CSx55: DISTRIBUTED SYSTEMS
[THREADS]

The House of Heap and Stacks
Stacks clean up after themselves
But over deep recursions they fret
The cheerful heap has nary a care
Harboring memory leaks, hurtling to a crash

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

- What's an induced liveness stall?
- What is the state that is individual to each thread?
- Execution pipelines and their relation to the ALU
- Thread vs. Processes: page faults
- Asynchronous I/O
- Bytecode compiling a separate Java thread
- Program blocking, heaps, program counter
Topics covered in this lecture

- Threads
 - Thread Creation
 - Heaps and Stacks
 - Thread Lifecycle

Thread Abstraction

- A thread is a single execution sequence that represents a separately schedulable task

 - Single execution sequence
 - Each thread executes sequence of instructions – assignments, conditionals, loops, procedures, etc. – just as the sequential programming model

 - Separately schedulable task
 - The OS can run, suspend, or resume a thread at any time
Thread creation

- Using the `Thread` class
- Using the `Runnable` interface
The Thread class

```java
package java.lang;

public class Thread implements Runnable {
    public Thread();
    public Thread(Runnable target);
    public Thread(ThreadGroup group, Runnable target);
    public Thread(String name);
    public Thread(ThreadGroup group, String name);
    public Thread(Runnable target, String name);
    public Thread(ThreadGroup group, Runnable target, String name);
    public Thread(ThreadGroup group, Runnable target, String name, long stackSize);
    public void start();
    public void run();
}
```

Threads require 4 pieces of information

- **Thread name**
 - Default is Thread-N; N is a unique number

- **Runnable target**
 - *List of instructions* that the thread executes
 - Default: run() method of the thread itself

- **Thread group**
 - A thread is assigned to the thread group of the thread that calls the constructor

- **Stack size**
 - Store temporary variables during method execution
 - Platform-dependent: range of legal values, optimal value, etc.
A simple thread

```java
public class RandomGen extends Thread {
    private Random random;
    private int nextNumber;
    public RandomGen() {random = new Random();}

    public void run() {
        for (;;) {
            nextNumber = random.nextInt();
            try {
                } catch (InterruptedException ie) {
                    ... return;
                }
            }
        }
    }
}
```

About the code snippet

- Extends the `Thread` class
- Actual instructions we want to execute is in the `run()` method
 - Standard method of the `Thread` class
 - Place where `Thread` begins execution
Contrasting the \texttt{run()} and \texttt{main()} methods

- \texttt{main()} method
 - This is where the \textit{first thread starts executing}
 - The \texttt{main thread}

- The \texttt{run()} method
 - \textit{Subsequent threads} start executing with this method
Threads and heaps

- For performance reasons, heaps may internally subdivide their space into per-thread regions
 - Threads can allocate objects at the same time without interfering with each other
 - By allocating objects used by the same thread from the same memory region?
 - Cache hit rates may improve
- Each subdivision of the heap has thread-local variables
 - Track parts of thread-local heap in use, those that are free, etc.
- New memory allocations (malloc() and new()) can take memory from shared heap, only if local heap is used up

How big a stack?

- The size of the stack must be large enough to accommodate the deepest nesting level needed during the thread’s lifetime
- Kernel threads
 - Kernel stacks are allocated in physical memory
 - The nesting depth for kernel threads tends to be small
 - E.g., 8KB default in Linux on an Intel x86
 - Buffers and data structures are allocated on the heap and never as procedure local variables
How big a stack?

- User-level stacks are allocated in virtual memory
- To catch program errors
 - Most OS will trigger error if the program stack grows too large too quickly
 - Indication of an unbounded recursion
 - Google’s GO will automatically grow the stack as needed … this is very uncommon
 - POSIX, for e.g., allows default stack size to be library dependent (e.g. larger on a desktop, smaller on a phone)
 - “Exceeding default stack limit is very easy to do, with the usual results”
 - Program termination

THREAD LIFECYCLE
Lifecycle of a thread

- Creation
- Starting
- Terminating
- Pausing, suspending, and resuming

Thread: Methods that impact the thread’s lifecycle

```java
public class Thread implements Runnable {
    public void start();
    public void run();
    public void stop();
    public void resume();
    public void suspend();
    public static void sleep(long millis);
    public boolean isAlive();
    public void interrupt();
    public boolean isInterrupted();
    public static boolean interrupted();
    public void join();
}
```

Deprecated, do not use
Thread creation

- Threads are represented by instances of the `Thread` class
- When you extend the `Thread` class?
 - Your instances are also `Thread`
- We looked at the 4 constructor arguments in the `Thread` class

Starting a thread

- Thread exists once it's been constructed
 - But it is *not executing* ... it's in a *waiting* state
- In the waiting state, other threads can *interact* with the existing *thread object*
 - Object state may be changed by other threads
 - Via method invocations
Starting a thread

- When we’re ready for a thread to begin executing code
 - Call the `start()` method
 - `start()` performs internal house-keeping and *then calls* the `run()` method

- When the `start()` method returns?
 - **Two threads** are executing in parallel
 1. The original thread which just returned from calling `start()`
 2. The newly started thread that is executing its `run()` method

After a thread’s `start()` method is called

- The new thread is said to be **alive**
- The `isAlive()` method tells you about the state
 - `true`: Thread has been started and *is executing* its `run()` method
 - `false`: Thread may *not be started* yet or may be *terminated*
Terminating a thread

- Once started, a thread executes only one method: `run()`
- This `run()` may be complicated:
 - May execute forever
 - Call several other methods
- Once the `run()` finishes executing, the thread has **completed** its execution

Like all Java methods, `run()` finishes when it ...

1. **Executes a return statement**
2. **Executes the last statement in its method body**
3. **When it throws an exception**
 - Or fails to catch an exception thrown to it
The only way to terminate a thread?

- Arrange for its `run()` method to **complete**
- But the documentation for the `Thread` class lists a `stop()` method?
 - This has a **race condition** (unsafe), and has been deprecated

Some more about the `run()` method

- Cannot throw a **checked** exception
- But it can throw an **unchecked** exception
 - Exception that extends the `RuntimeException`
- A thread can be **stopped** by:
 1. **Throwing** an unchecked exception in `run()`
 2. **Failing to catch** an unchecked exception thrown by something that `run()` has called
Pausing, suspending and resuming threads

- Some thread models support the concept of **thread suspension**
 - Thread is told to *pause* execution and then told to *resume* its execution
- Thread contains **suspend()** and **resume()**
 - Suffers from vulnerability to *race conditions*: **deprecated**
- Thread can *suspend its own execution* for a specified period
 - By calling the **sleep()** method

But sleeping is not the same thing as thread suspension

- With true thread suspension
 - One thread can suspend (and later resume) *another thread*
- **sleep()** affects only the thread that executes it
 - Not possible to tell another thread to go to sleep
But you can achieve the functionality of suspension and resumption

- Use `wait` and `notify` mechanisms
- Threads **must be coded** to use this technique
 - This is **not a generic** suspend/resume that is imposed by another thread

Thread cleanup

- As long as some other active object holds a reference to the terminated thread object
 - Other threads can execute methods on the terminated thread ... retrieve information
- If the object representing the terminated thread goes *out of scope*?
 - The thread object is **garbage collected**
Holding onto a thread reference allows us to determine if work was completed

- Done using the `join()` method
- The `join()` method
 - Blocks until the thread has completed
 - Returns immediately if
 - The thread has already completed its `run()` method
 - You can call `join()` any number of times
- Don’t use `join()` to poll if the thread is still running
 - Use `isAlive()`

STOPPING A THREAD
Two approaches to stopping a thread

- Setting a flag
- Interrupting a thread

Stopping a Thread: Setting a flag

- Set some internal flag to signal that the thread should stop
- Thread periodically queries the flag to determine if it should exit
Stopping a Thread: Setting a flag

```java
public class RandomGen extends Thread {
    private volatile boolean done = false;

    public void run() {
        while (!done) {
            ...
        }
    }

    public void setDone() {
        done = true;
    }
}
```

The `run()` method investigates the state of the `done` variable on every loop. It returns when the `done` flag has been set.

Interrupting a thread

- In the previous slide, there may be a delay in the `setDone()` being invoked & thread terminating
 - Some statements are executed after `setDone()` and before the value of `done` is checked
 - In the worst case, `setDone()` is called right after the `done` variable was checked
- Delays while waiting for a thread to terminate are inevitable
 - But it would be good if they could be minimized
Interrupting a thread

- When we arrange for thread to terminate, we:
 - Want it to *complete its blocking method* immediately
 - Don’t wish to wait for the data (or …) because the thread will exit

- Use `interrupt()` method of the `Thread` class to *interrupt* any *blocking method*

Effects of the interrupt method

- Causes blocked method to *throw* an `InterruptedException`
 - `sleep()`, `wait()`, `join()`, and methods to read I/O

- Sets a *flag* inside the thread object to indicate that the thread has been interrupted
 - Queried using `isInterrupted()`
 - Returns true if it was interrupted, even though it was not blocked
Stopping a thread: Using interrupts

```java
public class RandomGen extends Thread {
    public void run() {
        while (!isInterrupted()) {
            ...
        }
    }
}
```

`randomGeneratorThread.interrupt()`

The **Runnable** interface

- Allows *separation* of the *implementation* of the task *from the thread* used to run task

```java
public interface Runnable {
    public void run();
}
```
Creation of a thread using the `Runnable` interface

- **Construct the thread**
 - Pass runnable object to the thread’s constructor

- **Start the thread**
 - Instead of starting the runnable object

```java
public class RandomGenerator implements Runnable {  
    public void run() { ... }  
}

...  

generator = new RandomGenerator();  
Thread createdThread = new Thread(generator);  
createdThread.start();
```
When to use Runnable and Thread

- If you would like your class to inherit behavior from the Thread class
 - Extend Thread

- If your class needs to inherit from other classes
 - Implement Runnable

If you extend the Thread class?

- You inherit behavior and methods of the Thread class
 - The interrupt() method is part of the Thread class
 - You can interrupt() if you extend
Advantages of using the `Runnable` interface

- Java provides several classes that handle threading for you
 - Implement pooling, scheduling, or timing
 - These require the `Runnable` interface

But what if I still can’t decide?

- Do a UML model of your application
- The object hierarchy tells you what you need:
 - If your task needs to subclass another class?
 - Use `Runnable`
 - If you need to use methods of `Thread` within your class?
 - Use `Thread`
Threads and Objects

- Instance of the Thread class is just an **object**
 - Can be passed to other methods
 - If a thread has a reference to another thread
 - It can invoke *any method* of that thread’s object

- The Thread object is **not the thread itself**
 - It is the set of methods and data that *encapsulate* information about the thread

But what does this mean?

- You **cannot** look at the object source and know *which thread is*:
 - Executing its methods or examining its data

- You may wonder about which thread is running the code, but …
 - There may be many possibilities
Determining the current thread

- Code within a thread object might want to see that code is being executed either:
 - By thread represented by the object or
 - By a completely different thread

- Retrieve reference to current thread
 - `Thread.currentThread()`
 - Static method

Checking which thread is executing the code

```java
public class MyThread extends Thread {
    public void run() {
        if (Thread.currentThread() != this) {
            throw new IllegalStateException("Run method called by incorrect thread ...");
        } /* end if */
        ... Main logic
    }
}
```
Allowing a **Runnable** object to see if it has been interrupted

```java
public class MyRunnable implements Runnable {
    public void run() {
        if (!Thread.currentThread().isInterrupted()) {
            ... Main logic
        }
    }
}
```

The contents of this slide-set are based on the following references