CSXx55: DISTRIBUTED SYSTEMS [THREADS]

Threads block when they can’t get that lock

Wanna have your threads stall?
Go ahead, synchronize it all

The antidote to this liveness pitfall?
Keeping the lock scope small
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Colorado State University
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Frequently asked questions from the previous class
survey

Is there a max nesting depth for calls?
Who determines which task will run where there is a memory stall?

Within an application does it ever make sense to use IPC instead of
threads?

Can page faults occur for thread creation?
Is there a max number of threads per process?
Can threads control /coordinate with other threads within a process?

Multiple threads with multiple cores?¢ Cores with multiple ALUs?
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Topics covered in this lecture
N

o1 Threads
o1 Thread Lifecycle

©1 Data synchronization

71 Synchronized blocks
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How big a stack? [1/2]

The size of the stack must be large enough to accommodate the
deepest nesting level needed during the thread’s lifetime

Kernel threads
Kernel stacks are allocated in physical memory
The nesting depth for kernel threads tends to be small

E.g., 8KB default in Linux on an Intel x86

Buffers and data structures are allocated on the heap and never as
procedure local variables
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How big a stack? [2/2]

User-level stacks are allocated in virtual memory

To catch program errors

Most OS will trigger error if the program stack grows too large too quickly
Indication of an unbounded recursion

Google’s GO will automatically grow the stack as needed ... this is very
uncommon

POSIX, for e.g., allows default stack size to be library dependent (e.g.,
larger on a desktop, smaller on a phone)

“Exceeding default stack limit is very easy to do, with the usual results”
Program termination
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THREAD LIFECYCLE



Lifecycle of a thread
N

- Creation
0 Starting
01 Terminating

01 Pausing, suspending, and resuming
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Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable ({
public void start();
public void run() ;
public void stop();
public void resume () ; }Depr‘eca‘red, do not use
public void suspend() ;
public static void sleep(long millis);
public boolean isAlive() ;
public void interrupt() ;
public boolean isInterrupted() ;
public static boolean interrupted();
public void join();
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Thread creation

Threads are represented by instances of the Thread class

When you extend the Thread class?

Your instances are also Threads

We looked at the 4 constructor arguments in the Thread class
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Starting a thread [1/2]

Thread exists once it's been constructed

But it is not executing ... if’s in a waiting state

In the waiting state, other threads can interact with the existing thread
object

Object state may be changed by other threads

Via method invocations
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Starting a thread [2/2]

When we’re ready for a thread to begin executing code
Call the start () method

start () performs internal house-keeping and then calls the run () method

When the start () method returns?

Two threads are executing in parallel
(1) The original thread which just returned from calling start ()
@ The newly started thread that is executing its run () method
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After a thread’s start () method is called

The new thread is said to be alive

The isAlive () method tells you about the state
true: Thread has been started and is executing its run () method

false: Thread may not be started yet or may be terminated
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Terminating a thread

Once started, a thread executes only one method: run ()

This run () may be complicated

May execute forever

Call several other methods

Once the run () finishes executing, the thread has completed its
execution
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Like all Java methods, run () finishes when it ...
—

(1) Executes a return statement
(2) Executes the last statement in its method body

(3) When it throws an exception

Or fails to catch an exception thrown to it
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The only way to terminate a thread?

Arrange for its run () method to complete

But the documentation for the Thread class lists a stop () method?

This has a race condition (unsafe), and has been deprecated
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Some more about the run () method

Cannot throw a checked exception

But it can throw an unchecked exception

Exception that extends the RuntimeException

A thread can be stopped by:
(1) Throwing an unchecked exception in run ()

(2) Failing to catch an unchecked exception thrown by something that run ()
has called

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.16



Pausing, suspending and resuming threads

Some thread models support the concept of thread suspension

Thread is told to pause execution and then told to resume its execution

Thread contains suspend () and resume ()

Suffers from vulnerability to race conditions: deprecated

Thread can suspend its own execution for a specified period
By calling the sleep () method
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But sleeping is not the same thing as thread
suspension

With true thread suspension

One thread can suspend (and later resume) another thread

sleep () affects only the thread that executes it

Not possible to tell another thread to go to sleep
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But you can achieve the functionality of suspension

and resumption
=

1 Use wait and notify mechanisms

1 Threads must be coded to use this technique

This is not a generic suspend /resume that is imposed by another thread
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Thread cleanup

As long as some other active object holds a reference to the
terminated thread object

Other threads can execute methods on the terminated thread ... retrieve
information

If the object representing the terminated thread goes out of scope?

The thread object is garbage collected
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Holding onto a thread reference allows us to

determine if work was completed

Done using the join () method

The join () method
Blocks until the thread has completed

Returns immediately if

The thread has already completed its run () method

You can call join () any number of times

Don’t use join () to poll if the thread is still running

Use isAlive ()
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STOPPING A THREAD



Two approaches to stopping a thread

I
1 Setting a flag

1 Interrupting a thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.23



Stopping a Thread: Setting a flag

I
- Set some internal flag to signal that the thread should stop

o Thread periodically queries the flag to determine if it should exit
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Stopping a Thread: Setting a flag

public class RandomGen extends Thread ({
private volatile boolean done = false;

public void run() {
while (!'done) {

public voild setbDone () {
done = true;

run() method investigates the state of the done variable on every loop.
Returns when the done flag has been set.
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Interrupting a thread

In the previous slide, there may be a delay in the setDone () being
invoked & thread terminating

Some statements are executed after setDone () and before the value of
done is checked

In the worst case, setDone () is called right after the the done variable
was checked

Delays while waiting for a thread to terminate are inevitable

But it would be good if they could be minimized
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Interrupting a thread

When we arrange for thread to terminate, we:
Want it to complete its blocking method immediately

Don’t wish to wait for the data (or ...) because the thread will exit

Use interrupt () method of the Thread class to interrupt any
blocking method
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Effects of the interrupt method

Causes blocked method to throw an InterruptedException

sleep (), wait (), join (), and methods to read I/O

Sets a flag inside the thread object to indicate that the thread has
been interrupted

Queried using isInterrupted ()

Returns true if it was interrupted, even though it was not blocked
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Stopping a thread: Using interrupts
—

public class RandomGen extends Thread ({

public void run() {
while (!'isInterrupted()) {

}

radomGeneratorThread.interrupt ()
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The Runnable interface
—

- Allows separation of the implementation of the task from the thread
used to run task

public interface Runnable {

public void run() ;
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Creation of a thread using the Runnable interface
S

1 Construct the thread

Pass runnable object to the thread’s constructor

-1 Start the thread

Instead of starting the runnable object
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public class RandomGenerator implements Runnable {

public void run() { ... }

generator = new RandomGenerator() ;
Thread createdThread = new Thread(generator) ;
createdThread.start () ;
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When to use Runnable and Thread

If you would like your class to inherit behavior from the Thread class
Extend Thread

If your class needs to inherit from other classes

Implement Runnable
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If you extend the Thread class?
—

1 You inherit behavior and methods of the Thread class
The interrupt () method is part of the Thread class

You can interrupt () if you extend
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Advantages of using the Runnable interface

Java provides several classes that handle threading for you
Implement pooling, scheduling, or timing

These require the Runnable interface
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But what if | still can’t decide?

Do a UML (Unified Modeling Language) model of your application

The object hierarchy tells you what you need:

If your task needs to subclass another class?
Use Runnable

If you need to use methods of Thread within your class?
Use Thread
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Threads and Obijects

Instance of the Thread class is just an object
Can be passed to other methods

If a thread has a reference to another thread

It can invoke any method of that thread’s object

The Thread object is not the thread itself

It is the set of methods and data that encapsulate information about the
thread
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But what does this mean?

You cannot look at the object source and know which thread is:

Executing its methods or examining its data

You may wonder about which thread is running the code, but ...

There may be many possibilities
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Determining the current thread

Code within a thread object might want to see that code is being
executed either:

By thread represented by the object or
By a completely different thread

Retrieve reference to current thread

Thread.currentThread ()

Static method
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Checking which thread is executing the code

public class MyThread extends Thread {

public void run() {
if (Thread.currentThread () !'= this) {
throw new IllegalStateException
("Run method called by incorrect thread ..);

} /* end if */

. Main logic
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Allowing a Runnable object to see if it has been

interrupted
]
public class MyRunnable implements Runnable {
public void run() {
if (!Thread.currentThread () .isInterrupted() ) {

. Main logic

}
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Heisenbugs

Term coined by ACM Turing Award winner Jim Gray
Pun on the name of Werner Heisenberg

Act of observing a system, alters its state!

Describes a particular class of bugs

Those that disappear or change behavior when you try to examine them

Multithreaded programs are a common source of Heisenbugs
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What about regular bugs?
=

1 Sometimes referred to as Bohr bugs

Deterministic

Generally, much easier to diagnose
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Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store
12:10 A is looking for friend B B is looking for friend A
12:15 A leaves for the second store B leaves for the first store
12:20 B arrives at store A arrives at store
12:30 B is Looking for friend A A is looking for friend B
12:40 B leaves for the second store A leaves for the first store

Both friends are now frustrated and undercaffeinated!
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Why sharing data between threads is problematic

Race conditions

Correct outcome depends on lucky timing of uncontrollable events

Threads attempt to access data more or less simultaneously

A thread may change the value of data that some other thread is operating
on
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Example code with race condition

public class MyThread extends Thread ({
private byte[] wvalues;
private int position;

public void

Modify wvalues and position

Use values and position

public void run() {
Main logic

}

public void utilizeDataAndPerformFunction ()

modifyData (byte[] newValues, int newPosition) {

{
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In the previous shippet a race condition exists

because ...
—

o The thread that calls modifyData () is accessing the same data as
the thread that calls utilizeDataAndPerformFunction ()

0 utilizeDataAndPerformFunction () and modifyData () are not
atomic

It is possible that values and position are changed while they are
being used
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What is atomic?

The code cannot be interrupted during its execution

Accomplished in hardware or simulated in software

Code that cannot be found in an intermediate state
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Eliminating the race condition using the synchronized
keyword

If we declared both modifyDbata () and
utilizeDataAndPerformFunction () as synchronized?

Only one thread gets to call either method at a time

Only one thread accesses data at a time

When one thread calls one of these methods, while another is executing one
of them?

The second thread must wait
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Example code with no race conditions by using the

synchronized keyword

public class MyThread extends Thread {
private byte[] wvalues;
private int position;

public void synchronized

Modify values and position

}

public void synchronized
utilizeDataAndPerformFunction ()
Use values and position

public void run() {
. Main logic

Protessor: SHRIDEEP PALLICKARA
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modifyData (byte[] newValues, int newPosition) {
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Revisiting the mutex lock

Mutually exclusive lock

If two threads try to grab a mutex?

Only one succeeds

In Java, every object has an associated lock
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When a method is declared synchronized ...

The thread that wants to execute the method must acquire a lock

Once the thread has acquired the lock?

It executes method and releases the lock

When a method returns, the lock is released

Even if the return is because of an exception
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Locks and objects

There is only one lock per object

If two threads call synchronized methods of the same object?

Only one can execute immediately

The other has to wait until the lock is released
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The contents of this slide-set are based on the

following references
——

= Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]
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