Frequently asked questions from the previous class survey

- Before an action is performed on an RDD it isn’t “stored”? Where is it? And for how long?
- Are there performance differences between Spark when writing programs in Scala or Java?
- Where are Spark lineage graphs stored?
- Are all transformations implemented using MapReduce under the hood?
Topics covered in this lecture

- Actions on RDDs
- Pair RDDs
- Data Frames
Actions on Basic RDDs

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g., of such an operation? + sums the RDD

 \[
 \text{sum} = \text{rdd.reduce}((x, y) \rightarrow x + y)
 \]

- **fold()** takes a function with the same signature as reduce(), but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Both fold() and reduce() require return type of same type as the RDD elements

- **The aggregate()** removes that constraint
 - For e.g., when computing a running average, maintain both the count so far and the number of elements
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
- `collect()`
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: \{1, 2, 3, 3\}
Examples: Basic actions on RDDs

- **Our RDD contains \{1, 2, 3, 3\}
 - **`count()`**
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

- **Our RDD contains \{1, 2, 3, 3\}
 - **`countByValue()`**
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: \{(1,1), (2,1), (3,2)\}
Examples: Basic actions on RDDs [4/7]

- Our RDD contains \{1, 2, 3, 3\}
 - **take**(\textit{num})
 - Return \textit{num} elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: `\{1, 2\}`

Examples: Basic actions on RDDs [5/7]

- Our RDD contains \{1, 2, 3, 3\}
 - **reduce** \textit{(func)}
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x,y) => x + y)`
 - Result: `9`
Examples: Basic actions on RDDs [6/7]

- Our RDD contains {1, 2, 3, 3}

- `aggregate(zeroValue)(seqOp, combOp)`
 - Similar to `reduce()` but used to return a different type
 - Invocation:
    ```scala
    rdd.aggregate((0,0))
    ((x,y) => (x._1 + y, x._2 + 1),
    (x,y) => (x._1 + y._1, x._2 + y._2))
    ```
 - Result: (9, 4)

Examples: Basic actions on RDDs [7/7]

- Our RDD contains {1, 2, 3, 3}

- `foreach(func)`
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: Nothing
Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will **recompute RDD and all of its dependencies** each time we call an action on the RDD
 - Super expensive for iterative algorithms

- To avoid recomputing RDD multiple times?
 - Ask Spark to **persist** the data
 - The nodes that compute the RDD, store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`
Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed

- Also, replicate data on multiple nodes
 - To handle node failures without slowdowns

Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>Wall clock time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
What if you attempt to cache too much data that does not fit in memory?

- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk

- RDDs also come with a method, `unpersist()`
 - Manually remove data elements from the cache

PairRDDs: Working with Key/Value Pairs
RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats

- Advanced feature to control layout of pair RDDs across nodes
 - Partitioning

RDDs containing key/value pairs

- Are called pair RDDs

- Useful building block in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - reduceByKey() to aggregate data separately for each key
 - join() to merge two RDDs together by grouping elements of the same key
Creating Pair RDDs

- pairs = lines.map(lambda x: (x.split(' '))[0], x)

 Creates a pairRDD using the first word as the key
Transformations on Pair RDDs

- **Pair RDD** = \{(1,2), (3,4), (3,6)\}

- **reduceByKey** \((\text{func})\)
 - Combine values with the same key
 - **Invocation**: \(\text{rdd.reduceByKey}((x, y) \Rightarrow x + y)\)
 - **Result**: \{(1, 2), (3, 10)\}

Transformations on Pair RDDs

- **Pair RDD** = \{(1,2), (3,4), (3,6)\}

- **groupByKey** \((\text{func})\)
 - Group values with the same key
 - **Invocation**: \(\text{rdd.groupByKey}()\)
 - **Result**: \{(1, [2]), (3, [4, 6])\}
Transformations on Pair RDDs [3/5]

- Pair RDD = \{(1,2), (3,4), (3,6) \}
- **mapValues** (func)
 - Apply function to each value of a pair RDD *without* changing the key
 - Invocation: rdd.mapValues(x => x+1)
 - Result: \{(1, 3), (3, 5), (3, 7) \}

Transformations on Pair RDDs [4/5]

- Pair RDD = \{(1,2), (3,4), (3,6) \}
- **values()**
 - Return an RDD of just the values
 - Invocation: rdd.values()
 - Result: \{2, 4, 6\}
Transformations on Pair RDDs

Pair RDD = \{(1,2), (3,4), (3,6) \}

sortByKey()

- Return an RDD sorted by the key
- Invocation: rdd.sortByKey()
- Result: \{(1,2), (3,4), (3,6) \}
Transformations on two Pair RDDs [1/5]

- \(rdd = \{(1,2), (3,4), (3,6)\} \) \(\quad \) \(\text{other} = \{(3,9)\} \)

- \(\text{subtractByKey}() \)
 - Remove elements with a key present in the \(\text{other} \) RDD
 - Invocation: \(rdd.\text{subtractByKey}(\text{other}) \)
 - Result: \(\{(1,2)\} \)

Transformations on two Pair RDDs [2/5]

- \(rdd = \{(1,2), (3,4), (3,6)\} \) \(\quad \) \(\text{other} = \{(3,9)\} \)

- \(\text{join}() \)
 - Perform an \textit{inner join} between two RDDs. Only keys that are present in both pair RDDs are output
 - Invocation: \(rdd.\text{join}(\text{other}) \)
 - Result: \(\{(3, (4,9)), (3, (6,9))\} \)
Transformations on two Pair RDDs [3/5]

- **leftOuterJoin()**
 - Perform a join between two RDDs where the key must be present in the first RDD.
 - Value associated with each key is a tuple of the value from the source and an Option for the value from the other pair RDD.
 - In Python if a value is not present, `None` is used.
 - Invocation: `rdd.leftOuterJoin(other)`
 - Result: `{ (1, (2, None)) , (3, (4, 9)) , (3, (6, 9)) }`

Transformations on two Pair RDDs [4/5]

- **rightOuterJoin()**
 - Perform a join between two RDDs where the key must be present in the other RDD.
 - Tuple has an option for the source rather than the other RDD.
 - Invocation: `rdd.rightOuterJoin(other)`
 - Result: `{ (3, (4, 9)) , (3, (6, 9)) }`
Transformations on two Pair RDDs

- \(\text{rdd} = \{(1,2), (3,4), (3,6)\} \quad \text{other} = \{(3,9)\} \)

- \(\text{cogroup()} \)
 - Group data from both RDDs using the same key
 - Invocation: \(\text{rdd}.\text{cogroup}(\text{other}) \)
 - Result: \(\{(1, ([2], [])), (3, ([4, 6], [9]))\} \)

Example of chaining operations:
Calculation of per-key average

- \(\text{rdd}.\text{mapValues}(x=>(x, 1)).\text{reduceByKey}((x,y)=>(x._1 + y._1, x._2 + y._2)) \)
A word count example

- We are using `flatMap()` to produce a pair RDD of words and the number 1

```python
rdd = sc.textfile("s3://...")
words = rdd.flatMap(lambda x: x.split(" "))
result = words.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y)
```
Spark DataFrame

- DataFrames consist of
 - A series of records (like rows in a table) that are of type Row
 - A number of columns (like columns in a spreadsheet)
- Rows
 - You can create rows by manually instantiating a Row object with the values that belong in each column
- Columns
 - You can select, manipulate, and remove columns from DataFrames and these operations are represented as expressions

Schemas

- A schema defines the column names and types of a DataFrame
- You can let a data source define the schema (called schema-on-read) or define it explicitly
- Note that only DataFrames have schemas
 - Rows themselves do not have schemas
 - If you create a Row manually?
 - You must specify the values in the same order as the schema of the DataFrame to which they might be appended
We can create **DataFrames** from raw data sources

- Spark has six “**core**” data sources
 - CSV
 - JSON
 - Parquet
 - ORC: Apache Optimized Row Columnar (ORC) file format
 - JDBC/ODBC connections
 - Plain-text files
- Hundreds of external data sources written by the community
 - E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.

The foundation for reading data in Spark is the **DataFrameReader**

- We access this through the **SparkSession** via the `read` attribute:
 `spark.read`
- After we have a **DataFrame reader**, we specify several values:
 - The format: Input data source format
 - The schema
 - The read mode {Permissive, DropMalformed, Failfast}
 - A series of options
- The format, options, and schema each return a **DataFrameReader** that can undergo further transformations and are all optional
However, at a minimum, the DataFrameReader must have a **path** from which to read

```python
spark.read.format("csv")
  .option("mode", "FAILFAST")
  .option("inferSchema", "true")
  .option("path", "path/to/file(s)")
  .schema(someSchema)
  .load()
```

Writing data is quite similar to that of reading data

- Instead of the DataFrameReader, we have the DataFrameWriter
- We access the DataFrameWriter on a per-DataFrame basis via the write attribute:

```python
dataFrame.write
```
Writing Data

- After we have a DataFrameWriter, we specify three values:
 - The format, a series of options, and the save mode

- At a minimum, you must supply a path.

- Options may vary from data source to data source.

```scala
dataframe.write.format("csv")
  .option("mode", "APPEND")
  .option("dateFormat", "yyyy-MM-dd")
  .option("path", "path/to/file(s)")
  .save()
```

You can make any DataFrame into a table or view

- Done via a simple method call: createOrReplaceTempView

- This then allows you to query the data using SQL

```scala
val df = spark.read
  .format("json")
  .load("/data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView("dfTable")
```
DataFrame transformations

- Add rows or columns
- Remove rows or columns
- Transform a row into a column (or vice versa)
- Change the order of rows based on the values in columns

Adding Columns

- Use the `withColumn` method on the DataFrame
- For example, let's add a column that just adds the number one as a column:

```python
df.withColumn("numberOne", lit(1))
```
Renaming Columns

- Done using the `withColumnRenamed` method.
- Will rename the column with the name of the string in the first argument to the string in the second argument:

```scala
df.withColumnRenamed("DEST_COUNTRY_NAME","dest")
```

Removing Columns

- Done using a method called `drop`

```scala
df.drop("ORIGIN_COUNTRY_NAME")
```

- We can drop multiple columns by passing in multiple columns as arguments

```scala
dfWithLongColName.drop("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME")
```
Filtering Rows

- To **filter** rows, we create an expression that evaluates to true or false
 - Those rows where the expression evaluates to `false` are filtered out

```python
df.filter(col( "count" ) < 2)
```

Getting Unique Rows

- A very common use case is to extract the unique or **distinct** values in a DataFrame
 - These values can be in **one or more columns**
 - Done by using the **distinct** method on a DataFrame
 - Allows **deduplication** of any rows that are in that DataFrame.
 - Again, this is a transformation that will return a **new** DataFrame with only unique rows:

```python
df.select("ORIGIN_COUNTRY_NAME","DEST_COUNTRY_NAME")
 .distinct()
```
Random Samples

- You might want to sample some random records from a DataFrame
- Done by using the `sample` method on a DataFrame
 - Specify a fraction of rows to extract from a DataFrame and whether the sample will be with or without replacement

```scala
val seed = 5
val withReplacement = false
val fraction = 0.5
df.sample(withReplacement, fraction, seed)
```

Random Splits

- Random splits are helpful when you need to break up a DataFrame into a random “splits” of the original DataFrame
- Often used with machine learning algorithms to create training, validation, and test sets

```scala
val dataframes =
    df.randomSplit(Array(0.25, 0.75), seed)
```
Column Manipulations [1/4]

- `withColumn(columnName, func)`
 - Return an DataFrame with the additional column
 - Invocation: `df.withColumn("dogYears", df.age / 7)`

- `dropColumn(columnName)`
 - Return an DataFrame without the column
 - Invocation: `df.dropColumn("age")`

Column Manipulations [2/4]

- `select(columnNames)`
 - Return an DataFrame with the specified columns
 - Invocation: `df.select("firstName", "age")`

- `describe(columnName)`
 - Compute summary statistics over DataFrame columns
 - Invocation: `df.describe("age")`, `df.describe()`
Column Manipulations [3/4]

```
val df = Seq(
    ("Peterson", "Marcus", 54),
    ("Batey", "Edward", 36),
    ("Bruce", "Karen", 35)
  ).toDF("lastName", "firstName", "age")

df.withColumn("dogYears", df.age / 7.0)
df.describe("age", "dogYears")
```

Column Manipulations [4/4]

```
+-----------------+-------+
|summary| age| dogYears|
+-----------------+-------+
| count| 3 | 3 |
| mean| 41.6667| 5.95238|
| stddev| 10.69268| 1.52753|
| min| 35 | 5 |
| max| 54 | 7.714286|
+-----------------+-------+
```
Dataframe joins

- `join(other, <columnComparison>, <joinType>)`
 - Performs a join between 2 Dataframes
 - Invocation: `df1.join(df2, Seq("id"))`

Join column comparison

- Supports a variety of criteria
 - Sequence of column names (e.g., `Seq("id", "age")`)
 - Elaborate comparison definitions (e.g., `df1("age") >= df2("age")`)
Join Type

- **DataFrame** may perform multiple styles of join
 - **Inner**: typical dataset join with key-to-key match
 - **Outer, left-outer, right-outer**: result contains all rows, filling in columns with 'null' values where data doesn’t exist
 - **Left-semi, right-semi**: similar to outer join, but result only contains rows in specified source dataset

Example: Spark SQL

```scala
val df = Seq(
  ("Peterson", "Marcus", 54),
  ("Batey", "Edward", 36),
  ("Bruce", "Karen", 35)
).toDF("lastName", "firstName", "age")

df.createOrReplaceTempView("people")
spike.sql("SELECT firstName, age, age / 7.0 as dogYears FROM people where age < 50")
```
The contents of this slide-set are based on the following references:

- SQL Joins: https://www.w3schools.com/sql/sql_join.asp