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Abstract

Face recognition has made significant advances over
the last twenty years. State-of-the-art algorithms push the
performance envelope to near perfect recognition rates on
many face databases. Recently, the Good, the Bad, and the
Ugly (GBU) face challenge problem has been introduced to
focus on hard aspects of face recognition from still frontal
images. In this paper, we introduce the CohortLDA base-
line algorithm, which is an Linear Discriminant Analysis
(LDA) algorithm with color spaces and cohort normaliza-
tion. CohortLDA greatly outperforms some well known face
recognition algorithms on the GBU challenge problem. The
GBU protocol includes rules for creating training sets. We
investigate the effect on performance of violating the rules
for creating training sets. This analysis shows that violat-
ing the GBU protocol can substantially over estimate per-
formance on the GBU challenge problem.

1. Introduction

Face recognition is a common biometric for recogniz-
ing people. Automated face recognition has been stud-
ied for more than two decades [12, 27], and the recogni-
tion performance has improved by several orders of mag-
nitude [17]. For some face databases, the recognition rates
have achieved nearly perfect results. While great progress
has been made on frontal faces from controlled environ-
ments, face recognition of frontal images taken in ambi-
ent illumination remains a challenge. In particular, illumi-
nation, expression, and focus are the dominant factors for
frontal view face recognition [15, 5]. To continue making
strides on face recognition, we need to shift our attention to
uncontrolled environments.

In recent years, there have been efforts in pushing face
recognition images taken from mobile studio environments
to ambient illumination environments. The prime examples
are the Face Recognition Grand Challenge (FRGC) [20],

the Face Recognition Vendor Test 2006 (FRVT) [17], and
Labeled Faces in the Wild (LFW) [22]. While progress
has been made, the solution to face recognition remains un-
clear. To be more specific, whether an algorithm overfits
some particular dataset or captures the idiosyncratic aspects
of faces is generally unknown. This is a serious concern
for algorithm development and needs to be addressed. One
solution is testing on sequestered data; however, it is an ex-
pensive task.

An alternative may involve a database with a variety
of difficulties with an experiment protocol that attempts to
minimize the effects of overfitting. The recent introduction
of the Good, the Bad, and the Ugly (GBU) face recogni-
tion challenge [18] focuses research on difficult aspects of
face recognition; specifically, the current best verification
on the Ugly partition is only 15% at the 1/1,000 false accept
rate. This illustrates the challenge of frontal views of faces
from uncontrolled environments. The goal of the GBU is to
encourage the development of algorithms that improve per-
formance on the difficult partitions (Bad and Ugly) while
not sacrificing performance on the Good partition. In addi-
tion, the GBU protocol considers the danger of overfitting
and does not allow any training on images of subjects in the
GBU image set.

The GBU challenge problem provides a great platform
for further face recognition advancement. The motiva-
tion of this work is twofold. First, we introduce the Co-
hortLDA algorithm, a new variant of Fisher linear dis-
criminant analysis-based face recognition algorithm. Co-
hortLDA is designed to serve as an open source baseline
software for the GBU challenge problem, which will likely
advance further algorithm development and benchmarks.
Second, we quantitatively show the effect on performance
of violating the GBU training protocol. More specifically,
when the training and testing sets contain the same people,
the algorithm performance is inflated. To facilitate algo-
rithm development, we distribute a valid training set called
GBUx8 which ensures no subject identity overlap with the
GBU images.
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The remainder of this paper is organized as follows. The
important characteristics of the proposed baseline algorithm
are given in Section 2. The GBU data sets and evaluation
protocol are described in Section 3. The effects of deviat-
ing from the evaluation protocol is discussed in Section 4.
The details of our baseline algorithm are presented in Sec-
tion 5. The baseline experimental results and analyses are
reported in Section 6 and Section 7, respectively. Finally,
the conclusion is provided in Section 8.

2. What Makes a Good Baseline Algorithm?
Establishing a good baseline is important for a challenge

problem. A baseline provides a basis for performance com-
parison with both old and new algorithms. It also character-
izes the difficulty of a data set.

A good baseline algorithm should be simple and easy to
understand. In addition, the performance results should be
reproducible and respectable. The baseline algorithm pro-
posed in this paper exhibits the following seven attributes.

• Simple representation: Faces are represented holisti-
cally.

• Simple preprocessing: The preprocessing steps consist
of standard pixel transforms.

• Simple algorithm: The face representation is based on
Fisher’s linear discriminant analysis.

• Simple post-processing: Raw matching scores are co-
hort normalized using an independent set of images-
neither in the training or test sets.

• Reasonable speed: Training takes about an hour and
running on the GBU takes about 10 minutes (perfor-
mance is benchmarked on a high end iMac).

• Decent recognition results: The algorithm achieves re-
spectable performance results.

• Availability: The source code and the sigset of GBUx8
are publicly available1.

3. Data Sets and Evaluation Protocol
The Good, the Bad, and the Ugly (GBU) challenge prob-

lem [18] comprises three levels of difficulty the Good, the
Bad, and the Ugly. The GBU Challenge Problem was
constructed such that recognition difficulty varies markedly
while at the same time factors such as the individual peo-
ple or number of images per person remained the same.
To gauge the relative difficulty associated with recognizing
a pair of images, similarity scores were created by fusing
scores from three of the top performing algorithms in the

1http://www.cs.colostate.edu/facerec/algorithms/baselines2011.php

Figure 1. Examples of match pairs from each partition: a good
pair (left column), a challenging pair (middle column), and a very
challenge pair (right column).

FRVT 2006 [17]. All images in the GBU data set were
nominally frontal face images. The images were collected
in ambient lighting both indoors and outdoors. Example
images of the GBU partitions are given in Figure 1.

Each partition in the GBU is specified by two sets of im-
ages: a target set and a query set. Across all three partitions,
all target and query sets consisted of 1,085 images from 437
subjects. All target and query sets contained the same num-
ber of images of each subject.

For each partition, an algorithm computes a similarity
score between all pairs of images in that partition’s tar-
get and query sets. A similarity score is a measure of the
similarity between two faces. Higher similarity scores im-
ply greater likelihood that the face images are of the same
person. If an algorithm reports a distance measure, then a
smaller distance measure implies greater likelihood that the
face images are of the same person. Distances are converted
to similarity scores by multiplying by negative one. The set
of all similarity scores between a target and a query set is
called a similarity matrix. A pair of face images of the same
person is called a match pair, and a pair of face images of
different people is called a non-match pair. From the sim-
ilarity matrix, receiver operating characteristics (ROC) and
other measures of performance can be computed.

The main points of the GBU protocol are summarized
below:

• All training, model selection, and tuning need to be
completed prior to computing performance on the
GBU partitions.

• All algorithms are one-to-one matchers. Thus, all sim-
ilarity scores between target and query images cannot
depend in anyway on the target and query sets.

• Algorithms cannot be trained on images of subjects in
the GBU image set.
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One of the most important aspects of the GBU protocol
is that algorithms cannot be trained on images of subjects
in the GBU image set. The same emphasis has also been
adopted in the BANCA database [2]. This type of eval-
uation can help to develop algorithms that generalize and
prevent over fitting the training set.

To compile with the GBU requirement, we searched the
Multiple Biometric Grand Challenge (MBGC) [19] still im-
age data for images that meet this requirement. In the
MBGC still face data set, we found 345 subjects distinct
from the 437 subjects in the GBU data set. We constructed
a training set, called GBUx8, that contains up to 8 randomly
selected images per subject. The GBUx8 training set con-
tains 1,766 images from 345 subjects. All images in the
GBUx8 training set were acquired under ambient lighting
conditions from uncontrolled environments. Examples are
provided in Figure 2.

4. Effects of Deviating from the Protocol
The GBU is very specific in stating the properties of a

valid training set where people in the GBU image set cannot
be used in training. Not following these rules can result
in over estimation of performance on the GBU challenge
problem. There are three basic ways to construct training
sets that do not follow the protocol.

The first is to include images of subjects that are in the
GBU image set. While this may seem to be a minor infrac-
tion, we show that constructing training sets in this manner
does over estimate performance.

The second is for the training set to be one of the target
sets. This method of constructing a training set is a version
of cohort / gallery normalization. In cohort normalization,
the similarity score between target and query images can
depend on the target set. In some applications and exper-
iment protocols, this is allowed. Cohort normalization has
the potential to improve performance. However, because of
the design of the GBU, cohort normalization using the same
people from the target set is prohibited.

The third is for the training set to consist of the union of
all three target sets. Our experiments, show that construct-
ing the training set in this manner results in significant over
estimation of performance.

It is imperative that researchers follow the GBU proto-
col; in particular, following the rules for constructing the
training set. This allows for a fair comparison among al-
gorithms; otherwise, the results may be over estimated. To
demonstrate the severity, we provide quantitative results on
the effect of training set violation in Section 7.

5. The CohortLDA Baseline Algorithm
The CohortLDA baseline algorithm introduced here

is based on the Fisher’s Linear Discriminant Analysis

(LDA) [9]. LDA is a statistical learning technique which
has been widely used in pattern recognition, particularly in
the face recognition community [4, 8, 16]. CohortLDA is
simple for face recognition, and is a good strawman for
the GBU. The following subsections describe the compo-
nents of CohortLDA including the preprocessing, training,
and test phases.

5.1. Preprocessing Phase

Image preprocessing is an essential step for pattern
recognition. In particular for face recognition, geometri-
cal alignment and illumination normalization are the typi-
cal preprocessing mechanisms. The geometrical alignment
is based on the eye coordinates so that the face region is
scaled, rotated, and cropped to a predefined size. Specifi-
cally, all images are resized to 65 × 75 where the distance
between the eyes is set to 32 pixels.

It is known that variation in illumination presents a sig-
nificant challenge in face recognition. Over the years,
many illumination normalization techniques have been pro-
posed to transform face images to illumination insensi-
tive representations. The exemplars of these methods in-
clude anisotropic Retinex model [10], self-quotient [28],
and local-texture [26] representations. While these ap-
proaches have shown promise in face recognition, proper
parameter choice is usually complicated.

Here, we seek a simpler form for lighting compensa-
tion. Among many illumination normalization techniques,
the use of color spaces [11, 25, 13] seems the most direct
and effective for face recognition. From our experience, the
red from the RGB color space preserves the face structure
in the presence of mild lighting variation and the I chromi-
nance from the YIQ color space can compensate for severe
illumination variation. Thus, both the red channel and the I
chrominance serve as basis for our feature representations.

While the red can be directly extracted from the RGB
color space, the I chrominance from the YIQ is the color
difference computed by a linear combination of RGB. As
such, the I chrominance is calculated as

0.596 * R - 0.275 * G - 0.321 * B.

Because the red channel is similar to the gray-scale image,
it usually does not work well with large lighting variation.
The next logical and simple step is to apply a logarithm to
the red channel. In other words, we consider the pixel con-
trast instead of the pixel difference. Let r be an image de-
rived from the red channel; the logarithm transformed im-
age x is computed from log(r + 0.1) where 0.1 is added
to avoid ill-conditioning. To further compensate for the ab-
solute gain during acquisition, we apply a zero-mean and
standard deviation (z-norm) normalization to both the loga-
rithm transformed and the I chrominance images as follows:

x̂ =
x− x̄
σ

(1)
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Figure 2. Example images from the GBUx8 training set.

Figure 3. Examples of preprocessed images: The original color
image, the red channel image after log and z-norm, and the I
chrominance image after z-norm are shown on the left, middle,
right, respectively.

Color Space Log Z-Norm
Training Set Red Yes Yes
Cohort Set Red Yes Yes
Query Set Red Yes Yes
Target Set Red Yes Yes

Training Set I chrominance No Yes
Cohort Set I chrominance No Yes
Query Set I chrominance No Yes
Target Set I chrominance No Yes

Table 1. Preprocessing Settings

where x̄ and σ are the mean and the standard deviation of
the image x, respectively, and x̂ is the preprocessed image.
A summary of our preprocessing settings is presented in Ta-
ble 1 where the red channel is used with the logarithm trans-
form. The examples of preprocessed images are depicted in
Figure 3. We can see in the I chrominance image that much
of the strong side lighting has been removed; on the other
hand, it also eliminates some details of the face.

After the geometric and illumination normalization, we
proceed with a training phase and a test phase.

5.2. Training Phase

Fisher’s LDA is a supervised learning method that seeks
a linear projection of the training data by maximizing the
distance of between-class samples while minimizing the
distance of within-class samples. This criterion can be for-

mulated as:

J(W ) = argmax
W

tr{WTSBW}
tr{WTSWW}

(2)

where SB and SW are the between-class scatter matrix and
within-class scatter matrix defined as:

SB =
c∑

k=1

pi(ui − u)(ui − u)T (3)

SW =

p∑
i=1

(x̂i − ui)(x̂i − ui)T (4)

where c and p are the number of classes and the number of
samples in the training set; pi is the number of samples in
class i, ui is the ith class mean, u is the global mean, and
x̂i is the data sample.

Since Equation (2) can be recognized as the generalized
Rayleigh quotient, the projection vectors W satisfies

SBW = λSWW (5)

and can be solved by a generalized eigenvalue decomposi-
tion where λ is the associated eigenvalues.

5.2.1 Dimensionality Reduction

Because of the curse of dimension, dimensionality reduc-
tion is often used with LDA. Before we solve the gener-
alized eigenvalue problem in Equation (5), we perform di-
mensionality reduction using a linear projection obtained
from Principal Component Analysis (PCA). LetX be a data
sample matrix centered at zero in Rn×p; a linear projection
U can be computed using the Singular Value Decomposi-
tion (SVD) as:

X = USV T (6)

where U and V are the left singular and right singular vec-
tors, respectively; S is a diagonal matrix containing the sin-
gular values. We further truncate the projection matrix U to
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Figure 4. LDA faces: The top row shows the LDA faces acquired
from the red channel after log and z-norm and the bottom row
depicts the LDA faces obtained from the I chrominance after z-
norm.

retain 98% of the energy. The retaining number of dimen-
sions, z, is determined by

argmin
m
{|

m∑
i=1

diag(S)2 − 0.98

p∑
i=1

diag(S)2|} (7)

where m is the retaining dimension for the projection U ,
diag(S) is the diagonal elements of S, and p is the number
of dimensions in diag(S). Then, we have

ŜB = UTSBU (8)
ŜW = UTSWU (9)

where ŜB and ŜB become m×m matrices (m < n).
Then, we solve the generalized eigenvalue problem de-

scribed in Equation (5) using ŜB and ŜW and obtain the
Fisher LDA projection W . The Fisher LDA projection vec-
tors are organized according to the eigenvalues in a de-
scending order. A PCA projection is then used to project
W back to the space of Rn described as:

Ŵ = UW (10)

An additional truncation is applied to reduce the dimension
of the Fisher LDA projection such that the dimension z is
the minimum of 128, the number of classes - 1, and the
number of columns in Ŵ . The truncated projection Ŵ ∈
Rn×z is the LDA projection. The first five LDA-faces for
the red channel and I chrominance are exhibited in Figure 4.
As Figure 4 shows, the LDA faces acquired from the red
channel and I chrominance capture different details of the
face.

5.3. Test Phase

5.3.1 Projection on the LDA Space

In supervised learning, the test phase performs pattern clas-
sification using the learned information from the training
phase. In particular for LDA, all images are projected on
the LDA space such that they are the spanning set of Ŵ .

Let q and t be the query and target images, respectively; the
same preprocessing steps described in Section 5.1 are ap-
plied to both q and t followed by a LDA projection and unit
length normalization shown as:

q̂ =
ŴT q

‖ ŴT q ‖2
, t̂ =

ŴT t

‖ ŴT t ‖2
(11)

where q̂ and t̂ are the projected query and target images in
Rz , respectively.

5.3.2 Cohort Normalization

In face verification, we need a decision threshold to deter-
mine whether a pair of faces is a match or not. Because
some images are harder than others, a fixed threshold may
not adapt well from image to image. The use of cohort /
gallery normalization [24] has been shown to enhance ver-
ification rates, particularly in face [14, 7] and fingerprint
verifications [23]. A set of images called the cohort set is
adopted to adjust the match distance. Since changing the
distance is the same as adjusting the threshold, the verifica-
tion threshold becomes adaptive when cohort normalization
is applied.

While the traditional gallery normalization exploits the
match scores for score normalization, multiple images with
the same identities are needed. This is not possible in the
GBU protocol. In this work, we employ an independent
set of images as a cohort set whose identities do not over-
lap with the test set; therefore, it does not violate the GBU
protocol. As such, the image identities are discarded and
we normalize the similarity scores based on a set of non-
matches.

In cohort normalization, the same preprocessing steps
are first applied to all images in the cohort set, forming the
red and I chrominance images. A subset of cohort images
is selected for each query image and target image using the
k nearest neighbor rule described as:

c∗k = c∗k−1
⋃

argmin
cj 6∈c∗k−1

‖ q̂ − ĉj ‖2 (12)

c+k = c+k−1

⋃
argmin
cj 6∈c∗k−1

‖ t̂− ĉj ‖2 (13)

where c∗0 = {}, c+0 = {}, ĉi is the LDA projected pattern
in the cohort set, and k is set to 100 in our experiments.
The c∗ and c+ are the cohort subsets for query and target
images. The cohort distance offsets can then be calculated
as follows:

dq =
1

k

k∑
i=1

‖ q̂ − c∗i ‖2 (14)

dt =
1

k

k∑
i=1

‖ t̂− c+i ‖2 (15)
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Method Good Bad Ugly Training Set
FRVT Fusion [18] 98% 80% 15% Proprietary
Our CohortLDA 83.8% 48.2% 11.4% GBUx8

V1-like [21] 73% 24.1% 5.8% GBUx8
Kernel GDA [3] 69.1% 28.5% 5.1% GBUx8

LRPCA [18] 64% 24% 7% GBUx2
EBGM [6] 50% 8.1% 1.9% FERET

LBP [1] 51.4% 5% 1.9% None

Table 2. Valid Protocol: Verification rates at 0.1% FAR for the
GBU data sets

where dq and dt are the query and target distance offsets.

5.3.3 Computing the Distance

Using the cohort normalization, the distance between a
query image and a target image is computed as:

d =‖ q̂ − t̂ ‖2 −
dq + dt

2
(16)

The final distance d∗ is obtained based on the red channel
and I chrominance images using a simple sum rule:

d∗ = dR + dI (17)

where dR and dI are the distance computed from Equa-
tion (16) using the red channel and the I chrominance im-
ages, respectively.

6. Experimental Results
This section summarizes our empirical results and

demonstrates the effectiveness of our CohortLDA on the
GBU challenge problem. We assess the recognition per-
formance as the verification accuracy given at a 0.1% false
accept rate (FAR). The experimental results are reported in
Table 2 and the associated bar chart is given in Figure 5.

The current best results on the GBU are the fusion of
the top three algorithms in the FRVT 2006 [18] given in the
first row of Table 2. Although the training set is proprietary,
the test and target sets in the FRVT 2006 were sequestered.
Thus, the results from the fusion are considered legitimate.
As Table 2 shows, the fusion algorithm performs very well
on the Good and the Bad data sets but not on the Ugly par-
tition, achieving only a verification rate of 15%. The Ugly
data set clearly shows that frontal face recognition remains
a challenging problem.

Our CohortLDA results are reported in the second row
of Table 2. The receiver operating characteristic (ROC) is
given in Figure 6 where the verification rate at 0.1% FAR
is highlighted. Here, we employ the GBUx8 as the training
and cohort sets for CohortLDA; therefore, we do not have
people’s identities overlapped between the training and test
sets.

Figure 5. The verification results at 0.1% FAR on the GBU parti-
tions where the Best-FRVT fusion is from the top three algorithms
in FRVT 2006 [18]; the V1-like is the method simulating the V1-
simple-cell like unit [21]; the kernel GDA is the kernel general-
ized discriminant analysis [3]; the LRPCA is the local region PCA
in [18]; the EBGM is the elastic bunch graph matching [6]; and
the LBP is the local binary patterns [1].

Figure 6. ROC for the GBU partitions trained by the GBUx8. The
verification rates are highlighted by the vertical line at 0.1% FAR.

Compared to some known face recognition algo-
rithms, CohortLDA outperforms the V1-like (A) represen-
tation [21], the Kernel Generalized Discriminant Analy-
sis (Kernel GDA) [3], Local Region Principal Component
Analysis (LRPCA) [18], Elastic Bunch Graph Matching
(EBGM) [6], and Local Binary Patterns (LBP) [1] by a sig-
nificant margin on all GBU partitions. While the perfor-
mance of CohortLDA is not comparable to the FRVT 2006
fusion algorithm, it is competitive with all non-commercial
published results at the time the paper was submitted.. As
a baseline algorithm, CohortLDA has fewer parameters to
tune; thus it is simpler than other methods. CohortLDA
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Good Bad Ugly Training Valid Protocol
83.8% 48.2% 11.4% GBUx8 Yes
87.8% 52.6% 15% FRGC No
95.7% 48.8% 6.2% Good-Target No
84.9% 71.4% 15.1% Bad-Target No
79% 42% 21.1% Ugly-Target No
99% 88.8% 61.2% All-Target No

Table 3. Verification rates at 0.1% FAR for the GBU data sets

would benefit the face recognition community by offering a
new baseline for performance comparison.

7. Discussion

Training sets play a vital role in supervised learning. One
of the objectives of this paper is to demonstrate the effects
of training sets and the consequences of violating different
aspects of proper evaluation protocol. To do this, we con-
struct five additional training sets. The first is the FRGC
experiment 4 training set [20] consisting of 222 people with
12,776 images taken in studio and ambient illumination en-
vironments. More importantly, there are 91 subjects whose
identities overlap between the FRGC training and the GBU
test sets. The next three consist of images drawn directly
from the individual Good, Bad, and Ugly target sets. Fi-
nally, the fifth training set combines all the Good, the Bad,
and the Ugly target images in one training set.

While training and testing on the same people may be
common in some face recognition experiments, the results
in Table 3 reveal how doing so unrealistically inflates esti-
mated performance. The verification rates shown in Table 3
are for the CohortLDA algorithm configured exactly as for
the results shown in Table 2, but with the exception that
training and cohort normalization is done using the prob-
lematic training sets involving people with the same identi-
ties.

The CohortLDA results reported in the first row of Ta-
ble 3 is trained by the valid GBUx8 training set. When
we employ the FRGC training set, the verification rates
increase in all GBU partitions reported in the second row.
This boosted performance is due to the partial overlapping
subject identities between the training and test sets. In ad-
dition, the FRGC training set has a large number of images;
so it covers a wider range of variation.

The results between the third and the fifth rows illustrate
the effects when we train on each individual target set; in
other words, the people in the training and test sets are iden-
tical. Subsequently, the diagonal entries between the third
and the fifth rows exhibit strong recognition performance
indicating that the distributions between the training set and
the query set are similar. In contrast, poor results may still
occur with identical subjects when the imaging conditions

between the training and query sets are significantly differ-
ent. For example, the result on the Ugly partition is only
6.2% when LDA is trained on the Good target set.

In a more extreme scenario, we can combine all target
images from the GBU partitions to form a training set. As a
consequence, CohortLDA can outperform the FRVT 2006
fusion algorithm shown in the last row in Table 3. This
performance enhancement is mainly due to two reasons:
1) Identical subject identities between the training and test
sets; 2) Large amounts of training data. After all, one may
expect to achieve better recognition results when the people
in the training set and the test set are the same.

There are applications of face recognition where train-
ing and testing on the same people may be a reasonable
thing to do, such as family photo libraries. However, it
is entirely unacceptable for large scale deployed systems
that must manage many enrolled people. For example, re-
training a deployed system each time that a new person is
enrolled is a logistical nightmare. Table 3 illustrates why
new algorithms, proposed for large scale face recognition,
should avoid presenting results where the subject identities
between training and test sets overlapped.

8. Conclusions
We have presented the CohortLDA face recognition al-

gorithm, and it has respectable performance on the GBU
challenge problem. CohortLDA performs illumination
compensation from color spaces and cohort normalization
from a training set. The proposed CohortLDA algorithm
provides a new baseline on the GBU where performance can
be compared with other algorithms. We observe the GBU
evaluation protocol where the subject identities do not over-
lap between the training and the test sets. One of the char-
acteristics of CohortLDA is its simplicity, leaving plenty of
room for improvement. In particular, kernel methods and
local regions may be promising areas in boosting the per-
formance.

We showed the effects of not following the GBU proto-
col with experiments on five different training sets. Experi-
ments with these training sets show that recognition results
can be inflated. We recommend that researchers publicly
post their training sets. This will provide confidence in the
veracity of the reported results.
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