CSx55: Distributed Systems [Spark]

Spark: What fuels it?
Memory residency, of course
With frugal I/O that it must reinforce

How? By …
Procrastinating (through lazy evaluations)
Avoiding repeated sweeps
And doing it only as a last resort

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

- Does HDFS proactively account for performance by migrating data away from overloaded nodes?
- What happens if I wipe all data from a data node on HDFS?
- What happens if I manually copy a “block” to another node?
- Who determines the data traffic topology? Client, namenode, or datanode?
- Who accounts for threading in this setting?
Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts

Apache Spark
As distributed data analytics have grown common ...

- Practitioners have sought **easier tools** for the task
- Apache Spark has emerged as one of the most popular
 - Extending and generalizing MapReduce

Spark: What is it?

- **Cluster computing platform**
 - Designed to be fast and general purpose
- **Speed**
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing
- **Why is speed important?**
 - Difference between waiting for hours versus exploring data interactively
Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ
- Spark’s internals, especially how it handles failures, differ from many traditional systems
- Spark’s ability to leverage lazy evaluation within memory computations makes it particularly unique

Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are generalizable
- On its own, Spark is not a data storage solution
 - Performs computations in Spark JVMs that last only for the duration of a Spark application
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - To house the data processed with Spark
 - A cluster manager — to orchestrate the distribution of Spark applications across the cluster
Key enabling idea in Spark

- **Memory resident data**
 - Spark loads data into the memory of worker nodes
 - Processing is performed on memory-resident data

A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>time</th>
<th>Scaled time in human terms (2 billion times slower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 μs)</td>
<td>167 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>162 days</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000 ns (100 ms)</td>
<td>6.3 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing

This has previously required multiple, independent tools

Running Spark

- You can use Spark from Python, Java, Scala, R, or SQL
- Spark itself is written in Scala, and runs on the Java Virtual Machine (JVM)
 - You can run Spark either on your laptop or a cluster, all you need is an installation of Java
- If you want to use the Python API, you will also need a Python interpreter (version 2.7 or later)
- If you want to use R, you will need a version of R on your machine
Spark integrates well with other tools

- Can run in Hadoop clusters
- Access Hadoop data sources, including Cassandra

At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise
 - Many tasks across many machines (compute clusters)

- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring
The Spark Software Stack

The Spark stack

- Spark SQL
- Spark Streaming
- Mlib & ML
- GraphX

Spark Core

- Standalone Scheduler
- YARN
- Mesos
Benefits of tight integration [1/2]

- All libraries and higher-level components benefit from improvements at the lower layers
- E.g.: Spark’s core engine adds optimization? SQL and ML libraries automatically speed-up as well

Benefits of tight integration [2/2]

- Biggest advantage is ability to build applications that seamlessly combine different processing models
- An application may use ML to classify data in real time as it is being ingested
 - Analysts can query this resulting data, also in real time, via SQL (e.g.: join data with unstructured log-files)
Spark Core

- **Basic functionality** of Spark
 - Task scheduling, memory management, fault recovery, and interacting with storage systems
 - Also, the API that defines Resilient Distributed Datasets (RDDs)
 - Spark's *main programming abstraction*
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)

Spark SQL

- Package for working with **structured data**
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python
(Semi)structured data and Spark SQL

- Spark SQL defines an interface for a (semi)structured data type, called **DataFrames**
 - And a (semi)structured, typed version of RDDs called **Datasets**
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL

Spark Streaming

- Enables processing of **live streams** of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on **minibatches** of data
- Has a number of unique considerations, such as the **window sizes** used for batches
MLib

- Library that contains common machine learning functionality
- Algorithms include:
 - Classification, regression, clustering, and collaborative filtering
- Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci–kit learn, VW, WEKA, and R among others

What about Spark ML?

- Has existed since Spark 1.2
- Spark ML provides a higher-level API than MLib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- The plan originally was to move over to ML and deprecate MLlib
Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge

Cluster Managers

- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark
Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.
Spark Shells

- Interactive [Python and Scala]
 - Similar to shells like Bash or Windows command prompt
- Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing

Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure
Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications
- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, since version 8, Java now incorporates several of the more useful features of Scala and other functional languages.

What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods
- In a functional language, **functions are treated the same way as data**
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions
What about Clojure?

- Based on Lisp
- Javascript?
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java

SPARK APIs
Spark APIs

- Spark has two fundamental sets of APIs:
 - The low-level “unstructured” APIs, and
 - The higher-level structured APIs.

Structured APIs

- Structured APIs are a tool for manipulating all sorts of data:
 - From unstructured log files to semi-structured CSV files and highly structured Parquet files.

- Refers to three core types of distributed collection APIs:
 - Datasets
 - DataFrames
 - SQL tables and views

- Majority of the Structured APIs apply to both batch and streaming computation.
Spark’s Toolset

- Structured Streaming
- Advanced Analytics
- Libraries & Ecosystem

- Structured APIs
 - Datasets
 - DataFrames
 - SQLs

- Low Level APIs
 - RDDs
 - Distributed variables

Spark has two notions of structured collections:
DataFrames and Datasets

- DataFrames and Datasets are (distributed) table-like collections with well-defined rows and columns

- Each column:
 - Must have the same number of rows as all the other columns (although you can use null to specify the absence of a value)
 - Has type information that must be consistent for every row in the collection.
DataFrames versus Datasets

- DataFrames are considered “untyped”
- Datasets are considered “typed”

How does Spark view DataFrames and Datasets?

- To Spark, DataFrames and Datasets represent immutable, lazily evaluated plans that specify what operations to apply to data residing at a location to generate some output.
- When we perform an action on a DataFrame, we instruct Spark to perform the actual transformations and return the result.
- These represent plans of how to manipulate rows and columns to compute the user’s desired result.
The DataFrame is the most common Structured API

- Simply represents a *table* of data with rows and columns
- The list that defines the columns and the types within those columns is called the *schema*

The DataFrame concept is not unique to Spark

- R and Python both have similar concepts
 - However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines
 - This limits what you can do with a given DataFrame to the resources that exist on that specific machine
- A Spark DataFrame can span thousands of computers
Core Spark Concepts

- Drivers
- SparkContext
- Executors
Spark in a nutshell

- Spark allows users to write a program for the driver (or master node) on a cluster computing system that can perform operations on data in parallel.
- Spark represents large datasets as RDDs which are stored in the executors (or worker nodes).
- The objects that comprise RDDs are called partitions and may be (but do not need to be) computed on different nodes of a distributed system.
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system.

Drivers

- Every Spark application consists of a driver program.
- Driver launches various parallel operations on the cluster.
- Constituent elements:
 - Application’s main function
 - Defines distributed datasets on the clusters
 - Applies operations to these datasets
SparkContext

- Driver programs access Spark through a SparkContext object
 - Represents a connection to a computing cluster

- Within the shell?
 - Created as the variable `sc`
 - You can even print out `sc` to see the type

- Once you have a SparkContext, you can use it to build RDDs
 - And then run operations on the data …

Executors

- Driver programs manage a number of nodes, called `executors`

- Executors are responsible for running operations

- For example:
 - If we were running a `count()` operation on cluster
 - Different machines might count lines in different ranges of the file
Components for distributed execution in Spark

Lot of Spark’s API revolves around passing functions to its operators

```python
def hasPython(line):
    return "Python" in line

pythonLines =
lines.filter(hasPython)

pythonLines =
lines.filter(line => line.contains("Python"))

Also known as the `lambda` or `=>` syntax
Lot of Spark’s API revolves around passing functions to its operators

```java
JavaRDD<String> pythonLines = lines.filter(
 new Function<String, Boolean>() {
 Boolean call(String line) {
 return line.contains("Python");
 }
 });
```

The contents of this slide-set are based on the following references


- **Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data.** Byron Ellis. Wiley. [Chapter 2]