Tracking Object Motion Across Aspect Changes for Augmented
Reality*

S. Ravela

B. Draper

J. Lim R. Weiss

Computer Vision Research Laboratory
University of Massachusetts, Amherst, MA 01003
Email:ravela@cs.umass.edu

Abstract

A model registration system capable of tracking an
object through distinct aspects in real-time is presen-
ted. The system integrates tracking, pose determ-
wmation, and aspect graph indexing. The track-
ing combines steerable filters with normalized cross-
correlation, compensates for rotation in 2D and is
adaptive. Robust statistical methods are used in the
pose estimation to detect and remove mismatches.
The aspect graph is used to determine when features
will disappear or become difficult to track and to pre-
dict when and where new features will become track-
able. The overall system 1s stable and is amenable
to real-time performance.

1 Introduction

Maintaining object registration over time (temporal
registration) can be defined as the ability to retain
up-to-date object-sensor pose relationships over re-
lative motion. Registration is useful in several do-
mains. As an example consider augmented reality
applications such as an interactive repair manual. In
this application technicians look through a visor at
an annotation correctly aligned with the image of the
object. Together, the object’s image and the over-
laid annotations unambiguously provide directions
to the next repair step. Given that there is relative
camera-object motion (since technicians will move),
spatially accurate annotations can be overlaid only
when the object 1s temporally registered.

Temporal registration can be achieved using two ba-
sic approaches. One relatively expensive yet proven
technology is to instrument the real world with loc-
ation beacons and position sensors. The other is
to visually track modeled object features and use
pose estimation to update the object-camera trans-
form. This approach is less expensive, can be used
in unmodified environments and permits annotation
of independently moving objects’.

* This work is supported in part by CSC, Booz Al-
len, under subcontracts CCCO097I0OM, 09005-0990-5847,
ARPA (via TACOM) contract DAAEQ07-91-C-R035 and
NSF under grants 1RI-9208920, CDA-8922572 and IRI-
9116297.

! Automatic positioning systems may do this if each

Initial Visible
Pose Points 4L

Figure 1: The wnteraction between components of
the registration system

In this paper a system for temporal registration of
a modeled object using a single camera is developed
and it 1s claimed that real-time registration is pos-
sible through 360° of out-of-plane object rotation.

2 System Overview

The temporal registration system is initialized with
a user specified set of model-image correspondences,
known camera parameters and a pre-compiled as-
pect table that associates discrete viewpoints? with
object features visible from those views®. User in-
put is used to specify initial correspondences. These
correspondences are used to estimate an initial pose.
Once initialized, the system follows a simple three-
step loop as shown in Figure 1: a) pose information
1s used to index into the aspect table and a list of vis-
ible features is extracted, b) the model coordinates
of these features are projected into the next image
plane as location hypotheses of feature templates, c)
these templates are matched in this image and a new
pose is computed. The cycle repeats.

System components (namely, view indexing, track-
ing and pose) individually and by virtue of their in-
teraction contribute to the speed, stability and ro-
bustness of the system. As an object undergoes re-
lative out-of-plane rotation in the camera, new fea-
tures appear and old ones disappear. By construc-
tion, only points that are visible from a particular
view are tracked and used to compute pose, result-
ing in continuity of registration across viewpoints.

object has its own beacon(s).

?In this paper it is assumed that the camera will
roughly point towards the object throughout the relative
motion.

®An object feature is defined by a model coordinate
on the object and a template that captures the feature’s
appearance.

The tracker localizes feature templates in search win-
dows around hypothesized locations using steerable
filters and normalized cross-correlation. This tech-
nique is relatively insensitive to changes in lighting
conditions and compensates fully for feature trans-
lations and rotations in the image-plane; it also com-
pensates for some non-trivial out of plane rotations.
So long as the actual feature is within the search win-
dow, un-occluded and free from specular reflections
in the image, the tracker locates features correctly.
Pose computation [Kumar 92] uses camera paramet-
ers and the model-image correspondences to robustly
solve for a rotation and translation that minimizes
the projection error? of model points on the object
in to the image plane. Robust pose estimates are ob-
tained by using two alternative approaches. In the
first approach, a median-filter is used to detect and
exclude outliers during pose computation pose. The
second approach is to use maximum likelihood es-
timation (M-estimation) of pose. In this paper an
iterative re-weighting least squares (IRLS) form of
M-estimation, namely, the modified weights method
proposed by [Huber 81], is used.

One important result of the interaction of the pose
and tracking components is system stability. Fr-
rors can be produced both during tracking and pose
computation. Tracking errors arise when the tem-
plate localizes incorrectly for reasons such as spec-
ularity or large inter-frame motions. Pose compu-
tation could be error prone if the object model or
camera parameters are imprecise. The system can
quite easily become unstable if these errors feed back
in to the pose-tracking loop. The proposed system is
shown to be stable. With appropriately sized search
windows (based on expected inter-frame motion) the
tracker compensates for feature motions which in-
clude errors induced as a result of the computed
pose. Similarly, the median filter or TRLS based
pose computation is designed to suppress tracking
errors caused by mismatches. It is observed that
neither tracking nor pose errors are fed back in to the
pose-tracking loop, thus making the system stable.
A second important result of combining pose and
tracking components is that tracking is adaptive.
Feature templates are updated during registration
without any drift from their intended locations. Fi-
nally, real-time performance is possible on current
hardware, within reasonable limits. For 11x11 size
search windows and 929 templates, the speed of the
tracker for 6 points is 8 Hz on a Sparc-2°. If a max-
imum of one tracking outlier per frame is detected,
the system can produce registration data at 7 Hz.
Stability, adaptivity and speed are discussed in de-
tail in section 5.

“The projection error is defined as the distance
between the actual versus the predicated location of a
feature point.

®The registration system has also been ported to a
Pentium laptop. Similar timing results were obtained.

3 Related Work

Temporal registration has been addressed by several
researchers [Dickinson 94, Gennery 92, Lowe 92,
Uenohara 95, Verghese 90]. Dickinson et. al.
[Dickinson 94] use an aspect prediction graph to-
gether with a network of active contours introduced
in [Kass 88]. Active contours are purely gradient-
based in that they minimize the error between the
gradient maxima and the contour (external energy),
and also the internal energy of the contour it-
self. This technique can be sensitive to undesirable
local edge maxima. Work in [Gennery 92, Lowe 92
Uenohara 95] does not address changing aspects.
Uenohara and Kanade [Uenohara 95] use normal-
ized cross-correlation for tracking and combine it
with pose estimation, but do not handle changing as-
pects. Robustness is achieved by examining invari-
ant geometric constraints between features. Gen-
nery [Gennery 92] employs a Kalman filter for pre-
dictive pose and edge based tracking. We agree with
Lowe [Lowe 92] in that a Kalman filter may not al-
ways be advantageous especially in augmented real-
ity applications. This is because a low order dy-
namical model of human motion may not be always
be appropriate except under very constrained scen-
arios. Lowe uses line data as image features with a
weighted least squares fit to the model parameters.
Matching itself is achieved via a best-first search us-
ing Bayesian theory to measure the probabilities of
feature matches. Our technique is different from all
these approaches in that it uses both intensity and
edge information for tracking, and uses robust com-
putation to detect mismatches in tracking.

Tracking, which is a central component in temporal
registra-

tion, has been addressed by using lines [Lowe 92
Crowley 90, Sawhney 92], edges [Gennery 92] in-
cluding edge contours [Dickinson 94, Kass 88] and
intensity [Uenohara 95, Hager 94, Shi 94] includ-
ing optic flow [Anandan 89]. TFor example Crow-
ley [Crowley 90] used a set of parameterized
line tokens which were matched to predicted
feature vectors using the Mahalanobis distance.
Sawhney [Sawhney 92] extended this approach to
triples of lines, grouped under the shallow structure
assumption under affine transformations. However,
these techniques tend to be slow. Other model-based
tracking such as Hager [Hager 94] uses a hierarchy
of features to represent a model. Constraints on
the state of the feature are propagated down the
hierarchy and at the lowest level tracking is ac-
complished using convolutions (edges) or SSD meth-
ods [Anandan 89]. Hager does not explicitly address
the issue of mismatches as is done by Shi and To-
masi [Shi 94]. Affine feature dissimilarity over mul-
tiple frames is used to identify good features to track.
This method is image based, while ours 1s model
based and can detect outliers after just one frame.

Although the use of aspect graphs is not new(e.g.
[Bowyer 91, Tkeuchi 88]), most systems do not use

coarse quantizations of the view sphere as employed
in this system.
4 Registration System Components

In this section we describe each of the system com-
ponents individually, paying particular attention to
the tracking module which contains novel elements
(the pose determination module is as presented by
Kumar [Kumar 92], and the feature indexing module
is quite simple).

4.1 Tracking

The tracking module localizes a set of feature tem-
plates in a newly acquired image given hypothesized
2D feature locations. Within the context of the re-
gistration system, the hypothesized 2D locations are
the positions of features (templates) obtained from
the predicted pose. The role of the tracking module
is to find the position of the templates in the new
image by searching windows around their previous
positions.

The basic algorithm for matching templates to im-
age patches is a combination of normalized cross-
correlation and steerable filters. The normalized
cross-correlation of a template (image patch) 7(z,y)
with an image y(z,y) at a location (7, j) is given in
a computationally efficient form by

T y(i,) =
Z*Z T(m—1i,n—7)*y(m,n) (1)

m,n

Ri1x Z 7(m—i,n—j)>+R2* Z v(m,n)?

where R2 = %

Theoretically, this measure assumes that the surfaces
in the environment are Lambertian, that they can be
locally approximated by a plane, and that the illu-
mination incident on the surfaces can be locally ap-
proximated by a constant. Under these assumptions
the correlation measure is normalized in that it is
independent of the illumination incident on the sur-
face. However, good experimental results have been
obtained with this measure on surfaces that do not
fit the Lambertian assumption(see [Fennema 91] for
a derivation.

Normalized cross-correlation degrades when there is
a relative rotation between the templates and image
patches. To compensate for 2D rotations it is suffi-
cient to note that equation 1 is linear shift invariant
in cartesian space and hence 1s translation invariant.
Equivalently, linear shift invariance in polar space is
equivalent to rotational invariance in cartesian space
and we formulate an equivalent correlation expres-
sion in polar space.

A feature template is defined as a pair (r,6;) where
T is an image patch centered over a dominant im-

1| ®Error
08 MCC fails after 157 rotation.

' NEC
D&}

Template Hize = 15215

0.4 Search Window Size = 43343
02 MOO-R degrees—=

I NIV A NN

25 50 75 100 125 130 174

Figure 2: Comparison of NCC and NCC-R al-

gorithms under 2D feature rotation. 15x15 sized
templates were correlated over a [3z43 area under
several feature rotations.

age edge and 6i¢[—m, 7] is the phase of the max-
imum response of a steered Gaussian derivative fil-
ter [Freeman 91] with the edge at the patch center.
Templates are then localized within a search window
~ in a new image as follows:

1. Spatial gradients and their orientations are
computed by filtering v with steerable Gaussian
derivative filters and suppressing non-maximal
edges within the search window.

2. Fach local maximal edge location (¢,) in v is a
potential candidate for the new location of the
template, and normalized correlation in polar
space 1s used to identify the best match.

The advantage of using steerable filters is that they
can be represented as a set of basis filters from which
an arbitrary orientation of a template can be estim-
ated [Freeman 91]. For edges, first derivatives of
Gaussian masks can be used. Their performance is
better than that of box filters, for example, when
there are non-step edges. While polar correlation
compensates for any changes in orientation of the
feature, there is, however, an issue of sampling and
interpolation accuracy when going from cartesian co-
ordinates of the image to the polar coordinates under
which normalized correlation is performed. Accur-
acy 1s traded for speed to a certain degree in the real-
time applications we have investigated, and sampling
is performed without interpolation. NCC-R can be
used to track token features such as lines, curves
and corners [Ravela 95]; the system described here
tracks corners.

The performance of rotation compensated normal-
ized cross-correlation (NCC-R) is observed to be
much better in terms of 2D rotational tolerance. Fig-
ure 2 shows the percentage correlation error (w.r.t.
the auto-correlation value of the template) for vary-
ing rotations under NCC-R and normalized cross-
correlation (NCC). 15x15 templates correlated over
43x43 search windows; while NCC fails after 15° of
feature rotation, NCC-R, finds the correct matches
over all rotations. Note that for this case the NCC-R

scores fluctuate due to the lack of uniform quantiza-
tion of rotation space but never exceed 0.05%. Since
the number of discrete angular bins increases with
the radial extent larger windows will have a lower
fluctuation. NCC-R, can correlate under arbitrary
2D in-plane rotations up to the discrete quantization
of rotation and has been observed to work well with
varying search windows and template sizes. Similar
experiments with out-of-plane rotations showed that
NCC-R can at best handle about 25° of feature ro-
tation.

4.2 Pose Estimation

The pose estimation module finds the transformation
(both rotation and translation) given at least four
3D-2D correspondences (although more correspond-
ences are desirable). The transformation is what
registers the artificial world to the real one, and is
therefore the goal of the registration system. At the
same time, this transformation is used as an index
into the feature index table to predict what image
features should be visible in the next image, and is
used to project the corresponding points into the im-
age frame as a starting point for the tracking module.

The pose estimation module uses Kumar’s al-
gorithm [Kumar 92] to solve for the rotation and
translation that maps a set of 3D model points onto
corresponding 2D image points. Kumar’s algorithm
18 an iterative approach that minimizes the squared
image-plane distance from the data points to the
projected model points. The Levenberg-Marquardt
method is used to solve this nonlinear optimization
problem, starting from an initial guess of the ap-
proximate object pose. For small inter-frame mo-
tions, the change in pose between successive images
is small enough that the pose from the previous im-
age can be used as an initial estimate for the pose
algorithm.

Pose estimation techniques such as the simple ver-
sion of Kumar’s algorithm described above work well
when the correspondence between model and data
points is correct. Unfortunately, tracking errors will
sometimes result in a model point being matched to
an erroneous image point. Even a single such outlier
can have a large effect on the resulting pose. Robust
statistical approaches provide a powerful means to
detect mismatches and possibly categorize them as
outliers. These methods are typically better than 1m-
age based methods such as thresholding a correlation
score, which may vary from experiment to experi-
ment and feature to feature. NCC-R, for example,
can produce a high correlation score at mismatches
and thus a threshold will not work.

We have experimented with two alternative robust
statistical methods for pose computation. The first
is an TRLS technique, in particular one proposed by
Huber as the modified weights method [Huber 81].
Using this method, the weights associated with each
model-data pair are iteratively re-computed, so that
outliers are simultaneously detected as the robust

pose 1s computed. Upon convergence, a maximum
likelihood estimate (M-estimate) of pose is pro-
duced. We use a variation adopted by Kumar where
the weighting function takes the form of Tukey’s
bi-weight re-descending function [Kumar 92]. The
TRLS technique (and other M-estimation techniques
as well) is an excellent choice for the pose computa-
tion module of the registration system. Its asymp-
totic complexity is comparable to least mean squares
but, in practice, TRLS tends to converge slower
than least mean squares. However, the robustness
provided by this technique far outweighs the reduc-
tion in speed. TRLS has a break down point of 30%
and thus the method will not yield good results with
over 30% outliers. It should be noted that while a
30% breakdown may seem modest from a statist-
ical standpoint, this fraction of mismatches is rather
large in a temporal registration system and perhaps
reflects a poorly designed tracker.

In the alternative robust pose computation Kumar’s
approximation to least median squares is employed,
where subsets of size N were sampled and trans-
formations (both rotation and translations, calcu-
lated together) were computed from these samples.
The sample which minimized the median of squares
was used to eliminate outliers, and the final pose
was computed using the remaining set of correspond-
ences.

The computational cost associated with the least
median squares filter over all subsets grows expo-
nentially with the number of k sized subsets con-
sidered, where k ranges from the size of the original
set down to 4 (the minimum required to compute
pose). In practice, we generally compute pose from
sets of five points, allowing the computation to grow
with the number of points tracked (up to eight in
the experiments investigated in this paper). With
fast machines® (since the pose computation is purely
compute bound) and for up to eight tracked points,
the time expended in computing pose remains a frac-
tion of the image acquisition and tracking time and
18 amenable to real-time performance.

It is instructive to compare the performance of IRLS
and least median squares. It is clear that the
complexity of least median squares is exponentially
greater than that of IRLS. Thus, when large number
of points may be tracked, IRLS will yield a faster
system. However, for a small number of point sets
(typically six to eight with one or two expected out-
liers) TRLS compares favorably with least median
squares in speed and accuracy (see Figure 3).

4.3 Feature Indexing

As an object undergoes rotation with respect to the
camera, features change in appearance, and new fea-
tures may appear while old ones disappear. The
range of viewpoints over which a set of features can
be tracked is an aspect and an aspect table is used

6The system is currently running on Sparc-2 and Pen-
tium processors.

to encode sets of model points that are visible from
each aspect. This table therefore contains lists of
model points visible from the surface of a discret-
ized sphere” encompassing the object, and is indexed
using the latitude and longitude. In this paper the
view hemisphere was discretized to 18 longitudes and
3 latitudes, leading to a total of 54 aspects and a
20°x30° viewing extent per aspect.

For this paper, model points were extracted manu-
ally and aspect tables were constructed off-line. In
addition to the model points, the aspect table is also
used to store feature templates. At run-time, the
current pose 1s used to determine the latitude and
longitude. These angles are discretized to index into
an aspect and a set of 3D feature points are ex-
tracted. As the object rotates (or when the camera
moves) aspect transitions will occur. During an as-
pect transition the new list of 3D points is compared
with the current list. Templates are extracted for
points that are new (i.e. appear in new list but not
in current list). Old points (i.e. points in current list
not in new list) are not tracked any further. This
simple list management procedure ensures smooth
transition between aspects.

5 Discussion

The registration loop described in section 1 is ex-
amined for stability. Further (as discussed in 1) it is
observed that pose and tracking can be combined to
make the tracker adaptive. These properties of the
registration system, issues concerning system speed,
and an example demonstrating registration over dis-
tinct aspects are presented in this section.

5.1 Stability

To show that the system is stable, all possible sources
of error or variation within the system need to be
considered. There are three such sources.

The first source of variation (which in this case is
not an error) is image motion. On each iteration
of the pose-tracking loop, the system projects points
based on the pose of the object in image N, and uses
these positions as starting points for the tracker in
image N +1. If the image motion of points is greater
than the size of the tracker’s search window, then
matching will fail.

The second source of variation is tracking error.
There are several reasons why tracking might fail:
specular reflections might distort the appearance of
the feature, an un-modeled object might occlude the
point being tracked, or the feature might not be
unique, so that another point matches the template
as well or better than the intended feature.

The third source of variance is pose computation
error. As shown in simulation studies by Kumar
[Kumar 92], the residual pose error resulting from

"For the experiments in this paper, the feature index
table encompassed a viewing hemisphere, since the ob-
ject is not visible from below the table.

simple noise in the positions of point features is
very small for most images. In practical systems,
however, modeling errors and camera calibration er-
rors can create non-trivial pose errors; in our exper-
iments, we have noticed that projected model points
may be off by as much as three or four pixels.

The overall system is stable because the tracking
module compensates for pose error and image mo-
tion, while the pose modules compensates for track-
ing error. The pose estimation module identifies mis-
tracked points and excludes them or minimizes their
contribution from the pose computation. Since the
starting point of the tracker on the next iteration
18 the projection of the model points from the com-
puted pose (rather than the tracking results from
the previous image) and outliers are not used for
pose computation, tracking errors are not fed back
into the tracker and the system remains stable. Pose
errors, on the other hand, are indistinguishable to
the tracker from image motion; they simply imply a
disparity between the (slightly inaccurate) projected
feature positions for frame N and their actual posi-
tions in frame N + 1. One way to look at it 1s that
the tracker never knows that the pose was wrong —
it just tracks the motion from the inaccurate com-
puted positions to the new positions. As long as the
tracker’s search windows are big enough to accom-
modate the largest expected image motion plus the
pose error, the result of tracking is not affected by
pose error.

Catastrophic failures are possible, of course. If the
tracking module produces more errors than the me-
dian filter or IRLS was set to detect, an outlier will
be included in the pose computation and produce
a grossly inaccurate pose. One circumstance that
might create such simultaneous tracking failures is
if the image motion is larger than the size of the
tracker’s search window. This is essentially a config-
uration problem: the search windows must be large
enough to account for the image motion plus the ex-
pected (typically small) pose error. Fortunately, if
such a catastrophic failure occurs it will be detected
in the residual error of the pose algorithm, and the
user will be informed to re-initialize the system.

In the registration example illustrated in Figure 3,
system performance under least mean square TRLS
and least median square policies are compared. The
figure plots the total projection error® for all the tem-
plates over a 92 frame out-of-plane object rotation.
Given that there 1s about a 3 pixel error after pose
computation, the expected value of the summed pro-
jection errors for seven templates used in this exper-
iment is 21. At frame 64 (during object motion)
a specular reflection obscures one of the features.
Over subsequent frames the least mean square policy
cascades to failure starting with incorrect pose es-
timates and culminating in features falling outside

8Projection error is the distance between the actual
and projected feature location in pixels.

a1l ! .
Projection : :
ERRCR

A0l

............

] R S -

Least I'I.-'Imf-;dian Squares

I 20 4[l

Al A0 FRAMES 10]

Figure 3: Least Mean Squares vs. IRLS vs. Least Median Squares

the fixed search windows of projected template loca-
tions. Thus by frame seventy (when the total projec-
tion error reaches about 38 pixels) the system neither
tracks nor estimates pose correctly and becomes un-
stable. In contrast, both the IRLS and median com-
putation detect and eliminate the mistracked feature
from pose computation, all the way through the dur-
ation of the specularity. Predictably the total projec-
tion error (which includes the mistracked feature’s
projection error) remains small. This is explained
as follows. Pose computation is unaffected by the
tracking outlier and thus, the feature location is al-
ways within the search window centered around the
projected template location.

5.2 Adaptive Tracking

Templates can be updated on the fly as tracking
18 performed. However, if a template tracks in-
correctly, updating it can cause incorrect feature-
template associations(template drift), resulting in
system instability. Template drift can be avoided as
follows. First, a policy is adopted wherein only cor-
rectly tracked templates(those that are not outliers®)
are updated (by cutting out appropriate portions of
the current image). Second, non-maximal suppres-
sion during the localization process ensures a correct
sampling angle for the template (see section 4.1). To-
gether, these two steps result in correctness of ad-
aptivity, i.e. updating templates without introducing
instability.

Adaptivity provides the system with several advant-
ages. First, 1t allows building aspect tables without
regard to the tracker’s sensitivity to out-of-plane ro-
tations. Consequently the discretization of the ob-
ject view hemisphere used in this paper does not
take into account the amount of rotation that the
tracker can handle in 3D. It is based purely on the

®Under IRLS outliers are determined by thresholding
the final weights.

Set Size 11 8 6
Time(ms) | 15 | 8.2 [6.3 | 4

e

Table 1: Time in milliseconds for Pose Computation

Search Size

19 | 15 | 11
15 | 180 | 150 | 70
11 | 137 | 77 | 54
9 | 80 | 47 | 20

Template
Size

Table 2: Time in milliseconds for Tracking

appearance or disappearance of features. A second
important effect of adaptivity is that scale changes
can be handled incrementally. Third, templates will
need to be loaded once per every viewpoint trans-
ition for each new feature.

5.3 Registration Rates

A timing analysis of the system running on a sparc-2
processor in a VME cage is presented. The image
acquisition hardware is a Datacube DigiMax frame
grabber also mounted in the same cage. Images
are grabbed through this digitizer and small regions
corresponding to the size of the search window are
transfered to the host. The time for this transfer is
negligible. The tracking-pose loop is executed on the
Sparc-2 host. In Table 2 the time in milliseconds for
tracking under varying search and template sizes is
presented. In Table 1 the time in milliseconds for
least mean squares is presented. From these tables,
it is observed that for 11211 size search windows and
929 templates, the computation speed of the tracker
for 6 points is 8 Hz. If a maximum of one tracking
outlier per frame is detected, the system can produce
registration data slightly under 7 Hz with a least me-
dian squares policy. The computation with IRLS for
6 points 1s also 7 Hz because more iterations are
needed to converge. Thus, within these limits regis-

tration is amenable to real-time performance.

5.4 Registration Example

Using NCC-R, adaptive templates and median fil-
tering registration and annotation is demonstrated
for an object undergoing 180° out-of-plane rota-
tion (frames 1 through 4 of Figure 4). The object
(painted with a military green color) is the gas mo-
tor of a chain-saw that had been adapted for some
other purposes. Note that this uniformity of color
and the metallic nature of the engine make tracking
a challenging task under natural lighting conditions.

An initial viewpoint corresponding to frame 1 in Fig-
ure 4 is assumed. This gives a nominal pose, from
which templates are extracted, projected into the
image, and localized. Once initialization is complete
the registration loop is automatic. Five to eight tem-
plates were used per aspect. Least median squared
pose computation was used with subsets of size five.
In these figures an annotation “Open Gasket” is cor-
rectly aligned for the entire duration of object rota-
tion and is meant to instruct the user (or techni-
cian) to open the gasket. The four snapshots in Fig-
ure 4 are sampled at approximately 0°,45°,95° and
140°. Feature 63 in frame 2 and feature 7 in frame 3
(marked in gray and black respectively) are outliers
(the actual locations of feature 63 and 7 can be seen
in frame 3 and 4 respectively) and are detected as
such during pose computation.

6 Conclusions and Future Work

Using an existing pose algorithm, a new tracking
algorithm and aspect tables we have shown that it
is possible to construct a temporal registration sys-
tem that is stable, operates in real time and handles
changing views.

One of the limitations of our system is that pose
computation is not predictive and therefore, search
window sizes must not only encompass pose errors
but also image motion. Kalman filtering style pre-
diction has been studied by a number of authors and
incorporating a Kalman filter 1s the next immediate
step. Note however that in an augmented reality ap-
plication the agent is normally a human and may not
conform to a low-order dynamical model. Examin-
ing the performance of a extended-Kalman filter in
this kind of application would be an interesting ex-
periment.

A second extension to the project is the automatic
extraction of feature templates. Shi and Tomasi’s
work lays a basis for measuring feature dissimilarity
over small frames of motion [Shi 94]. Small dissimil-
arities over a range of motion typically yields a good
feature. This work 1s currently under examination.

References

[Anandan 89] Anandan, P., ¥A Computational Frame-
work and an Algorithm for the Measurement of Visual
Motion”, Int. J. Comput. Vision, 2:283-310, 1989.

[Bowyer 91] Bowyer, K. W. and Dyer, C. R. “Aspect
Graphs: An Introduction and Survey of Recent Res-

ults,” International Journal of Imaging Systems and
Technology, 2:315-328 (1990).

[Crowley 90] Crowley, J. L. and Stelmaszyk, P., “Meas-
urement and integration of 3-D structures by tracking
edge lines”, Proc. European Conf. on Comput. Viston,
pp- 269-280, 1990.

[Dickinson 94] Dickinson, S. J., Jasiobedzki, P., Olofs-
son, G. and Christensen Henrik I., ¢ Qualitative
Tracking of 3-D Objects using Active Contour Net-
works”, Proc. of Comput. Vision and Patt. Recogni-
tion, pp. 812-817, June 1994, Seattle, Washington

[Fennema 91] Fennema, C. L., “Interweaving Reason,
Action and Perception”, COINS TR91-56, Dept. of
Computer Science, Univ. of Massachusetts, Amherst,
1991.

[Freeman 91] Freeman, W. T. and Adelson, E. H., “The
Design and Use of Steerable Filters”, TEFE Trans.
Patt. Anal. Machine Intell., 13(9):891-906, Sept.,
1991.

[Gennery 92] Gennery, D., “Tracking known Three-
Dimensional objects”, Int. J. of Comput. Vision,
7(3):243-270, 1992.

[Huber 81] Huber, P. J.,
Wiley & Sons, N.Y. 1981.

[Hager 94] Hager, G. D., “Real-Time feature tracking
and projective invariance as a basis for hand-eye co-
ordination.”, Proc. Comput. Vision Patt. Recognition,
pp- 533-539, 1994.

[Tkeuchi 88] Tkeuchi, K. “Generating an Interpretation
Tree from a CAD Model for 3D-Object Recognition
in Bin-Picking Tasks,” International Journal of Com-
puter Vision 1:145-165 (1987).

[Kass 88] Kass., M., Witkin, A. and Terzopolous, D,
“Snakes: Active contour models”, Int. J. Comput.
Vision, 1(4):321-331, 1988.

[Kumar 92] Kumar, R. “Model Dependent Inference of
3D Motion From a Sequence of 2D Images”, PhD Dis-
sertation, CmpSci TR92-04, Department of Computer
Science, University of Massachusetts, Amherst.

[Lowe 92] Lowe, D. G., “Robust Model-based Motion
Tracking Through the Integration of Search and Es-
timation”, Intl. Jrnl. Comput. Vision8:(2)113-122,
1992.

[Ravela 95] S. Ravela, B. Draper, J. Lim and R. Weiss,
“Adaptive Tracking and Model Registration Across
Distinct Aspects”, Proc. IEEE/RSJ Conf. Intelligent
Robots and Systems, pp. 174-180, Pittsburgh, Aug. 5-
9, 1995.

[Sawhney 92] Sawhney H. and Hanson A., “Tracking,
Detection and 3D representation of potential obstacles
using affine constraints”, Proc. Img. Understanding
Wkshp., pp. 1009-1017, San Diego Californma, January
1992.

[Shi 94] Shi, J. and Tomasi, C., “Good features to
track”,Proc. Comput. Vision Patt. Recognition, pp.
593-600, 1994.

[Uenohara 95] Uenohara, M., and Kanade, T., “Vision-
Based Object Registration for Real-Time Image Over-
lay”, (In Press) Jrnl. Comput. Bio. and Med.

[Verghese 90] Verghese, G., Gale, K. L., and Dyer, C.
R.,”Real-time motion tracking of three dimensional
objects”, Proc. IEFE conf. Robotics and Automation,
pp. 1998-2003, 1990.

“Robust Statistics”, John

Frame 1

Frame 3 Frame 4

Figure 4: Snapshots of Registration across 180? rotation

