CSx55: DISTRIBUTED SYSTEMS [HADOOP]

Trying to have your cake and eat it too
Each phase pines for tasks with locality and their numbers on a tether
 Alas within a phase, you get one, but not the other
Who gets what?
 Stay tuned to find out

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

☐ How does the runtime infer <key, values>? Shouldn’t the mapper do this?
☐ Can Hadoop be deployed on a per-user basis? Or, is it restricted to a per-machine basis?
☐ If each chunk is replicated 3 times, are you launching a mapper on all 3?
☐ Is the combiner solely for optimization?
Topics covered in today’s lecture

- Hadoop

The code to run the MapReduce job

```java
public class MaxTemperature {
    public static main(String[] args) throws Exception {
        Job job = Job.getInstance();
        job.setJarByClass(MaxTemperature.class);
        job.setJobName("Max temperature");

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.setMapperClass(MaxTemperatureMapper.class);
        job.setReducerClass(MaxTemperatureReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        System.exit(job.waitForCompletion(true) ? 0: 1);
    }
}
```
Details about the Job submission [1/3]

- Code must be packaged in a JAR file for Hadoop to distribute over the cluster
 - `setJarByClass()` causes Hadoop to locate relevant JAR file by looking for JAR that contains this class

- Data input and output paths must be specified next
 - `addInputPath()` can be called more than once
 - `setOutputPath()` specifies the output directory
 - Directory should not exist before running the job
 - Precaution to prevent data loss

Details about the Job submission [2/3]

- The methods `setOutputKeyClass()` and `setOutputValueClass()`
 - Control the output types of the map and reduce functions
 - If they are different?
 - Map output types can be set using `setMapOutputKeyClass()` and `setMapOutputValueClass()`
Details about the Job submission. [3/3]

- The `waitforCompletion()` method submits the job and waits for it to complete.
 - The boolean argument is a verbose flag; if set, progress information is printed on the console.

- Return value of `waitforCompletion()` indicates success (`true`) or failure (`false`).
 - In the example this is the program's exit code (0 or 1).

API DIFFERENCES
The old and new MapReduce APIs

- The new API favors abstract classes over interfaces
 - Make things easier to evolve

- New API is in `org.apache.hadoop.mapreduce` package
 - Old API can be found in `org.apache.hadoop.mapred`

- New API makes use of context objects
 - Context unifies roles of `JobConf`, `OutputCollector`, and `Reporter` from the old API

In the new API, job control is done using the `Job` class rather than using the `JobClient`

- Output files are named slightly differently
 - Old API: Both map and reduce outputs are named `part-aaaa`
 - New API: Map outputs are named `part-m-aaaa` and reduce outputs are named `part-r-aaaa`
The old and new MapReduce APIs

- The new API's reduce() method passes values as `Iterable` rather than as `Iterator`
- Makes it **easier to iterate** over values using the `for-each` loop construct

```java
for (VALUEIN value: values) {
    ...
}
```
Hadoop divides the input to a MapReduce job into fixed-sized pieces

- These are called **input-splits** or just splits
- Creates **one map task per split**
 - Runs **user-defined map function** for each **record** in the split

Split strategy: Having many splits

- Time taken to process split is small compared to processing the whole input
- Quality of **load balancing** increases as splits become **fine-grained**
 - Faster machines process proportionally more splits than slower machines
 - Even if machines are identical, this feature is desirable
 - Failed tasks get relaunched, and there are other jobs executing concurrently
Split strategy: If the splits are too small

- **Overheads** for managing splits and map task creation dominates total job execution time
- Good split size tends to be an HDFS block
 - This could be changed for a cluster or specified when each file is created

Scheduling map tasks

- Hadoop does its best to run a map task on the *node where input data resides* in HDFS
 - Data locality
- What if all three nodes holding the HDFS block replicas are busy?
 - Find free map slot on node in the same rack
 - Only when this is not possible, is an off-rack node utilized
 - Inter-rack network transfer
Why the optimal split size is the same as the block size …

- Largest size of input that can be stored on a single node
- If split size spanned two blocks?
 - Unlikely that any HDFS node has stored both blocks
 - Some of the split *will have to be transferred* across the network to node running the map task
 - Less efficient than operating on local data without the network movement

MANAGING OUTPUTS
Map task outputs

- Stored on the local disk
 - Not HDFS
- Once the job is complete, intermediate map outputs are thrown away
 - Storing in HDFS with replication is an overkill

Reduce tasks do not have the advantage of data locality

- Input to a single reduce task
 - Output from all the mappers
 - Sorted map outputs transferred over the network to node where reduce task is running
 - Merged and then passed to the reduce function
- Output of reduce task stored on HDFS
 - One replica of block is stored on local node, other replicas are stored on off-rack nodes
Number of reduce tasks

- Not governed by the size of the input
- Specified independently

When there are multiple reducers

- Maps **partition** their outputs
 - One partition for **each** reduce task
 - There can be many keys in each partition
 - Records for a given key are all in the same partition

- Partitioning controlled with a **partitioning function**
 - Default uses a hash function to bucket the key space
MapReduce Dataflow

Input HDFS

- split 0 → Map → Copy → Merge Sort → Reduce → Part 0 → HDFS Replication
- split 1 → Map
- split 2 → Map

Output HDFS

- Reduce → Part 1 → HDFS Replication
- Merge → Sort
In Hadoop a Map task has 4 phases

- Record reader
- Mapper
- Combiner
- Partitioner

Map task phases: **Record Reader**

- **Translates** input splits into records
- Parse data into records, but **does not parse the record itself**
- Passes the data to the mapper in the form of a key/value pair
 - **key** in this context is *positional information*
 - **value** is the chunk of data that comprises a **record**
Map task phases: **Map**

- **User-provided code** is executed on each key/value pair from the record reader
- This user-code produces *zero or more* new key/value pairs, called the intermediate pairs
 - *key* is what the data will be grouped on and *value* is the information pertinent to the analysis in the *reducer*
 - Choice of key/value pairs is critical and not arbitrary

Map task phases: **Combiner**

- Can **group data** in the map phase
- Takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper
- *Significantly reduces the amount of data* that has to move over the network
 - Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three times over the network
Map task phases: **Partitioner**

- Takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into **shards**, one shard per reducer.

- Default: `key.hashCode() % (number of reducers)`
 - Randomly distributes the keyspace **evenly** over the reducers.
 - But still ensures that keys with the same value in different mappers end up at the same reducer.

Map task phases: **Partitioner**

- Partitioner can be customized (e.g., for sorting)
 - Changing the partitioner is rarely necessary.

- The partitioned data is written to the local file system for each map and waits to be **pulled** by its respective reducer.
In Hadoop a Reduce task has 4 phases

- Shuffle
- Sort
- Reducer
- Output format

Reduce task phases: **Shuffle and sort**

- **Shuffle**
 - Takes the output files written by all of the partitioners and downloads them to the local machine in which the reducer is running

- **Sort**
 - Individual data pieces are then **sorted by key** into one larger data list
 - **Groups equivalent keys together** so that their values can be iterated over easily in the reduce task
Reduce task phases: **Shuffle and sort**

- This phase is **not customizable** and the framework handles everything automatically.
- The only control a developer has is how the keys are sorted and grouped by specifying a custom Comparator object.

Reduce task phases: **Reducer**

- Takes the grouped data as input and runs a reduce function **once per key grouping**.
- The function is passed the key and an iterator/iterable over all of the values associated with that key.
 - A wide range of processing can happen in this function: data can be aggregated, filtered, and combined etc.
- Once the reduce function is done, it sends zero or more key/value pairs to the final step, the output format.
- N.B.: map & reduce functions will change from job to job.
Reduce task phases: **Output format**

- Translates the final key/value pair from the reduce function and writes it out to a file using a record writer.

- By default:
 - Separate the key and value with a tab.
 - Separates records with a newline character.

- Can typically be customized to provide richer output formats.
 - But in the end, the data is written out to HDFS, regardless of format.
Combiner functions

- Many MapReduce jobs are limited by the available network bandwidth
 - Framework has mechanisms to minimize the data transferred between map and reduce tasks
- A combiner function is run on the map output
 - Combiner output fed to the reduce task

Combiner function

- No guarantees on how many times Hadoop will call this on a map output record
 - The combiner should, however, result in the same output from the reducer
- Contract for the combiner constrains the type of function that can be used
Combiner function: Let’s look at the maximum temperature example [1/2]

Map 1:
- (1950, 0)
- (1950, 20)
- (1950, 10)

Map 2:
- (1950, 25)
- (1950, 15)

Reduce:
- (1950, [0, 20, 10, 25, 15])
- (1950, 25)

Combiner function: Let’s look at the maximum temperature example [2/2]

Map 1:
- (1950, 0)
- (1950, 20)
- (1950, 10)

Map 2:
- (1950, 25)
- (1950, 15)

Combiner:
- (1950, [20, 25])

Reduce:
- (1950, 25)
A closer look at the function calls

- \(\max(0, 20, 10, 25, 15) = \max(\max(0, 20, 10), \max(25, 15)) = \max(20, 25) = 25 \)

- Functions with this property are called **commutative** and **associative**
 - Commutative: Order of operands \((5+2) = (2 + 5)\)
 - Associative: Order of operators \(5 \times (5 \times 3) = (5 \times 5) \times 3\)
 - Division and subtraction are not commutative
 - Vector cross products are not

Not all functions possess the commutative and associative properties

- What if we were computing the mean temperatures?
- We can **not** use mean as our combiner function

\[
\begin{align*}
\text{mean}(0, 20, 10, 25, 15) &= 14 \\
\text{BUT} \\
\text{mean}(\text{mean}(0, 20, 10), \text{mean}(25, 15)) &= \text{mean}(10, 20) = 15
\end{align*}
\]
Combiner: Summary

- The combiner **does not replace** the reduce function
 - Reduce **is still needed** to process records from different maps
- But it is useful for **cutting down traffic** from maps to the reducer

Specifying a combiner function

```java
public class MaxTemperatureWithCombiner {
    public static main(String[] args) throws Exception {
        Job job = Job.getInstance();
        job.setJarByClass(MaxTemperature.class);
        job.setJobName("Max temperature");

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.setMapperClass(MaxTemperatureMapper.class);
        job.setCombinerClass(MaxTemperatureReducer.class);
        job.setReducerClass(MaxTemperatureReducer.class);

        job.setOutputKey(Text.class);
        job.setOutputValueClass(IntWritable.class);

        System.exit(job.waitForCompletion(true) ? 0: 1);
    }
}
```
Another example (Combiner)

Another example with StackOverflow [1/2]

- Given a list of user's comments, determine the average comment length per-hour.

- To calculate the average, we need two things:
 - Sum values that we want to average
 - Number of values that went into the sum
Another example with StackOverflow [2/2]

- Reducer can do this very easily by iterating through each value in the set and adding to a running sum while keeping count.

- But if you do this you cannot use the reducer as your combiner!
 - Calculating an average is not an associative operation
 - You cannot change the order of the operators
 - mean(0, 20, 10, 25, 15) = 14 BUT ..
 - mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

Approach to ensuring code reuse at the combiner

- Mapper will output two columns of data
 - Count and average

- Reducer will multiply “count” field by the “average” field to add to a running count and add “count” to the running count
 - Then divide the running sum with running count
 - Output the count with the calculated average
Mapper code

```java
public static class AverageMapper extends Mapper<Object, Text, IntWritable, CountAverageTuple> {
    private CountAverageTuple outCountAverage = new CountAverageTuple();

    public void map(Object key, Text value, Context context)
        throws IOException, InterruptedException {
        Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());
        String strDate = parsed.get("CreationDate");
        String text = parsed.get("Text");
        // get the hour this comment was posted in
        Date creationDate = frmt.parse(strDate);
        outHour.set(creationDate.getHours());
        outCountAverage.setCount(1);
        outCountAverage.setAverage(text.length());
        // write out the hour with the comment length
        context.write(outHour, outCountAverage);
    }
}
```

Reducer code

```java
public class AverageReducer extends Reducer<IntWritable, CountAverageTuple, IntWritable, CountAverageTuple> {
    private CountAverageTuple result = new CountAverageTuple();

    public void reduce(IntWritable key, Iterable<CountAverageTuple> values, Context context)
        throws IOException, InterruptedException {
        float sum = 0; float count = 0;
        // Iterate through all input values for this key
        for (CountAverageTuple val : values) {
            sum += val.getCount() * val.getAverage();
            count += val.getCount();
        }
        result.setCount(count);
        result.setAverage(sum / count);
        context.write(key, result);
    }
}
```
Data flow for the average example

<table>
<thead>
<tr>
<th>Input key</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour</td>
<td>Count</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Setting:
Combiner executes over Groups 1 and 2
DOES NOT execute on the last two rows

Group 1

Group 2

Combiner Output/ Reducer Input

<table>
<thead>
<tr>
<th>Output key</th>
<th>Output Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour</td>
<td>Count</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

HADOOP DISTRIBUTED FILE SYSTEM
Rationale

- Datasets often outgrow storage capacity of a single machine
 - Necessary to **partition** data across multiple machines

- File systems managing storage access **across** a network of machines
 - Distributed file systems

HDFS is designed for storing ...

- **Very large** files
 - File sizes are in the order of 100s of GB or a few TB

- With **streaming data access** patterns
 - Write-once, read many times pattern
 - Each analysis involves a large portion of the dataset
 - Time to read dataset is more important than latency for the first record

- On **commodity hardware**
What is HDFS not suitable for? [1/2]

- **Low-latency** data access
- Lots of **small files**
 - Name nodes hold file system metadata in memory
 - Each file, directory, and block takes about 150 bytes
 - If there were 10^6 files each of which had 1 block
 - 300 MB of memory
 - Millions of files are feasible but not billions of files

What is HDFS not suitable for? [2/2]

- **Multiple writers**, arbitrary file modifications
- HDFS does not support:
 - Multiple concurrent writers
 - Modifications at arbitrary offsets
Block

- Filesystems for a single disk, deal with data in blocks
 - Integral number of the HDD block size

- Block sizes
 - Filesystem blocks are a few KB
 - Disk blocks are normally 512 bytes

HDFS Blocks

- Have a much larger size: **256 MB** [default]

- Files are **broken** into block-sized **chunks**
 - Each chunk is stored as an independent unit

- If the last chunk is less than the HDFS block size?
 - No space is wasted because the blocks are themselves stored as files
Why is the block-size so big?

- **Time to transfer** data from disk can be made significantly larger than the time to seek first block
- If the seek time is 10 ms and transfer rate is 100 MB/sec?
 - To make seek time 1% of the transfer time, block size should be 100 MB
- Must be careful not to overdo block size increase
 - Since tasks operate on blocks, the number of tasks could reduce.

Benefits of the block abstraction in distributed file systems

- File can be **larger than any single disk** in the cluster
- Simplifies the storage subsystem
 - File metadata (including permissions) handled by another subsystem and not stored with the block
Blocks and replication

- Each block is replicated on a small number of **physically separate** machines

- If a block becomes unavailable?
 1. Copy *read from another location* transparently
 2. That block is also *replicated from its alternative locations* to other live machines

 - Bring replication factor back to the desired level

The contents of this slide set are based on the following references
