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Threads block when they can’t get that lock
Wanna have your threads stall?

      Go ahead, synchronize it all

The antidote to this liveness pitfall?

      Keeping the lock scope small
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Frequently asked questions from the previous class 

survey

 Is there a max nesting depth for calls?

 Who determines which task will run where there is a memory stall?

 Within an application does it ever make sense to use IPC instead of 

threads?

 Can page faults occur for thread creation?

 Is there a max number of threads per process?

 Can threads control/coordinate with other threads within a process?

 Multiple threads with multiple cores? Cores with multiple ALUs?
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Topics covered in this lecture

 Threads

 Thread Lifecycle

 Data synchronization

 Synchronized blocks
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How big a stack?                                    [1/2]

 The size of the stack must be large enough to accommodate the 

deepest nesting level needed during the thread’s lifetime

 Kernel threads

 Kernel stacks are allocated in physical memory

 The nesting depth for kernel threads tends to be small

 E.g., 8KB default in Linux on an Intel x86

 Buffers and data structures are allocated on the heap and never as 

procedure local variables
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How big a stack?                                    [2/2]

 User-level stacks are allocated in virtual memory

 To catch program errors

 Most OS will trigger error if the program stack grows too large too quickly

◼ Indication of an unbounded recursion

 Google’s GO will automatically grow the stack as needed … this is very 
uncommon

 POSIX, for e.g., allows default stack size to be library dependent (e.g., 
larger on a desktop, smaller on a phone)

◼ “Exceeding default stack limit is very easy to do, with the usual results”

◼ Program termination
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Lifecycle of a thread

 Creation

 Starting

 Terminating

 Pausing, suspending, and resuming
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Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable {

   public void start();

   public void run();

   public void stop();

   public void resume();

   public void suspend();

   public static void sleep(long millis);

   public boolean isAlive();

   public void interrupt();

   public boolean isInterrupted();

   public static boolean interrupted();

   public void join();

}

Deprecated, do not use
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Thread creation

 Threads are represented by instances of the Thread class

 When you extend the Thread class?

 Your instances are also Threads

 We looked at the 4 constructor arguments in the Thread class
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Starting a thread                                    [1/2]

 Thread exists once it’s been constructed

 But it is not executing … it’s in a waiting state

 In the waiting state, other threads can interact with the existing thread 

object

 Object state may be changed by other threads

◼ Via method invocations 
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Starting a thread                                    [2/2]

 When we’re ready for a thread to begin executing code

 Call the start() method

 start() performs internal house-keeping and then calls the run() method 

 When the start() method returns? 

 Two threads are executing in parallel

① The original thread which just returned from calling start()

② The newly started thread that is executing its run() method
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After a thread’s start() method is called

 The new thread is said to be alive

 The isAlive() method tells you about the state

▪ true: Thread has been started and is executing its run() method

▪ false: Thread may not be started yet or may be terminated
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Terminating a thread

 Once started, a thread executes only one method: run()

 This run() may be complicated

 May execute forever

 Call several other methods

 Once the run() finishes executing, the thread has completed its 

execution
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Like all Java methods, run() finishes when it …

① Executes a return statement

② Executes the last statement in its method body

③ When it throws an exception

 Or fails to catch an exception thrown to it
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The only way to terminate a thread?

 Arrange for its run() method to complete

 But the documentation for the Thread class lists a stop() method?

 This has a race condition (unsafe), and has been deprecated



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.16

Some more about the run() method

 Cannot throw a checked exception

 But it can throw an unchecked exception

 Exception that extends the RuntimeException

 A thread can be stopped by:

① Throwing an unchecked exception in run()

② Failing to catch an unchecked exception thrown by something that run() 

has called
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Pausing, suspending and resuming threads

 Some thread models support the concept of thread suspension

 Thread is told to pause execution and then told to resume its execution

 Thread contains suspend() and resume()

 Suffers from vulnerability to race conditions: deprecated

 Thread can suspend its own execution for a specified period

 By calling the sleep() method
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But sleeping is not the same thing as thread 

suspension

 With true thread suspension

 One thread can suspend (and later resume) another thread

 sleep() affects only the thread that executes it

 Not possible to tell another thread to go to sleep
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But you can achieve the functionality of suspension 

and resumption

 Use wait and notify mechanisms

 Threads must be coded to use this technique

 This is not a generic suspend/resume that is imposed by another thread
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Thread cleanup

 As long as some other active object holds a reference to the 

terminated thread object

 Other threads can execute methods on the terminated thread … retrieve 

information

 If the object representing the terminated thread goes out of scope?

 The thread object is garbage collected
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Holding onto a thread reference allows us to 

determine if work was completed

 Done using the join() method

 The join() method

 Blocks until the thread has completed

 Returns immediately if

◼ The thread has already completed its run() method

◼ You can call join() any number of times

 Don’t use join() to poll if the thread is still running

 Use isAlive()
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Two approaches to stopping a thread

 Setting a flag

 Interrupting a thread
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Stopping a Thread: Setting a flag

 Set some internal flag to signal that the thread should stop

 Thread periodically queries the flag to determine if it should exit
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Stopping a Thread: Setting a flag

public class RandomGen extends Thread {

   private volatile boolean done = false;

   public void run() {

     while (!done) {

        ...

     }

   }

   public void setDone() {

      done = true;

   }

}

run() method investigates the state of the done variable on every loop. 
Returns when the done flag has been set.
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Interrupting a thread

 In the previous slide, there may be a delay in the setDone() being 

invoked & thread terminating

 Some statements are executed after setDone() and before the value of 

done is checked 

 In the worst case, setDone() is called right after the the done variable 

was checked

 Delays while waiting for a thread to terminate are inevitable

 But it would be good if they could be minimized 
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Interrupting a thread

 When we arrange for thread to terminate, we:

 Want it to complete its blocking method immediately

 Don’t wish to wait for the data (or …) because the thread will exit 

 Use interrupt() method of the Thread class to interrupt any 

blocking method
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Effects of the interrupt method

 Causes blocked method to throw an InterruptedException 

 sleep(), wait(), join(), and methods to read I/O

 Sets a flag inside the thread object to indicate that the thread has 

been interrupted

 Queried using isInterrupted()

◼ Returns true if it was interrupted, even though it was not blocked
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Stopping a thread: Using interrupts

public class RandomGen extends Thread {

   

   public void run() {

     while (!isInterrupted()) {

        ...

     }

   }

}

radomGeneratorThread.interrupt()
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The Runnable interface

 Allows separation of the implementation of the task from the thread 

used to run task

public interface Runnable {

  

   public void run(); 

}
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Creation of a thread using the Runnable interface

 Construct the thread

 Pass runnable object to the thread’s constructor

 Start the thread

 Instead of starting the runnable object
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Creation of a thread using the Runnable interface

public class RandomGenerator implements Runnable {

  

   public void run() { ... }

}

...

     generator = new RandomGenerator();

     Thread createdThread = new Thread(generator);

     createdThread.start();
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When to use Runnable and Thread

 If you would like your class to inherit behavior from the Thread class

 Extend Thread

 If your class needs to inherit from other classes

 Implement Runnable
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If you extend the Thread class?

 You inherit behavior and methods of the Thread class

 The interrupt() method is part of the Thread class

 You can interrupt() if you extend 
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Advantages of using the Runnable interface

 Java provides several classes that handle threading for you

 Implement pooling, scheduling, or timing

 These require the Runnable interface
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But what if I still can’t decide?

 Do a UML (Unified Modeling Language) model of your application

 The object hierarchy tells you what you need: 

 If your task needs to subclass another class?

◼ Use Runnable

 If you need to use methods of Thread within your class?

◼ Use Thread
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Threads and Objects

 Instance of the Thread class is just an object

 Can be passed to other methods

 If a thread has a reference to another thread

◼ It can invoke any method of that thread’s object

 The Thread object is not the thread itself

 It is the set of methods and data that encapsulate information about the 

thread
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But what does this mean?

 You cannot look at the object source and know which thread is:

 Executing its methods or examining its data 

 You may wonder about which thread is running the code, but …

 There may be many possibilities
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Determining the current thread

 Code within a thread object might want to see that code is being 

executed either:

 By thread represented by the object or

 By a completely different thread

 Retrieve reference to current thread

 Thread.currentThread()

 Static method
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Checking which thread is executing the code

public class MyThread extends Thread {

  

   public void run() { 

      if (Thread.currentThread() != this) {

         throw new IllegalStateException

            (“Run method called by incorrect thread …);

      } /* end if */

      

      ... Main logic

   }

}
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Allowing a Runnable object to see if it has been 

interrupted

public class MyRunnable implements Runnable {

  

   public void run() { 

      if (!Thread.currentThread().isInterrupted() ) {     

            ... Main logic

      }

   }

}
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Heisenbugs

 Term coined by ACM Turing Award winner Jim Gray

 Pun on the name of Werner Heisenberg

 Act of observing a system, alters its state!

 Describes a particular class of bugs

 Those that disappear or change behavior when you try to examine them

 Multithreaded programs are a common source of Heisenbugs
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What about regular bugs? 

 Sometimes referred to as Bohr bugs

 Deterministic

 Generally, much easier to diagnose



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.45

Two friends plan to meet at Starbucks

But there are two Starbucks on College Avenue 

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B

12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store

B leaves for the first store

B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!
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Why sharing data between threads is problematic

 Race conditions

 Correct outcome depends on lucky timing of uncontrollable events 

 Threads attempt to access data more or less simultaneously

 A thread may change the value of data that some other thread is operating 

on 
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Example code with race condition

public class MyThread extends Thread { 

   private byte[] values;

   private int position;

   public void 

      modifyData(byte[] newValues, int newPosition) {

      ... Modify values and position

   }

   public void utilizeDataAndPerformFunction() {

      ... Use values and position

   }

      

   public void run() { 

     ... Main logic

   }

}
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In the previous snippet a race condition exists 

because …

 The thread that calls modifyData() is accessing the same data as 

the thread that calls utilizeDataAndPerformFunction()

 utilizeDataAndPerformFunction() and modifyData() are not 

atomic

 It is possible that values and position are changed while they are 

being used
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What is atomic?

 The code cannot be interrupted during its execution

 Accomplished in hardware or simulated in software

 Code that cannot be found in an intermediate state
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Eliminating the race condition using the synchronized 

keyword

 If we declared both modifyData() and  

utilizeDataAndPerformFunction() as synchronized?

  Only one thread gets to call either method at a time

◼ Only one thread accesses data at a time

 When one thread calls one of these methods, while another is executing one 

of them?

◼ The second thread must wait
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Example code with no race conditions by using the 

synchronized keyword
public class MyThread extends Thread { 

   private byte[] values;

   private int position;

   public void synchronized

      modifyData(byte[] newValues, int newPosition) {

      ... Modify values and position

   }

   public void synchronized 

      utilizeDataAndPerformFunction() {

      ... Use values and position

   }

      

   public void run() { 

     ... Main logic

   }

}
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Revisiting the mutex lock

 Mutually exclusive lock

 If two threads try to grab a mutex?

 Only one succeeds

 In Java, every object has an associated lock
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When a method is declared synchronized …

 The thread that wants to execute the method must acquire a lock

 Once the thread has acquired the lock?

 It executes method and releases the lock

 When a method returns, the lock is released

 Even if the return is because of an exception
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Locks and objects

 There is only one lock per object

 If two threads call synchronized methods of the same object?

 Only one can execute immediately

◼ The other has to wait until the lock is released
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The contents of this slide-set are based on the 

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]
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