Topics covered in this lecture

- Logical clocks
- Vector clocks
- Matrix clocks
Physical time in a distributed system is problematic

- This is not because of the effects of special relativity, which are negligible or non-existent for normal computers
 - Unless you count computers travelling in spaceships

- It is because of the inability to accurately timestamp events at different nodes
 - We need this to order any pairs of events
If two processes do not interact with each other?

- Their clocks need not be synchronized
- Lack of synchronization is not observable
 - Does not cause problems

Logical clocks

- Within a single process, events are ordered uniquely by times shown on local clock
- But we cannot synchronize clocks perfectly across a distributed system [Lamport 1978]
 - We cannot use physical time to find out the order of an arbitrary pair of events in a distributed system
We can use a scheme that is similar to physical causality to order events

1. If two events occurred at the same process p_i ($i=1, 2, \ldots, N$)?
 - Then they occurred in the order in which p_i observes them
 - This is the order \rightarrow_i

2. When a message is sent between processes?
 - The event of sending the message occurred before the event of receiving the message

The \rightarrow relation

- Lamport called the **partial ordering** obtained by generalizing the previous 2 relationships
 - The *happened-before* or *happens-before* relation

- Sometimes also known as the relation of *causal ordering* or *potential causal ordering*
Lamport’s logical clocks

- The **happens-before** relation
 - a and b are events in the process; and a occurs before b
 - Then $a \Rightarrow b$ is true
 - a is event of message sent by one process;
 b is event of message being received in another process
 - Then $a \Rightarrow b$ is true

Some more things about the happens-before relation

- If $a \Rightarrow b$ and $b \Rightarrow c$; then $a \Rightarrow c$
 - **Transitive**

- If events x and y occur in processes that do not exchange messages,
 then ...
 - $x \Rightarrow y$ is not true
 - But, neither is $y \Rightarrow x$
 - These events are said to be **concurrent**
Events occurring at three processes

- $a \rightarrow b$ and $c \rightarrow d$
 - These occur within the same process
- $b \rightarrow c$ and $d \rightarrow f$
 - Events that correspond to sending and receiving messages
- We can use transitivity to say $a \rightarrow f$
- No relationship between a and e; these are concurrent $a \parallel e$

If the \rightarrow relation holds between two processes

- The first event might or might-not have caused the second
 - The \rightarrow relation only captures potential causality
 - i.e. two events can be related by \rightarrow without a real connection between them
- EXAMPLE 1: If the server receives a request and sends a response?
 - Then reply is caused by the request
- EXAMPLE 2: A process might receive a request and subsequently issue another message
 - But this could be one that it issues every 5 minutes anyway
A simple example of Lamport timestamps

![Diagram showing Lamport timestamps]

An example of Lamport’s algorithm:

![Diagram showing Lamport's algorithm]

Each message carries the sending time according to the sender’s clock.

Each clock runs at a constant (but different rate).
An example of Lamport’s algorithm:

Each clock runs at a constant (but different rate)

Implementing Lamport’s clocks

1. Before executing an event; \(P_i \) executes
 \[C_i = C_i + 1 \]

2. When \(P_i \) sends a message \(m \) to \(P_j \); it sets \(m \)’s timestamp \(ts(m) \) to \(C_i \) in previous step

3. Upon receipt of message \(m \), \(P_j \) adjusts its own local counter
 \[C_j = \max \{ C_j, ts(m) \} \]
 do step 1 and deliver message
The positioning of Lamport’s clocks in distributed systems

An application of Lamport’s clock:
User has $1000 in bank account initially

Add $100 to account
San Francisco

Update with 1% interest
New York

Add $100 ... Total: $1100
Give 1% interest on total: $11
Balance: $1111

Add $100
Balance: $1110

Add $100 ... Total: $1010
Give 1% interest ...
Balance: $1110

COLORADO STATE UNIVERSITY
Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT
LOGICAL CLOCKS
L34.17

COLORADO STATE UNIVERSITY
Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT
LOGICAL CLOCKS
L34.18
There is a difference when the orders are reversed

- Our objective for now is consistency
- Both copies must be exactly the same

Use Lamport’s clock to order messages

- Process puts received messages into local queue
 - Ordered according to the message’s timestamp
- Message can be delivered only if it is acknowledged by all the other processes
- If a message is at the head of the queue, and acknowledged by all processes
 - It is delivered and processed
Lamport’s Clocks order events based on the happened-before relationship

- If \(a \) happened before \(b \), then \(C(a) < C(b) \)
- But nothing can be said about two events \(a \) and \(b \) by merely comparing their values
- \(C(a) < C(b) \)?
 - Does not mean \(a \) happened before \(b \)

Let’s look a little closer

- \(T_{snd}(m_i) \): Time \(m_i \) was sent
- \(T_{rcv}(m_i) \): Time \(m_i \) was received
- \(T_{snd}(m_i) < T_{rcv}(m_j) \)
- BUT
 - \(T_{snd}(m_i) < T_{rcv}(m_j) \) ?
 - NO
Concurrent message transmissions

Sending m_3 MAY HAVE depended on m_1

$T_{\text{rcv}}(m_1) < T_{\text{snd}}(m_2)$

But sending of m_2 has nothing to do with receipt of m_1

Lamport clocks do not capture causality

Vector Clocks
Lamport’s Clocks order events based on the happened-before relationship

- If \(a \) happened before \(b \), then \(C(a) < C(b) \)
- But nothing can be said about two events \(a \) and \(b \) by merely comparing their values
- \(C(a) < C(b) ? \)
 - Does not mean \(a \) happened before \(b \)

Let’s look a little closer

- \(T_{snd}(m_i) : \) Time \(m_i \) was sent
- \(T_{rcv}(m_i) : \) Time \(m_i \) was received
- \(T_{snd}(m_i) < T_{rcv}(m_j) \)
- BUT
 - \(T_{snd}(m_i) < T_{rcv}(m_j) ? \)
 - NO
Concurrent message transmissions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
<th>70</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>61</td>
<td>69</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>m2</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

Sending m3 MAY HAVE depended on m1

But sending of m2 has nothing to do with receipt of m1

\(T_{rcv}(m1) < T_{snd}(m2)\)

Lamport clocks do not capture causality

Vector clocks

- Developed by Mattern [1989] and Fidge [1991] to **overcome shortcomings** of Lamport’s clocks
 - i.e., if \(C(a) < C(b)\) then we cannot conclude \(a \rightarrow b\)

- A vector clock for a system of \(N\) processes is an **array** of \(N\) integers

- Each process keeps its own vector clock \(VC_i\)
 - Process uses it vector clock to timestamp messages
Causal precedence can be captured by Vector clocks

- Event a is known to causally precede event b iff $\text{VC}(a) < \text{VC}(b)$
 - $\text{VC}(a) < \text{VC}(b)$ iff $\text{VC}(a)[k] \leq \text{VC}(b)[k]$ for all k and at least one of those relationships is strictly smaller

- Each process P_i maintains a vector VC_i
- $\text{VC}_i[i]$ is number of events so far at P_i
- If $\text{VC}_i[j] = k$
 - P_i knows k events occurred at P_j
 - P_i's knowledge of local time at P_j

Vectors are piggybacked along with any messages that are sent

1. Before executing an event (sending, delivering, or internal) P_i executes
 - $\text{VC}_i[i] = \text{VC}_i[i] + 1$
2. When P_i sends a message m to P_j
 - Set m's timestamp $ts(m)$ to VC_i after doing (1)
3. After receiving m, process P_j adjusts its vector
 - $\text{VC}_j[k] = \max\{\text{VC}_j[k], \; ts(m)[k]\}$ for each k
 - Execute step (1) and deliver
Vector clocks example 1

\[
\begin{array}{c}
A \\
[1,0,0] \quad [2,0,0] \\
B \\
[2,1,0] \\
C \\
[0,0,1] \quad [2,2,2]
\end{array}
\]

Vector clocks example 2

\[
\begin{array}{c}
A \\
[1,0,0] \quad [5,4,0] \quad [7,4,4] \\
B \\
[1,2,0] \quad [1,4,0] \\
C \\
[1,3,3] \quad [1,3,4]
\end{array}
\]
Vector timestamps allow us to determine causality and concurrency

- Event a happened before event b iff
 - $ts(a) \leq ts(b)$ for each process i
 - And one of those relationships is strictly smaller

- If this is not true
 - Events a and b are concurrent

Vector Clocks: Other aspects

- If event a has timestamp, $ts(a)$:
 - $ts(a)[i] - 1$
 - Denotes number of events at P_i that precede a

- When P_j receives message m from P_i with timestamp $ts(m) = VC_i$
 - P_j knows about the number of events at P_i that causally preceded m
 - Also, P_j knows about how many events at other processes have preceded the sending of m, and on which m may causally depend
Vector clocks: Disadvantages

- Storage and message payload is proportional to N, the number of processes
- It’s been shown ([Charron-Bost 1991]) that if we are to tell if two events are concurrent by inspecting timestamps?
 - The dimension of N is unavoidable

Using Vector Clocks for Causally Ordered Multicasting
Contrasting totally-ordered and causally-ordered multicasting

- Causally-ordered multicasting is **weaker than** totally-ordered multicasting
- If two messages are **not in any way related** to each other?
 - We **do not care about the order** in which they are delivered to applications
 - Could be delivered in **different order at different applications**

Using Vector Clocks for causally-ordered **multicasting**

- Clocks are **ONLY adjusted when sending and receiving** messages
- Upon **sending** a message, process \(P_i \) will only increment \(VC_i[i] \) by 1
- When \(P_i \) **delivers** a message \(m \) with timestamp \(ts(m) \) it adjusts \(VC_i[k] \)
 - To \(\max(VC_i[k], ts(m)[k]) \) for each \(k \)
When process P_j receives a message m from P_i

- Delivery of the message m to the application layer is delayed until 2 conditions are met:
 1. $ts(m)[i] = VC_j[i] + 1$
 - This means m is the next message that P_j was expecting from P_i
 2. $ts(m)[k] \leq VC_j[k]$ for all $k \neq i$
 - This means that P_j has seen all messages that have been seen by P_i when it receives m

An example showing enforcement of causal communications

[Diagram showing causal communications with nodes A, B, and C, and messages m and m*.]

Delivery of m^* is delayed until m is delivered

[Errata fixed on this slide.]
Matrix clocks

- Generalizes the notion of vector clocks
- Processes keep estimates of other processes' vector time [Raynal & Singhal, 1996]
- Essentially, a vector of vector clocks for each of the communicating processes

The contents of this slide-set are based on the following references

- http://en.wikipedia.org/wiki/Matrix_clocks