Compiling ATR Probing Codes for Execution on FPGA Hardware *

W. Bohm, R. Beveridge, B. Draper, C. Ross, M. Chawathe and W. Najjar
Colorado State University and University of California Riverside

Abstract

This paper describes the implementation of an auto-
matic target recognition (ATR) Probing algorithm on
a reconfigurable system, using the SA-C programming
language and optimizing compiler. The reconfigurable
system is 800 times faster than a comparable Pentium
running a C implementation of the same probing task.
The reasons for this are analyzed.

1. SA-C and Probing

The goal of the Cameron project is to make appli-
cation development on FPGAs easier by raising the
abstraction level from hardware circuits to software
algorithms. To this end, we have developed a high-
level language, similar to C, called SA-C, and an op-
timizing compiler that maps SA-C programs directly
onto FPGA configurations. More information on SA-
C, its compiler, and other applications can be found at
www.cs.colostate.edu/cameron.

SA-C is a single assignment language with data
parallel loop constructs allowing for allowing easy de-
tection of expression level and loop level parallelism.
The SA-C compiler performs both conventional and
FPGA-specific optimizations. Full or partial loop
unrolling spreads iterations in code space rather than
in time. Array value propagation replaces array ref-
erences with constant indices with the array elements.
The SA-C compiler not only performs standard com-
mon sub-espression elimination (CSE), but also tem-
poral CSE, replacing a computation in one loop iter-
ation with a result computed in a previous iteration.
This paper compares the timing of the probing algo-
rithm written in SA-C and running on an AMS Wild-
Star board with a C code version of the same algorithm
running on a Pentium PC.

A probe is a pair of pixels and an associated
true/false question. Typically, a probe returns true
when the absolute value of the difference in pixel val-

*This work is supported by DARPA under US Air Force Re-
search Laboratory contract F33615-98-C-1319.

ues exceeds a threshold, answering the question: “Does
this pixel straddle a boundry?” A probeset depicts the
silhouette of an object viewed from a particular view-
point. When a probeset is placed in the correct image
location over an object, most of its probes should re-
turn true. When a probing algorithm is applied to an
image to recognize targets, each probeset is evaluated
at every image position, and the location and identity
of the highest scoring probeset is returned.

The exhaustive application of probesets for all pos-
sible objects, viewing angles, and image positions is
a computation that it is ripe for optimization. It is
therefore both an algorithm of considerable practical
interest and a powerful demonstration of what can be
done using FPGAs and the SA-C compiler. Here is a
pseudo code version of the Probing algorithm.

for each window in image {
best_score, probe_set_index =
for all probe_sets {
hit_count =
for each probe in probe_set
return(sum(threshold(probe)))
score = hit_count/probe_set_size
} return(max(score) ,probe_set_index)
} return(array(best_score) ,array(probe_set_index))

The two inner loops computing the scores and probe-
set indices can be fully unrolled, because the probesets
are statically known. This turns the code into a singly
nested loop driven by one window generator. The loop
body becomes an expression consisting of threshold op-
erators computing hits, sum trees adding the hits for
each probeset, division operators computing the scores
for each probeset, and max trees selecting the winner.
This giant expression allows for standard and tempo-
ral CSE. The computation of the score of a probeset in
a window requires the hit count to be divided by the
probeset size. Floating point division is replaced by a
table lookup that maps hit counts and probeset sizes
onto ranks. Scores below a threshold (e.g. 80%) can
be given rank zero. This reduces the number of bits in
the rank, and therefore the size of the lookup table.
The test suite for the probing application consists
of three vehicles (an M60 tank, an M113 armored per-

Unoptimized Optimized

Pbs | Adds Win. | Pbs | Adds | Win.
m60 2832 2751 | 12x34 | 151 1413 | 12x4
ml113 | 2315 2234 | 11x26 | 106 967 | 11x4
m901 | 2426 2345 | 13x25 | 143 1196 | 13x4
total 7573 7330 | 13x34 | 400 3576 | 13x4

Table 1. DFG level statistics: Probes , Ad-
ditions, Window sizes before and after opti-
mization

sonnel carrier, and an M901 armored personnel carrier
with missile launcher), each represented by 81 probe
sets (27 aspect angles times three depression angles),
totalling 7573 probes in windows of sizes up to 13x34.
The input is a 512x1024 LADAR image of 12 bit pix-
els. The WildStar has three XCV2000E Virtex FP-
GAs, capable of operating at frequencies from 25 MHz
to 180 MHz. It communicates over the PCI bus with
the host computer at 33 MHz. In our system, the board
is housed in a 266-MHz Pentium-based PC.

We will compare the performance of SA-C running
on the WildStar to the performance of C running on an
800 MHz Pentium III. The XCV2000E and 800 MHz
PIIT are of similar age, and were both fabricated at
.18 microns. In both cases, execution times do not
include the time required to read the image from the
disk or host into local memory, but do include I/O
time between the processor and local memory. The
SA-C code is partitioned in the most straightforward
way: each vehicle is mapped onto one FPGA. Each
FPGA scans the input image and produces an image
of winning scores and probeset indices for its particular
vehicle. The host gathers the resulting data and creates
an 8 bit version of the input image with the probeset
of the highest scoring winner superimposed over it.

Table 1 provides dataflow graph level statistics for
the test suite. It shows the number of probes, the num-
ber of additions in the sum trees, and the window size,
before and after optimization. This shows that op-
timization reduces the number of probes about nine-
teen fold and the number of additions about two fold.
About 50% of these additions are one bit additions.
The number of columns in the window is compacted
from the width of the largest probe set (34) to the hor-
izontal width of the widest probe (4).

Program execution time on the Wildstar is 81 mil-
liseconds. Executing the equivalent C code on the Pen-
tium, using the Microsoft VC++ compiler optimized
for speed, takes 65 seconds. Hence the Wildstar is
about 800 times faster than the Pentium. These times
can be explained as follows.

For the configuration generated by the SA-C com-
piler for the probing algorithm, the FPGAs run at
41.1 MHz. The program is completely memory 10
bound: every clock cycle each FPGA reads one 32
bit word, containing two 12 bit pixels. As there are
(512 —13+1) % (1024) 13 pixel columns to be read (see
table 1), the FPGAs perform (512 — 13 + 1) % (1024) *
(13/2) = 3,328,000 reads. At 41.1 MHz this takes 80.8
milliseconds.

The Pentium performs (512—13+1)% (1024 —34+1)
window accesses. FEach of these window accesses in-
volves 7573 threshold operations. Hence the inner
loop that performs one threshold operation is executed
(512—13+1)% (1024 — 34+ 1)« 7573 = 3,752,421, 500
times. Using the optimizing VC++ compiler, the in-
ner loop takes 16 instructions (much better than the
22 instructions gec -O6 produces). The total number
of instructions executed in the inner loop is therefore
3,752,421,500 % 16 = 60,038, 744,000. If one instruc-
tion were executed per cycle,this would bring the ex-
ecution time to about 75 seconds. As the execution
time of the whole program is 65 seconds, the Pentium
(a super scalar architecture) is actually executing more
than one instruction per cycle!

The factors contributing to the speed difference be-
tween the Wildstar and the Pentium can be broken
down as follows. (1) Analysis and optimization:
the compiler has reduced the number of probes nine-
teen fold. (2) Coarse grain parallelism: the Wild-
star executes three processes, each process correspond-
ing to a vehicle, in parallel without any interference.
(3) Massive fine grain parallelism: each FPGA
performs all its threshold operations, hit summations,
table lookups, and comparisons in parallel, whereas the
Pentium performs slightly more than one instruction
per cycle. (4) Clock frequency: the Pentium runs at
a 20 times higher clock rate than the FPGAs.

It can be argued that an optimizing and parallelizing
compiler for a parallel von Neumann machine could
achieve the same improvements in terms of the first two
factors: analysis and optimization, and coarse grain
parallelism. However, the largest factor, the fine grain
parallelism, is a defining FPGA characteristic.

2 Conclusion

In this paper we have studied Probing, its implemen-
tation in SA-C, and its FPGA performance compared
to a C version running on a Pentium. We have anal-
ysed the factors comprising the difference in FPGA and
Pentium performance. We have shown that the FPGAs
show a considerable speedup as compared to the Pen-
tium, even when programmed in a high level language.

