CSXx55: DISTRIBUTED SYSTEMS [THREADS]

Threads block when they can’t get that lock

Wanna have your threads stall?
Go ahead, synchronize it all

The antidote to this liveness pitfall?
Keeping the lock scope small

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Is there a max nesting depth for calls?
Who determines which task will run where there is a memory stall?

Within an application does it ever make sense to use IPC instead of
threads?

Can page faults occur for thread creation?
Is there a max number of threads per process?
Can threads control /coordinate with other threads within a process?

Multiple threads with multiple cores?¢ Cores with multiple ALUs?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.2

Topics covered in this lecture
N

o1 Threads
o1 Thread Lifecycle

©1 Data synchronization

71 Synchronized blocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.3

How big a stack? [1/2]

The size of the stack must be large enough to accommodate the
deepest nesting level needed during the thread’s lifetime

Kernel threads
Kernel stacks are allocated in physical memory
The nesting depth for kernel threads tends to be small

E.g., 8KB default in Linux on an Intel x86

Buffers and data structures are allocated on the heap and never as
procedure local variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.4

How big a stack? [2/2]

User-level stacks are allocated in virtual memory

To catch program errors

Most OS will trigger error if the program stack grows too large too quickly
Indication of an unbounded recursion

Google’s GO will automatically grow the stack as needed ... this is very
uncommon

POSIX, for e.g., allows default stack size to be library dependent (e.g.,
larger on a desktop, smaller on a phone)

“Exceeding default stack limit is very easy to do, with the usual results”
Program termination

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.5

THREAD LIFECYCLE

Lifecycle of a thread
N

- Creation
0 Starting
01 Terminating

01 Pausing, suspending, and resuming

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.7

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable ({
public void start();
public void run() ;
public void stop();
public void resume () ; }Depr‘eca‘red, do not use
public void suspend() ;
public static void sleep(long millis);
public boolean isAlive() ;
public void interrupt() ;
public boolean isInterrupted() ;
public static boolean interrupted();
public void join();

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L4.8

Thread creation

Threads are represented by instances of the Thread class

When you extend the Thread class?

Your instances are also Threads

We looked at the 4 constructor arguments in the Thread class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.9

Starting a thread [1/2]

Thread exists once it's been constructed

But it is not executing ... if’s in a waiting state

In the waiting state, other threads can interact with the existing thread
object

Object state may be changed by other threads

Via method invocations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.10

Starting a thread [2/2]

When we’re ready for a thread to begin executing code
Call the start () method

start () performs internal house-keeping and then calls the run () method

When the start () method returns?

Two threads are executing in parallel
(1) The original thread which just returned from calling start ()
@ The newly started thread that is executing its run () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.11

After a thread’s start () method is called

The new thread is said to be alive

The isAlive () method tells you about the state
true: Thread has been started and is executing its run () method

false: Thread may not be started yet or may be terminated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.12

Terminating a thread

Once started, a thread executes only one method: run ()

This run () may be complicated

May execute forever

Call several other methods

Once the run () finishes executing, the thread has completed its
execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.13

Like all Java methods, run () finishes when it ...
—

(1) Executes a return statement
(2) Executes the last statement in its method body

(3) When it throws an exception

Or fails to catch an exception thrown to it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.14

The only way to terminate a thread?

Arrange for its run () method to complete

But the documentation for the Thread class lists a stop () method?

This has a race condition (unsafe), and has been deprecated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.15

Some more about the run () method

Cannot throw a checked exception

But it can throw an unchecked exception

Exception that extends the RuntimeException

A thread can be stopped by:
(1) Throwing an unchecked exception in run ()

(2) Failing to catch an unchecked exception thrown by something that run ()
has called

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.16

Pausing, suspending and resuming threads

Some thread models support the concept of thread suspension

Thread is told to pause execution and then told to resume its execution

Thread contains suspend () and resume ()

Suffers from vulnerability to race conditions: deprecated

Thread can suspend its own execution for a specified period
By calling the sleep () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.17

But sleeping is not the same thing as thread
suspension

With true thread suspension

One thread can suspend (and later resume) another thread

sleep () affects only the thread that executes it

Not possible to tell another thread to go to sleep

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.18

But you can achieve the functionality of suspension

and resumption
=

1 Use wait and notify mechanisms

1 Threads must be coded to use this technique

This is not a generic suspend /resume that is imposed by another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.19

Thread cleanup

As long as some other active object holds a reference to the
terminated thread object

Other threads can execute methods on the terminated thread ... retrieve
information

If the object representing the terminated thread goes out of scope?

The thread object is garbage collected

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.20

Holding onto a thread reference allows us to

determine if work was completed

Done using the join () method

The join () method
Blocks until the thread has completed

Returns immediately if

The thread has already completed its run () method

You can call join () any number of times

Don’t use join () to poll if the thread is still running

Use isAlive ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L4.21

STOPPING A THREAD

Two approaches to stopping a thread

I
1 Setting a flag

1 Interrupting a thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.23

Stopping a Thread: Setting a flag

I
- Set some internal flag to signal that the thread should stop

o Thread periodically queries the flag to determine if it should exit

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.24

Stopping a Thread: Setting a flag

public class RandomGen extends Thread ({
private volatile boolean done = false;

public void run() {
while (!'done) {

public voild setbDone () {
done = true;

run() method investigates the state of the done variable on every loop.
Returns when the done flag has been set.

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

L4.25

Interrupting a thread

In the previous slide, there may be a delay in the setDone () being
invoked & thread terminating

Some statements are executed after setDone () and before the value of
done is checked

In the worst case, setDone () is called right after the the done variable
was checked

Delays while waiting for a thread to terminate are inevitable

But it would be good if they could be minimized

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.26

Interrupting a thread

When we arrange for thread to terminate, we:
Want it to complete its blocking method immediately

Don’t wish to wait for the data (or ...) because the thread will exit

Use interrupt () method of the Thread class to interrupt any
blocking method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.27

Effects of the interrupt method

Causes blocked method to throw an InterruptedException

sleep (), wait (), join (), and methods to read I/O

Sets a flag inside the thread object to indicate that the thread has
been interrupted

Queried using isInterrupted ()

Returns true if it was interrupted, even though it was not blocked

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.28

Stopping a thread: Using interrupts
—

public class RandomGen extends Thread ({

public void run() {
while (!'isInterrupted()) {

}

radomGeneratorThread.interrupt ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.29

The Runnable interface
—

- Allows separation of the implementation of the task from the thread
used to run task

public interface Runnable {

public void run() ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.30

Creation of a thread using the Runnable interface
S

1 Construct the thread

Pass runnable object to the thread’s constructor

-1 Start the thread

Instead of starting the runnable object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.31

public class RandomGenerator implements Runnable {

public void run() { ... }

generator = new RandomGenerator() ;
Thread createdThread = new Thread(generator) ;
createdThread.start () ;

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

Creation of a thread using the Runnable interface

L 4.32

When to use Runnable and Thread

If you would like your class to inherit behavior from the Thread class
Extend Thread

If your class needs to inherit from other classes

Implement Runnable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.33

If you extend the Thread class?
—

1 You inherit behavior and methods of the Thread class
The interrupt () method is part of the Thread class

You can interrupt () if you extend

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.34

Advantages of using the Runnable interface

Java provides several classes that handle threading for you
Implement pooling, scheduling, or timing

These require the Runnable interface

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.35

But what if | still can’t decide?

Do a UML (Unified Modeling Language) model of your application

The object hierarchy tells you what you need:

If your task needs to subclass another class?
Use Runnable

If you need to use methods of Thread within your class?
Use Thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.36

Threads and Obijects

Instance of the Thread class is just an object
Can be passed to other methods

If a thread has a reference to another thread

It can invoke any method of that thread’s object

The Thread object is not the thread itself

It is the set of methods and data that encapsulate information about the
thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.37

But what does this mean?

You cannot look at the object source and know which thread is:

Executing its methods or examining its data

You may wonder about which thread is running the code, but ...

There may be many possibilities

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.38

Determining the current thread

Code within a thread object might want to see that code is being
executed either:

By thread represented by the object or
By a completely different thread

Retrieve reference to current thread

Thread.currentThread ()

Static method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.39

Checking which thread is executing the code

public class MyThread extends Thread {

public void run() {
if (Thread.currentThread () !'= this) {
throw new IllegalStateException
("Run method called by incorrect thread ..);

} /* end if */

. Main logic

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREADS

L4.40

Allowing a Runnable object to see if it has been

interrupted
]
public class MyRunnable implements Runnable {
public void run() {
if (!Thread.currentThread () .isInterrupted()) {

. Main logic

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.41

Heisenbugs

Term coined by ACM Turing Award winner Jim Gray
Pun on the name of Werner Heisenberg

Act of observing a system, alters its state!

Describes a particular class of bugs

Those that disappear or change behavior when you try to examine them

Multithreaded programs are a common source of Heisenbugs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.43

What about regular bugs?
=

1 Sometimes referred to as Bohr bugs

Deterministic

Generally, much easier to diagnose

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.44

Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store
12:10 A is looking for friend B B is looking for friend A
12:15 A leaves for the second store B leaves for the first store
12:20 B arrives at store A arrives at store
12:30 B is Looking for friend A A is looking for friend B
12:40 B leaves for the second store A leaves for the first store

Both friends are now frustrated and undercaffeinated!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.45

DATA SYNCHRONIZATION

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Why sharing data between threads is problematic

Race conditions

Correct outcome depends on lucky timing of uncontrollable events

Threads attempt to access data more or less simultaneously

A thread may change the value of data that some other thread is operating
on

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.47

Example code with race condition

public class MyThread extends Thread ({
private byte[] wvalues;
private int position;

public void

Modify wvalues and position

Use values and position

public void run() {
Main logic

}

public void utilizeDataAndPerformFunction ()

modifyData (byte[] newValues, int newPosition) {

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

L4.48

In the previous shippet a race condition exists

because ...
—

o The thread that calls modifyData () is accessing the same data as
the thread that calls utilizeDataAndPerformFunction ()

0 utilizeDataAndPerformFunction () and modifyData () are not
atomic

It is possible that values and position are changed while they are
being used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.49

What is atomic?

The code cannot be interrupted during its execution

Accomplished in hardware or simulated in software

Code that cannot be found in an intermediate state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.50

Eliminating the race condition using the synchronized
keyword

If we declared both modifyDbata () and
utilizeDataAndPerformFunction () as synchronized?

Only one thread gets to call either method at a time

Only one thread accesses data at a time

When one thread calls one of these methods, while another is executing one
of them?

The second thread must wait

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.51

Example code with no race conditions by using the

synchronized keyword

public class MyThread extends Thread {
private byte[] wvalues;
private int position;

public void synchronized

Modify values and position

}

public void synchronized
utilizeDataAndPerformFunction ()
Use values and position

public void run() {
. Main logic

Protessor: SHRIDEEP PALLICKARA

{

modifyData (byte[] newValues, int newPosition) {

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

L4.52

Revisiting the mutex lock

Mutually exclusive lock

If two threads try to grab a mutex?

Only one succeeds

In Java, every object has an associated lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.53

When a method is declared synchronized ...

The thread that wants to execute the method must acquire a lock

Once the thread has acquired the lock?

It executes method and releases the lock

When a method returns, the lock is released

Even if the return is because of an exception

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.54

Locks and objects

There is only one lock per object

If two threads call synchronized methods of the same object?

Only one can execute immediately

The other has to wait until the lock is released

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.55

The contents of this slide-set are based on the

following references
——

= Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L4.56

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: How big a stack? [1/2]
	Slide 5: How big a stack? [2/2]
	Slide 6: Thread Lifecycle
	Slide 7: Lifecycle of a thread
	Slide 8: Thread: Methods that impact the thread’s lifecycle
	Slide 9: Thread creation
	Slide 10: Starting a thread [1/2]
	Slide 11: Starting a thread [2/2]
	Slide 12: After a thread’s start() method is called
	Slide 13: Terminating a thread
	Slide 14: Like all Java methods, run() finishes when it …
	Slide 15: The only way to terminate a thread?
	Slide 16: Some more about the run() method
	Slide 17: Pausing, suspending and resuming threads
	Slide 18: But sleeping is not the same thing as thread suspension
	Slide 19: But you can achieve the functionality of suspension and resumption
	Slide 20: Thread cleanup
	Slide 21: Holding onto a thread reference allows us to determine if work was completed
	Slide 22: Stopping a thread
	Slide 23: Two approaches to stopping a thread
	Slide 24: Stopping a Thread: Setting a flag
	Slide 25: Stopping a Thread: Setting a flag
	Slide 26: Interrupting a thread
	Slide 27: Interrupting a thread
	Slide 28: Effects of the interrupt method
	Slide 29: Stopping a thread: Using interrupts
	Slide 30: The Runnable interface
	Slide 31: Creation of a thread using the Runnable interface
	Slide 32: Creation of a thread using the Runnable interface
	Slide 33: When to use Runnable and Thread
	Slide 34: If you extend the Thread class?
	Slide 35: Advantages of using the Runnable interface
	Slide 36: But what if I still can’t decide?
	Slide 37: Threads and Objects
	Slide 38: But what does this mean?
	Slide 39: Determining the current thread
	Slide 40: Checking which thread is executing the code
	Slide 41: Allowing a Runnable object to see if it has been interrupted
	Slide 42: BUGS
	Slide 43: Heisenbugs
	Slide 44: What about regular bugs?
	Slide 45: Two friends plan to meet at Starbucks But there are two Starbucks on College Avenue
	Slide 46: Data Synchronization
	Slide 47: Why sharing data between threads is problematic
	Slide 48: Example code with race condition
	Slide 49: In the previous snippet a race condition exists because …
	Slide 50: What is atomic?
	Slide 51: Eliminating the race condition using the synchronized keyword
	Slide 52: Example code with no race conditions by using the synchronized keyword
	Slide 53: Revisiting the mutex lock
	Slide 54: When a method is declared synchronized …
	Slide 55: Locks and objects
	Slide 56: The contents of this slide-set are based on the following references

