
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS

[THE GOOGLE FILE SYSTEM]

Shrideep Pallickara

Computer Science

Colorado State University

So Long, and Thanks for All the Fish

Outside of CS, there are few who care

 For how we conjure things in software

Of stripe sets and hash buckets

 And how networks route packets

Or wonder why accesses to memory are blazingly quick

 But those to disks, so eternally slow

Or ponder what makes MapReduce tick

 Here’s to the pursuit of being in the know!

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.2

Frequently asked questions from the previous class

survey

 Does GFS have the same non-sequential reads property as BitTorrent?

 Are all 64-bit IDs associated with the chunks stored in one file?

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.3

Topics covered in this lecture

 The Google File System

COMPUTER SCIENCE DEPARTMENT

REPLICATION

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.5

Reasons why chunk replicas are created

 Chunk creation

 Re-replication

 Rebalancing

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.6

Chunk replica creation

 Place replicas on chunk servers with below average disk space

utilization

 Limit the number of recent creations on a chunk server

 Predictor of imminent heavy traffic

 Spread replicas across racks

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.7

Re-replicate chunks when replication level drops

 How far is it from replication goal?

 Preference for chunks of live files

 Boost priority of chunks blocking client progress

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.8

Rebalancing replicas

 Examine current replica distribution and move replicas

 Better disk space

 Load balancing

 Removal of existing replicas

 Chunk servers with below-average disk space

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.9

Incorporating a new chunk server

 Do not swamp new server with lots of chunks

 Concomitant traffic will bog down the machine

 Gradually fill up new server with chunks

COMPUTER SCIENCE DEPARTMENT

CREATING SNAPSHOTS

So, so you think you can tell

Heaven from hell?

Blue skies from pain?

Can you tell a green field

From a cold steel rail?

A smile from a veil?

Do you think you can tell?

Wish You Were Here; Gilmour/Waters; Pink Floyd

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.11

Snapshots allow you to make a copy of a file very

fast

 Master revokes outstanding leases for any chunks of the file (source)

to be snapshot

 Log the operation to disk

 Update in-memory state

 Duplicate metadata of the source file

 Newly created file points to the same chunks as the source

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.12

When a client wants to write to a chunk C after the

snapshot operation

 Master sees the reference count to C > 1

 Pick new chunk-handle C’

 Ask chunk-server with current replica of C

 Create new chunk C’

 Data is copied locally, not over the network

 From this point chunk handling of C’ is no different

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.13

GFS does not have a per-directory structure that lists

files in the directory

 Name spaces represented as a lookup table

 Maps full pathnames to metadata

 No inode needs to be protected from modification

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.14

Each master operation acquires a set of locks before

it runs

 If operation involves /d1/d2/…/dn/leaf

 Acquire read locks on directory names

◼ /d1, /d1/d2, …, /d1/d2/…/dn

 Read or write lock on full pathname

◼ /d1/d2/…/dn/leaf

 Used to prevent operations during snapshots

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.15

Locks are used to prevent operations during

snapshots

 For e.g. cannot create /home/user/foo

 While /home/user is being snapshotted to /save/user

 Read locks on /home and /save

 Read lock prevents a directory from being deleted

 Write lock on /home/user and /save/user

 File creation does not require write lock on parent directory … there is no
“directory”

 Read locks on /home and /home/user

 Write lock on /home/user/foo

COMPUTER SCIENCE DEPARTMENT

CONSISTENCY IN GFS

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.17

In GFS the state of file region after mutation

depends on …

 TYPE of the mutation

 SUCCESS/FAILURE of the mutation

 Whether there were CONCURRENT mutations

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.18

GFS has a relaxed consistency model

 Consistent: See the same data

 On all replicas

 Defined

 Clients see mutation writes in its entirety

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.19

File state region after a mutation

Write Record Append

Serial success defined

Concurrent

success

Consistent

but undefined

defined

interspersed with

 inconsistent

Failure Inconsistent

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.20

Implications for applications

 Rely on appends instead of overwrites

 Checkpoint

 Write records that are

 Self-validating

 Self-identifying

COMPUTER SCIENCE DEPARTMENT

DELETION OF FILES &

GARBAGE COLLECTION

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.22

Garbage collection in GFS

 After a file is deleted, GFS does not reclaim space immediately

 Done lazily during garbage collection at

 File and chunk levels

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.23

Master logs a file’s deletion immediately

 File is renamed to a hidden name

 Includes deletion timestamp

 Master scans the file system namespace

 Delete if hidden file existed for more than 3 days

 When file removed from namespace

 In memory metadata is also removed

 Severs links to all its chunks!

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.24

Garbage collection:

When Master scans its chunk namespace

 Identifies orphaned chunks

 Not reachable from any file

 Erase metadata for these chunks

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.25

The role of heart-beats in garbage collection

 Chunk server reports subset of chunks it currently has

 Master replies with identity of chunks no longer present

 Chunk server free to delete its replica of such chunks

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.26

Stale chunks and issues

 If a chunk server fails

 AND misses mutations to the chunk

 The chunk replica becomes stale

 Working with a stale replica causes problems with:

 Correctness

 Consistency

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.27

Aiding the detection of stale chunks

 Master maintains a chunk version number for each chunk

 Distinguish between stale and up-to-date chunks

 When master grants a new lease on chunk

 Increase version number

 Inform replicas

 Record new version

Occurs BEFORE any
client can write to
chunk

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.28

If a replica is unavailable its version number will not

be advanced

 When a chunk server restarts, it reports to the Master with the

following:

 Set of Chunks

 Corresponding version numbers

 Used to detect stale replicas

 Remove stale replicas in regular garbage collection

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.29

Additional safeguards against stale replicas

 Include chunk version number

 When client requests chunk information

◼ Client/Chunk server verify version to make sure things are up-to-date

 During cloning operations

◼ Clone the most up-to-date chunk

 Clients and chunk servers expected to verify versioning information

COMPUTER SCIENCE DEPARTMENT

DATA INTEGRITY

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.31

Data Integrity

 Impractical to detect chunk corruptions across replicas

 Not bytewise identical in any case!

 Detection of corruption should be self-contained

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.32

Data Integrity

 Break chunks into 64 KB data blocks

 Compute 32-bit checksum for block

 Keep in chunk server memory

 Store persistently, separate from the data

 Verify checksums of data blocks that overlap read range

COMPUTER SCIENCE DEPARTMENT

INEFFICIENCIES

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.34

The master server is a single point of failure

 Master server restart takes several seconds

 Shadow servers exist

 Can handle reads of files

◼ In place of the master

 But not writes

 Requires a massive main memory

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.35

The system is optimized for large files

 But not for a very large number of very small files

 Primary operation on files

 Long, sequential reads/writes

 Large number of random overwrites will clog things up quite a bit

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.36

Consistency Issues: GFS expects clients to resolve

inconsistencies

 File chunks may have gaps or duplicates of some records

 The client has to be able to deal with this

 Imagine doing this for a scientific application

 Portions of a massive array are corrupted

◼ Clients would have to detect this

◼ Detection is possible of course, but onerous!

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.37

Security model

 None

 Operation is expected to be in a trusted environment

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L40.38

The contents of this slide-set are based on the

following references

 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.

Proceedings of SOSP 2003: 29-43.

	Slide 1: CS x55: Distributed Systems [The Google File System]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Replication
	Slide 5: Reasons why chunk replicas are created
	Slide 6: Chunk replica creation
	Slide 7: Re-replicate chunks when replication level drops
	Slide 8: Rebalancing replicas
	Slide 9: Incorporating a new chunk server
	Slide 10: Creating snapshots
	Slide 11: Snapshots allow you to make a copy of a file very fast
	Slide 12: When a client wants to write to a chunk C after the snapshot operation
	Slide 13: GFS does not have a per-directory structure that lists files in the directory
	Slide 14: Each master operation acquires a set of locks before it runs
	Slide 15: Locks are used to prevent operations during snapshots
	Slide 16: Consistency in GFS
	Slide 17: In GFS the state of file region after mutation depends on …
	Slide 18: GFS has a relaxed consistency model
	Slide 19: File state region after a mutation
	Slide 20: Implications for applications
	Slide 21: Deletion of Files & Garbage Collection
	Slide 22: Garbage collection in GFS
	Slide 23: Master logs a file’s deletion immediately
	Slide 24: Garbage collection: When Master scans its chunk namespace
	Slide 25: The role of heart-beats in garbage collection
	Slide 26: Stale chunks and issues
	Slide 27: Aiding the detection of stale chunks
	Slide 28: If a replica is unavailable its version number will not be advanced
	Slide 29: Additional safeguards against stale replicas
	Slide 30: Data Integrity
	Slide 31: Data Integrity
	Slide 32: Data Integrity
	Slide 33: Inefficiencies
	Slide 34: The master server is a single point of failure
	Slide 35: The system is optimized for large files
	Slide 36: Consistency Issues: GFS expects clients to resolve inconsistencies
	Slide 37: Security model
	Slide 38: The contents of this slide-set are based on the following references

