
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara

Computer Science

Colorado State University

Threads block when they can’t get that lock
Wanna have your threads stall?

 Go ahead, synchronize it all

The antidote to this liveness pitfall?

 Keeping the lock scope small

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.2

Frequently asked questions from the previous class

survey

 Is there a max nesting depth for calls?

 Who determines which task will run where there is a memory stall?

 Within an application does it ever make sense to use IPC instead of

threads?

 Can page faults occur for thread creation?

 Is there a max number of threads per process?

 Can threads control/coordinate with other threads within a process?

 Multiple threads with multiple cores? Cores with multiple ALUs?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.3

Topics covered in this lecture

 Threads

 Thread Lifecycle

 Data synchronization

 Synchronized blocks

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.4

How big a stack? [1/2]

 The size of the stack must be large enough to accommodate the

deepest nesting level needed during the thread’s lifetime

 Kernel threads

 Kernel stacks are allocated in physical memory

 The nesting depth for kernel threads tends to be small

 E.g., 8KB default in Linux on an Intel x86

 Buffers and data structures are allocated on the heap and never as

procedure local variables

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.5

How big a stack? [2/2]

 User-level stacks are allocated in virtual memory

 To catch program errors

 Most OS will trigger error if the program stack grows too large too quickly

◼ Indication of an unbounded recursion

 Google’s GO will automatically grow the stack as needed … this is very
uncommon

 POSIX, for e.g., allows default stack size to be library dependent (e.g.,
larger on a desktop, smaller on a phone)

◼ “Exceeding default stack limit is very easy to do, with the usual results”

◼ Program termination

COMPUTER SCIENCE DEPARTMENT

THREAD LIFECYCLE

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.7

Lifecycle of a thread

 Creation

 Starting

 Terminating

 Pausing, suspending, and resuming

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.8

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable {

 public void start();

 public void run();

 public void stop();

 public void resume();

 public void suspend();

 public static void sleep(long millis);

 public boolean isAlive();

 public void interrupt();

 public boolean isInterrupted();

 public static boolean interrupted();

 public void join();

}

Deprecated, do not use

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.9

Thread creation

 Threads are represented by instances of the Thread class

 When you extend the Thread class?

 Your instances are also Threads

 We looked at the 4 constructor arguments in the Thread class

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.10

Starting a thread [1/2]

 Thread exists once it’s been constructed

 But it is not executing … it’s in a waiting state

 In the waiting state, other threads can interact with the existing thread

object

 Object state may be changed by other threads

◼ Via method invocations

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.11

Starting a thread [2/2]

 When we’re ready for a thread to begin executing code

 Call the start() method

 start() performs internal house-keeping and then calls the run() method

 When the start() method returns?

 Two threads are executing in parallel

① The original thread which just returned from calling start()

② The newly started thread that is executing its run() method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.12

After a thread’s start() method is called

 The new thread is said to be alive

 The isAlive() method tells you about the state

▪ true: Thread has been started and is executing its run() method

▪ false: Thread may not be started yet or may be terminated

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.13

Terminating a thread

 Once started, a thread executes only one method: run()

 This run() may be complicated

 May execute forever

 Call several other methods

 Once the run() finishes executing, the thread has completed its

execution

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.14

Like all Java methods, run() finishes when it …

① Executes a return statement

② Executes the last statement in its method body

③ When it throws an exception

 Or fails to catch an exception thrown to it

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.15

The only way to terminate a thread?

 Arrange for its run() method to complete

 But the documentation for the Thread class lists a stop() method?

 This has a race condition (unsafe), and has been deprecated

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.16

Some more about the run() method

 Cannot throw a checked exception

 But it can throw an unchecked exception

 Exception that extends the RuntimeException

 A thread can be stopped by:

① Throwing an unchecked exception in run()

② Failing to catch an unchecked exception thrown by something that run()

has called

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.17

Pausing, suspending and resuming threads

 Some thread models support the concept of thread suspension

 Thread is told to pause execution and then told to resume its execution

 Thread contains suspend() and resume()

 Suffers from vulnerability to race conditions: deprecated

 Thread can suspend its own execution for a specified period

 By calling the sleep() method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.18

But sleeping is not the same thing as thread

suspension

 With true thread suspension

 One thread can suspend (and later resume) another thread

 sleep() affects only the thread that executes it

 Not possible to tell another thread to go to sleep

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.19

But you can achieve the functionality of suspension

and resumption

 Use wait and notify mechanisms

 Threads must be coded to use this technique

 This is not a generic suspend/resume that is imposed by another thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.20

Thread cleanup

 As long as some other active object holds a reference to the

terminated thread object

 Other threads can execute methods on the terminated thread … retrieve

information

 If the object representing the terminated thread goes out of scope?

 The thread object is garbage collected

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.21

Holding onto a thread reference allows us to

determine if work was completed

 Done using the join() method

 The join() method

 Blocks until the thread has completed

 Returns immediately if

◼ The thread has already completed its run() method

◼ You can call join() any number of times

 Don’t use join() to poll if the thread is still running

 Use isAlive()

COMPUTER SCIENCE DEPARTMENT

STOPPING A THREAD

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.23

Two approaches to stopping a thread

 Setting a flag

 Interrupting a thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.24

Stopping a Thread: Setting a flag

 Set some internal flag to signal that the thread should stop

 Thread periodically queries the flag to determine if it should exit

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.25

Stopping a Thread: Setting a flag

public class RandomGen extends Thread {

 private volatile boolean done = false;

 public void run() {

 while (!done) {

 ...

 }

 }

 public void setDone() {

 done = true;

 }

}

run() method investigates the state of the done variable on every loop.
Returns when the done flag has been set.

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.26

Interrupting a thread

 In the previous slide, there may be a delay in the setDone() being

invoked & thread terminating

 Some statements are executed after setDone() and before the value of

done is checked

 In the worst case, setDone() is called right after the the done variable

was checked

 Delays while waiting for a thread to terminate are inevitable

 But it would be good if they could be minimized

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.27

Interrupting a thread

 When we arrange for thread to terminate, we:

 Want it to complete its blocking method immediately

 Don’t wish to wait for the data (or …) because the thread will exit

 Use interrupt() method of the Thread class to interrupt any

blocking method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.28

Effects of the interrupt method

 Causes blocked method to throw an InterruptedException

 sleep(), wait(), join(), and methods to read I/O

 Sets a flag inside the thread object to indicate that the thread has

been interrupted

 Queried using isInterrupted()

◼ Returns true if it was interrupted, even though it was not blocked

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.29

Stopping a thread: Using interrupts

public class RandomGen extends Thread {

 public void run() {

 while (!isInterrupted()) {

 ...

 }

 }

}

radomGeneratorThread.interrupt()

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.30

The Runnable interface

 Allows separation of the implementation of the task from the thread

used to run task

public interface Runnable {

 public void run();

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.31

Creation of a thread using the Runnable interface

 Construct the thread

 Pass runnable object to the thread’s constructor

 Start the thread

 Instead of starting the runnable object

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.32

Creation of a thread using the Runnable interface

public class RandomGenerator implements Runnable {

 public void run() { ... }

}

...

 generator = new RandomGenerator();

 Thread createdThread = new Thread(generator);

 createdThread.start();

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.33

When to use Runnable and Thread

 If you would like your class to inherit behavior from the Thread class

 Extend Thread

 If your class needs to inherit from other classes

 Implement Runnable

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.34

If you extend the Thread class?

 You inherit behavior and methods of the Thread class

 The interrupt() method is part of the Thread class

 You can interrupt() if you extend

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.35

Advantages of using the Runnable interface

 Java provides several classes that handle threading for you

 Implement pooling, scheduling, or timing

 These require the Runnable interface

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.36

But what if I still can’t decide?

 Do a UML (Unified Modeling Language) model of your application

 The object hierarchy tells you what you need:

 If your task needs to subclass another class?

◼ Use Runnable

 If you need to use methods of Thread within your class?

◼ Use Thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.37

Threads and Objects

 Instance of the Thread class is just an object

 Can be passed to other methods

 If a thread has a reference to another thread

◼ It can invoke any method of that thread’s object

 The Thread object is not the thread itself

 It is the set of methods and data that encapsulate information about the

thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.38

But what does this mean?

 You cannot look at the object source and know which thread is:

 Executing its methods or examining its data

 You may wonder about which thread is running the code, but …

 There may be many possibilities

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.39

Determining the current thread

 Code within a thread object might want to see that code is being

executed either:

 By thread represented by the object or

 By a completely different thread

 Retrieve reference to current thread

 Thread.currentThread()

 Static method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.40

Checking which thread is executing the code

public class MyThread extends Thread {

 public void run() {

 if (Thread.currentThread() != this) {

 throw new IllegalStateException

 (“Run method called by incorrect thread …);

 } /* end if */

 ... Main logic

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.41

Allowing a Runnable object to see if it has been

interrupted

public class MyRunnable implements Runnable {

 public void run() {

 if (!Thread.currentThread().isInterrupted()) {

 ... Main logic

 }

 }

}

COMPUTER SCIENCE DEPARTMENT

BUGS

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.43

Heisenbugs

 Term coined by ACM Turing Award winner Jim Gray

 Pun on the name of Werner Heisenberg

 Act of observing a system, alters its state!

 Describes a particular class of bugs

 Those that disappear or change behavior when you try to examine them

 Multithreaded programs are a common source of Heisenbugs

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.44

What about regular bugs?

 Sometimes referred to as Bohr bugs

 Deterministic

 Generally, much easier to diagnose

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.45

Two friends plan to meet at Starbucks

But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B

12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store

B leaves for the first store

B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!

COMPUTER SCIENCE DEPARTMENT

DATA SYNCHRONIZATION

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.47

Why sharing data between threads is problematic

 Race conditions

 Correct outcome depends on lucky timing of uncontrollable events

 Threads attempt to access data more or less simultaneously

 A thread may change the value of data that some other thread is operating

on

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.48

Example code with race condition

public class MyThread extends Thread {

 private byte[] values;

 private int position;

 public void

 modifyData(byte[] newValues, int newPosition) {

 ... Modify values and position

 }

 public void utilizeDataAndPerformFunction() {

 ... Use values and position

 }

 public void run() {

 ... Main logic

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.49

In the previous snippet a race condition exists

because …

 The thread that calls modifyData() is accessing the same data as

the thread that calls utilizeDataAndPerformFunction()

 utilizeDataAndPerformFunction() and modifyData() are not

atomic

 It is possible that values and position are changed while they are

being used

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.50

What is atomic?

 The code cannot be interrupted during its execution

 Accomplished in hardware or simulated in software

 Code that cannot be found in an intermediate state

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.51

Eliminating the race condition using the synchronized

keyword

 If we declared both modifyData() and

utilizeDataAndPerformFunction() as synchronized?

 Only one thread gets to call either method at a time

◼ Only one thread accesses data at a time

 When one thread calls one of these methods, while another is executing one

of them?

◼ The second thread must wait

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.52

Example code with no race conditions by using the

synchronized keyword
public class MyThread extends Thread {

 private byte[] values;

 private int position;

 public void synchronized

 modifyData(byte[] newValues, int newPosition) {

 ... Modify values and position

 }

 public void synchronized

 utilizeDataAndPerformFunction() {

 ... Use values and position

 }

 public void run() {

 ... Main logic

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.53

Revisiting the mutex lock

 Mutually exclusive lock

 If two threads try to grab a mutex?

 Only one succeeds

 In Java, every object has an associated lock

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.54

When a method is declared synchronized …

 The thread that wants to execute the method must acquire a lock

 Once the thread has acquired the lock?

 It executes method and releases the lock

 When a method returns, the lock is released

 Even if the return is because of an exception

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.55

Locks and objects

 There is only one lock per object

 If two threads call synchronized methods of the same object?

 Only one can execute immediately

◼ The other has to wait until the lock is released

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L4.56

The contents of this slide-set are based on the

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: How big a stack? [1/2]
	Slide 5: How big a stack? [2/2]
	Slide 6: Thread Lifecycle
	Slide 7: Lifecycle of a thread
	Slide 8: Thread: Methods that impact the thread’s lifecycle
	Slide 9: Thread creation
	Slide 10: Starting a thread [1/2]
	Slide 11: Starting a thread [2/2]
	Slide 12: After a thread’s start() method is called
	Slide 13: Terminating a thread
	Slide 14: Like all Java methods, run() finishes when it …
	Slide 15: The only way to terminate a thread?
	Slide 16: Some more about the run() method
	Slide 17: Pausing, suspending and resuming threads
	Slide 18: But sleeping is not the same thing as thread suspension
	Slide 19: But you can achieve the functionality of suspension and resumption
	Slide 20: Thread cleanup
	Slide 21: Holding onto a thread reference allows us to determine if work was completed
	Slide 22: Stopping a thread
	Slide 23: Two approaches to stopping a thread
	Slide 24: Stopping a Thread: Setting a flag
	Slide 25: Stopping a Thread: Setting a flag
	Slide 26: Interrupting a thread
	Slide 27: Interrupting a thread
	Slide 28: Effects of the interrupt method
	Slide 29: Stopping a thread: Using interrupts
	Slide 30: The Runnable interface
	Slide 31: Creation of a thread using the Runnable interface
	Slide 32: Creation of a thread using the Runnable interface
	Slide 33: When to use Runnable and Thread
	Slide 34: If you extend the Thread class?
	Slide 35: Advantages of using the Runnable interface
	Slide 36: But what if I still can’t decide?
	Slide 37: Threads and Objects
	Slide 38: But what does this mean?
	Slide 39: Determining the current thread
	Slide 40: Checking which thread is executing the code
	Slide 41: Allowing a Runnable object to see if it has been interrupted
	Slide 42: BUGS
	Slide 43: Heisenbugs
	Slide 44: What about regular bugs?
	Slide 45: Two friends plan to meet at Starbucks But there are two Starbucks on College Avenue
	Slide 46: Data Synchronization
	Slide 47: Why sharing data between threads is problematic
	Slide 48: Example code with race condition
	Slide 49: In the previous snippet a race condition exists because …
	Slide 50: What is atomic?
	Slide 51: Eliminating the race condition using the synchronized keyword
	Slide 52: Example code with no race conditions by using the synchronized keyword
	Slide 53: Revisiting the mutex lock
	Slide 54: When a method is declared synchronized …
	Slide 55: Locks and objects
	Slide 56: The contents of this slide-set are based on the following references

