

 Spurn them at your throughputs’ peril

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.2

Topics covered in this lecture

 Wrap-up of HW1

 Threads

 Rationale

 Contrasting threads with processes

 Thread Creation

COMPUTER SCIENCE DEPARTMENT
LS-1.3

HW1: DISCUSSION

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.4

Overlay topology set up with CR = 4

Registry

A

B

C
D

E
F

G

J

H

I

Messaging Node

The registry tells each messaging node who it
should connect to via the Messaging_Nodes_List

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.5

Overlay topology set up with CR = 4

Registry

A

B

C
D

E
F

G

J

H

I

Messaging Node

The registry tells each messaging node who it
should connect to via the Messaging_Nodes_List

E.g.: Path From C to I

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.6

Looking at another overlay topology that could be

set up with CR = 4

Registry

A

B

C D

E
F

G

H I

J

This topology has a partition. The assignment asks you to prevent this.
Nodes A,B, C, D and E have no way of communicating with F,G,H,I, and J.

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.7

Avoiding network partitions

 Create a linear topology first, and then start making the required

number of connections

 A –> B –> C –> D –>E –> F –> G –>H –> I –> J

 Starting off at the point ensures that partitions will not exist

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.8

Other topological aspects

 Necessary and sufficient conditions for a k-regular graph of order n
to exist?

 n ≥ k+1

 nk is even

 During testing we will only specify values where a solution exists

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.9

What is the Minimum Spanning Tree?

 A way of connecting all vertices in a graph using the smallest

possible total edge weight

 No cycles allowed

 Every vertex is connected, but no loops are formed

 Think of it as the cheapest network i.e., it is the leanest way to link

everything together

 For e.g.: designing computer networks, road systems, or electrical grids

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.10

Example of an MST

 Kruskal and Prim are both greedy

algorithms

 Kruskal works better when

 The graph is sparse

 Also: simpler to implement

 Prim works better when

 Graph is dense (higher number of

edges)
Image Source: Wikipedia

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.11

Does the MST give you the shortest path between

two nodes?

 A minimum spanning tree doesn’t guarantee the shortest route

between two nodes

 An MST connects all nodes with the minimum total edge weight

 Why not shortest?

 An MST may choose a longer, indirect route if it helps keep the overall

weight down

 For e.g., even if a cheap direct edge exists, the MST might bypass it to

minimize the total cost of the tree

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.12

Your programs will be working with two different

data representations

 In memory: This is where you have your data structures such as lists,

arrays, hash tables, trees, etc.

 Data that you will sending over the network?

 You do this as a self-contained sequences of bytes

 Do references or pointers make sense here?

◼ No!

◼ So, the sequence-of-bytes representation will look VERY different from data

structures in memory

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.13

So, we do need some translation between these

representations

 Translation from in-memory to network-bound byte sequence

 Marshalling

◼ Also called serialization or encoding

 Translation from network-bound sequence to in-memory representation

(i.e., restoration of data structure)

 Unmarshalling

◼ Also called deserialization or decoding

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.14

Marshalling and Unmarshalling

 Marshalling

 Pack fields into a byte array

 Unmarshalling

 Unpack byte array and populate fields that comprise the wire format

message

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.15

Example: Data Structure [1/3]

public class WireFormatWidget {

 private int type;
 private long timestamp;
 private String identifier;
 private int tracker;

 ...

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.16

Example: Marshalling [2/3]

public byte[] getBytes() throws IOException {
 byte[] marshalledBytes = null;
 ByteArrayOutputStream baOutputStream = new ByteArrayOutputStream();
 DataOutputStream dout =
 new DataOutputStream(new BufferedOutputStream(baOutputStream));

 dout.writeInt(type);
 dout.writeLong(timestamp);

 byte[] identifierBytes = identifier.getBytes();
 int elementLength = identifierBytes.length;
 dout.writeInt(elementLength);
 dout.write(identifierBytes);

 dout.writeInt(tracker);

 dout.flush();
 marshalledBytes = baOutputStream.toByteArray();

 baOutputStream.close();
 dout.close();
 return marshalledBytes;
 }

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.17

Example: Unmarshalling [3/3]

public WireFormatWidget(byte[] marshalledBytes) throws IOException {
 ByteArrayInputStream baInputStream =
 new ByteArrayInputStream(marshalledBytes);
 DataInputStream din =
 new DataInputStream(new BufferedInputStream(baInputStream));

 type = din.readInt();
 timestamp = din.readLong();

 int identifierLength = din.readInt();
 byte[] identifierBytes = new byte[identifierLength];
 din.readFully(identifierBytes);

 identifier = new String(identifierBytes);

 tracker = din.readInt();

 baInputStream.close();
 din.close();
 }

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.18

How to send data

public class TCPSender {

 private Socket socket;
 private DataOutputStream dout;

 public TCPSender(Socket socket) throws IOException {
 this.socket = socket;
 dout = new DataOutputStream(socket.getOutputStream());
 }

 public void sendData(byte[] dataToSend) throws IOException {
 int dataLength = dataToSend.length;
 dout.writeInt(dataLength);
 dout.write(dataToSend, 0, dataLength);
 dout.flush();
 }
}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.19

How to receive data [1/2]

public class TCPReceiver implements Runnable {

 private Socket socket;
 private DataInputStream din;

 public TCPReceiver(Socket socket) throws IOException {
 this.socket = socket;
 din = new DataInputStream(socket.getInputStream());
 }

 public void run() {
 ...
 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.20

How to receive data [2/2]

public void run() {

 int dataLength;
 while (socket != null) {
 try {
 dataLength = din.readInt();

 byte[] data = new byte[dataLength];
 din.readFully(data, 0, dataLength);

 } catch (SocketException se) {
 System.out.println(se.getMessage());
 break;
 } catch (IOException ioe) {
 System.out.println(ioe.getMessage()) ;
 break;
 }
 }
}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.21

A simple breakdown of classes [1/5]

 csx55.overlay.wireformats

 Protocol

 Event [This is an interface with the getType() and getBytes() defined]

 EventFactory [Singleton instance]

 Register

 Deregister

 MessagingNodesList

 LinkWeights

 TaskInitiate

 Message

 TaskComplete

 TaskSummaryRequest

 TaskSummaryResponse

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.22

A simple breakdown of classes [2/5]

 csx55.overlay.spanning

 MinimumSpanningTree

 RoutingCache

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.23

A simple breakdown of classes [3/5]

 csx55.overlay.util

 OverlayCreator

 StatisticsCollectorAndDisplay

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.24

A simple breakdown of classes [4/5]

 csx55.overlay.transport

 TCPServerThread

 TCPSender

 TCPReceiverThread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.25

A simple breakdown of classes [5/5]

 csx55.overlay.node

 Node [Interface with the onEvent(Event) method]

 Registry

 MessagingNode

 Registry and MessagingNode should both implement the Node interface

with the onEvent(Event) method in it

COMPUTER SCIENCE DEPARTMENT

THREADS

Many hands make light work. John Heywood (1546)

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.27

Why should you care about threads?

 CPU clock rates have tapered off

 Days when you could count on “free” speed-up are long gone

 Manufacturers have transitioned to multicore processors

 Each with multiple hardware execution pipelines

 A single threaded process can utilize only one of these execution

pipelines

 Reduced throughput

 But more importantly, threads are awesome!

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.28

What we will look at

 Threads and its relation to processes

 Thread lifecycle

 Contrasting approaches to writing threads

 Data synchronization and visibility

 Avoiding race conditions

 Thread safety

 Sharing objects and confinement

 Locking strategies

 Writing thread-safe classes

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.29

What are threads?

 Miniprocesses or lightweight processes

 Why would anyone want to have a kind of process within a process?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.30

The main reason for using threads

 In many applications multiple activities are going on at once

 Some of these may block from time to time

 Decompose application into multiple sequential threads

 Running concurrently

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.31

Isn’t this precisely the argument for processes?

 Yes, but there is a new dimension …

 Threads have the ability to share the address space (and all of its

data) among themselves

 For several applications

 Processes (with their separate address spaces) don’t work

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.32

Threads execute their own piece of code

independently of other threads, but …

 No attempt is made to achieve high-degree of concurrency

transparency

 Especially, not at the cost of performance

 Only maintains information to allow a CPU to be shared among

several threads

 Thread context

 CPU Context + Thread Management info

◼ List of blocked threads

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.33

Information not strictly necessary to manage multiple

threads is ignored

 Protecting data against inappropriate accesses by multiple threads in

a process?

 Developers must deal with this

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.34

Contrasting items unique & shared across threads

Per process items
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space

Global variables

Open files

Child Processes

Pending alarms

Signals and signal handlers

Accounting Information

Program Counter

Registers

Stack

State

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.35

A process with multiple threads of control can

perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack
Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads

THREADS VS. MULTIPLE PROCESSES

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.37

Why prefer multiple threads over multiple

processes?

 Threads are cheaper to create and manage than processes

 Resource sharing can be achieved more efficiently between threads

than processes

 Threads within a process share the address space of the process

 Switching between threads is cheaper than for processes

 BUT … threads within a process are not protected from one another

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.38

Other costs for processes

 When a new process is created to perform a task there are other costs

 In a kernel supporting virtual memory the new process will incur page faults

◼ Due to data and instructions being referenced for the first time

 Hardware caches must acquire new cache entries for that particular

process

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.39

Contrasting the costs for threads [1/2]

 With threads these overheads may also occur, but they are likely to be

smaller

 When thread accesses code & data that was accessed recently by other

threads in the process?

 Automatically take advantage of any hardware or main memory caching

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.40

Contrasting the costs for threads [2/2]

 Switching between threads is much faster than that between

processes

 This is a cost that is incurred many times throughout the lifecycle of the

thread or process

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.41

Implications?

 Performance of a multithreaded application is seldom worse than a

single threaded one

 Actually, leads to performance gains

 Development requires additional effort

 No automatic protection against each other

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.42

Another drawback of processes is the overheads for

IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel
space to user space

Switch context from
process A to B

Switch from
user space to
kernel space

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.43

A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters,

 return addresses,

 and local variables}

max

low

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.44

Why each thread needs its own stack [1/2]

 Stack contains one frame for each procedure called but not returned

from

 Frame contains

 Local variables

 Procedure’s return address

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.45

Why each thread needs its own stack [2/2]

 Procedure X calls procedure Y, Y then calls Z

 When Z is executing?

◼Frames for X, Y and Z will be on the stack

 Each thread calls different procedures

 So has a different execution history

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.46

Each thread has its own stack

Kernel

Stack for
thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.47

Almost impossible to write programs in Java without

threads

 We use multiple threads without even realizing it

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.48

Blocking I/O: Reading data from a socket

 Program blocks until data is available to satisfy the read() method

 Problems:

 Data may not be available

 Data may be delayed (in transit)

 The other endpoint sends data sporadically

 If program blocks when it tries to read from socket?

 Unable to do anything else until data is actually available

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.49

Three techniques to handle such such situations

 I/O multiplexing

 Take all input sources and use system call, select(), to notify data availability
on any of them

 Polling

 Test if data is available from a particular source
◼ System call such as poll() is used

◼ In Java, available() on the FilterInputStream

 Signals

 File descriptor representing signal is set

 Asynchronous signal delivered to program when data is available

 Java does not support this

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.50

Writing to a socket may also block

 If there is a backlog getting data onto the network

 Does not happen in fast LAN settings

 But if it’s over the Internet? Possible.

 So, often handling TCP connections requires both a sender and

receiver thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.51

Writing programs that do I/O in Java?

 Use multiple threads

 Handle traditional, blocking I/O

 Use the NIO library

 Or both

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.52

We are trained to think linearly

 Often don’t see concurrent paths our programs may take

 No reason why processes that we conventionally think of as single-

threaded should remain so

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.53

Thread Abstraction

 A thread is a single execution sequence that represents a separately

schedulable task

 Single execution sequence

◼ Each thread executes sequence of instructions – assignments, conditionals, loops,

procedures, etc. – just as the sequential programming model

 Separately schedulable task

◼ The OS can run, suspend, or resume a thread at any time

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L2.54

The contents of this slide-set are based on the

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 1, 2]

 Andrew S Tanenbaum. Modern Operating Systems. 3rd Edition, 2007. Prentice Hall.

ISBN: 0136006639/978-0136006633. [Chapter 2]

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Topics covered in this lecture
	Slide 3: HW1: Discussion
	Slide 4: Overlay topology set up with CR = 4
	Slide 5: Overlay topology set up with CR = 4
	Slide 6: Looking at another overlay topology that could be set up with CR = 4
	Slide 7: Avoiding network partitions
	Slide 8: Other topological aspects
	Slide 9: What is the Minimum Spanning Tree?
	Slide 10: Example of an MST
	Slide 11: Does the MST give you the shortest path between two nodes?
	Slide 12: Your programs will be working with two different data representations
	Slide 13: So, we do need some translation between these representations
	Slide 14: Marshalling and Unmarshalling
	Slide 15: Example: Data Structure [1/3]
	Slide 16: Example: Marshalling [2/3]
	Slide 17: Example: Unmarshalling [3/3]
	Slide 18: How to send data
	Slide 19: How to receive data [1/2]
	Slide 20: How to receive data [2/2]
	Slide 21: A simple breakdown of classes [1/5]
	Slide 22: A simple breakdown of classes [2/5]
	Slide 23: A simple breakdown of classes [3/5]
	Slide 24: A simple breakdown of classes [4/5]
	Slide 25: A simple breakdown of classes [5/5]
	Slide 26: Threads
	Slide 27: Why should you care about threads?
	Slide 28: What we will look at
	Slide 29: What are threads?
	Slide 30: The main reason for using threads
	Slide 31: Isn’t this precisely the argument for processes?
	Slide 32: Threads execute their own piece of code independently of other threads, but …
	Slide 33: Information not strictly necessary to manage multiple threads is ignored
	Slide 34: Contrasting items unique & shared across threads
	Slide 35: A process with multiple threads of control can perform more than 1 task at a time
	Slide 36: Threads Vs. Multiple Processes
	Slide 37: Why prefer multiple threads over multiple processes?
	Slide 38: Other costs for processes
	Slide 39: Contrasting the costs for threads [1/2]
	Slide 40: Contrasting the costs for threads [2/2]
	Slide 41: Implications?
	Slide 42: Another drawback of processes is the overheads for IPC (Inter Process Communications)
	Slide 43: A process in memory
	Slide 44: Why each thread needs its own stack [1/2]
	Slide 45: Why each thread needs its own stack [2/2]
	Slide 46: Each thread has its own stack
	Slide 47: Almost impossible to write programs in Java without threads
	Slide 48: Blocking I/O: Reading data from a socket
	Slide 49: Three techniques to handle such such situations
	Slide 50: Writing to a socket may also block
	Slide 51: Writing programs that do I/O in Java?
	Slide 52: We are trained to think linearly
	Slide 53: Thread Abstraction
	Slide 54: The contents of this slide-set are based on the following references

