
dhcpd.conf(5) dhcpd.conf(5)

NAME
dhcpd.conf - dhcpd configuration file

DESCRIPTION
The dhcpd.conf file contains configuration information for dhcpd, the Internet Software Consortium DHCP
Server.

The dhcpd.conf file is a free-form ASCII text file. It is parsed by the recursive-descent parser built into
dhcpd. The file may contain extra tabs and newlines for formatting purposes. Ke ywords in the file are
case-insensitive. Comments may be placed anywhere within the file (except within quotes). Comments
begin with the # character and end at the end of the line.

The file essentially consists of a list of statements. Statements fall into two broad categories - parameters
and declarations.

Parameter statements either say how to do something (e.g., how long a lease to offer), whether to do some-
thing (e.g., should dhcpd provide addresses to unknown clients), or what parameters to provide to the client
(e.g., use gateway 220.177.244.7).

Declarations are used to describe the topology of the network, to describe clients on the network, to provide
addresses that can be assigned to clients, or to apply a group of parameters to a group of declarations. In
any group of parameters and declarations, all parameters must be specified before any declarations which
depend on those parameters may be specified.

Declarations about network topology include the shared-network and the subnet declarations. If clients on
a subnet are to be assigned addresses dynamically, a range declaration must appear within the subnet decla-
ration. For clients with statically assigned addresses, or for installations where only known clients will be
served, each such client must have a host declaration. If parameters are to be applied to a group of declara-
tions which are not related strictly on a per-subnet basis, the group declaration can be used.

For every subnet which will be served, and for every subnet to which the dhcp server is connected, there
must be one subnet declaration, which tells dhcpd how to recognize that an address is on that subnet. A
subnet declaration is required for each subnet even if no addresses will be dynamically allocated on that
subnet.

Some installations have physical networks on which more than one IP subnet operates. For example, if
there is a site-wide requirement that 8-bit subnet masks be used, but a department with a single physical
ethernet network expands to the point where it has more than 254 nodes, it may be necessary to run two
8-bit subnets on the same ethernet until such time as a new physical network can be added. In this case,
the subnet declarations for these two networks must be enclosed in a shared-network declaration.

Some sites may have departments which have clients on more than one subnet, but it may be desirable to
offer those clients a uniform set of parameters which are different than what would be offered to clients
from other departments on the same subnet. For clients which will be declared explicitly with host decla-
rations, these declarations can be enclosed in a group declaration along with the parameters which are com-
mon to that department. For clients whose addresses will be dynamically assigned, class declarations and
conditional declarations may be used to group parameter assignments based on information the client
sends.

When a client is to be booted, its boot parameters are determined by consulting that client’s host declaration
(if any), and then consulting any class declarations matching the client, followed by the pool, subnet and
shared-network declarations for the IP address assigned to the client. Each of these declarations itself
appears within a lexical scope, and all declarations at less specific lexical scopes are also consulted for
client option declarations. Scopes are never considered twice, and if parameters are declared in more than
one scope, the parameter declared in the most specific scope is the one that is used.

When dhcpd tries to find a host declaration for a client, it first looks for a host declaration which has a
fixed-address declaration that lists an IP address that is valid for the subnet or shared network on which the
client is booting. If it doesn’t find any such entry, it tries to find an entry which has no fixed-address decla-
ration.

1



dhcpd.conf(5) dhcpd.conf(5)

EXAMPLES
A typical dhcpd.conf file will look something like this:

global parameters...

subnet 204.254.239.0 netmask 255.255.255.224 {
subnet-specific parameters...
range 204.254.239.10 204.254.239.30;

}

subnet 204.254.239.32 netmask 255.255.255.224 {
subnet-specific parameters...
range 204.254.239.42 204.254.239.62;

}

subnet 204.254.239.64 netmask 255.255.255.224 {
subnet-specific parameters...
range 204.254.239.74 204.254.239.94;

}

group {
group-specific parameters...
host zappo.test.isc.org {

host-specific parameters...
}
host beppo.test.isc.org {
host-specific parameters...

}
host harpo.test.isc.org {
host-specific parameters...

}
}

Figure 1

Notice that at the beginning of the file, there’s a place for global parameters. These might be things like
the organization’s domain name, the addresses of the name servers (if they are common to the entire organi-
zation), and so on. So, for example:

option domain-name "isc.org";
option domain-name-servers ns1.isc.org, ns2.isc.org;

Figure 2

As you can see in Figure 2, you can specify host addresses in parameters using their domain names rather
than their numeric IP addresses. If a given hostname resolves to more than one IP address (for example, if
that host has two ethernet interfaces), then where possible, both addresses are supplied to the client.

The most obvious reason for having subnet-specific parameters as shown in Figure 1 is that each subnet, of
necessity, has its own router. So for the first subnet, for example, there should be something like:

option routers 204.254.239.1;

Note that the address here is specified numerically. This is not required - if you have a different domain
name for each interface on your router, it’s perfectly legitimate to use the domain name for that interface
instead of the numeric address. However, in many cases there may be only one domain name for all of a

2



dhcpd.conf(5) dhcpd.conf(5)

router’s IP addresses, and it would not be appropriate to use that name here.

In Figure 1 there is also a group statement, which provides common parameters for a set of three hosts -
zappo, beppo and harpo. As you can see, these hosts are all in the test.isc.org domain, so it might make
sense for a group-specific parameter to override the domain name supplied to these hosts:

option domain-name "test.isc.org";

Also, given the domain they’re in, these are probably test machines. If we wanted to test the DHCP leasing
mechanism, we might set the lease timeout somewhat shorter than the default:

max-lease-time 120;
default-lease-time 120;

You may have noticed that while some parameters start with the option keyword, some do not. Parameters
starting with the option keyword correspond to actual DHCP options, while parameters that do not start
with the option keyword either control the behavior of the DHCP server (e.g., how long a lease dhcpd will
give out), or specify client parameters that are not optional in the DHCP protocol (for example, server-name
and filename).

In Figure 1, each host had host-specific parameters. These could include such things as the hostname
option, the name of a file to upload (the filename parameter) and the address of the server from which to
upload the file (the next-server parameter). In general, any parameter can appear anywhere that parameters
are allowed, and will be applied according to the scope in which the parameter appears.

Imagine that you have a site with a lot of NCD X-Terminals. These terminals come in a variety of models,
and you want to specify the boot files for each model. One way to do this would be to have host declara-
tions for each server and group them by model:

group {
filename "Xncd19r";
next-server ncd-booter;

host ncd1 { hardware ethernet 0:c0:c3:49:2b:57; }
host ncd4 { hardware ethernet 0:c0:c3:80:fc:32; }
host ncd8 { hardware ethernet 0:c0:c3:22:46:81; }

}

group {
filename "Xncd19c";
next-server ncd-booter;

host ncd2 { hardware ethernet 0:c0:c3:88:2d:81; }
host ncd3 { hardware ethernet 0:c0:c3:00:14:11; }

}

group {
filename "XncdHMX";
next-server ncd-booter;

host ncd1 { hardware ethernet 0:c0:c3:11:90:23; }
host ncd4 { hardware ethernet 0:c0:c3:91:a7:8; }
host ncd8 { hardware ethernet 0:c0:c3:cc:a:8f; }

}

ADDRESS POOLS
The pool declaration can be used to specify a pool of addresses that will be treated differently than another
pool of addresses, even on the same network segment or subnet. For example, you may want to provide a

3



dhcpd.conf(5) dhcpd.conf(5)

large set of addresses that can be assigned to DHCP clients that are registered to your DHCP server, while
providing a smaller set of addresses, possibly with short lease times, that are available for unknown clients.
If you have a firewall, you may be able to arrange for addresses from one pool to be allowed access to the
Internet, while addresses in another pool are not, thus encouraging users to register their DHCP clients. To
do this, you would set up a pair of pool declarations:

subnet 10.0.0.0 netmask 255.255.255.0 {
option routers 10.0.0.254;

# Unknown clients get this pool.
pool {
option domain-name-servers bogus.example.com;
max-lease-time 300;
range 10.0.0.200 10.0.0.253;
allow unknown-clients;

}

# Known clients get this pool.
pool {
option domain-name-servers ns1.example.com, ns2.example.com;
max-lease-time 28800;
range 10.0.0.5 10.0.0.199;
deny unknown-clients;

}
}

It is also possible to set up entirely different subnets for known and unknown clients - address pools exist at
the level of shared networks, so address ranges within pool declarations can be on different subnets.

As you can see in the preceding example, pools can have permit lists that control which clients are allowed
access to the pool and which aren’t. Each entry in a pool’s permit list is introduced with the allow or deny
keyword. If a pool has a permit list, then only those clients that match specific entries on the permit list
will be eligible to be assigned addresses from the pool. If a pool has a deny list, then only those clients
that do not match any entries on the deny list will be eligible. If both permit and deny lists exist for a
pool, then only clients that match the permit list and do not match the deny list will be allowed access.

DYNAMIC ADDRESS ALLOCATION
Address allocation is actually only done when a client is in the INIT state and has sent a DHCPDISCOVER
message. If the client thinks it has a valid lease and sends a DHCPREQUEST to initiate or renew that
lease, the server has only three choices - it can ignore the DHCPREQUEST, send a DHCPNAK to tell the
client it should stop using the address, or send a DHCPACK, telling the client to go ahead and use the
address for a while.

If the server finds the address the client is requesting, and that address is available to the client, the server
will send a DHCPACK. If the address is no longer available, or the client isn’t permitted to have it, the
server will send a DHCPNAK. If the server knows nothing about the address, it will remain silent, unless
the address is incorrect for the network segment to which the client has been attached and the server is
authoritative for that network segment, in which case the server will send a DHCPNAK even though it
doesn’t know about the address.

There may be a host declaration matching the client’s identification. If that host declaration contains a
fixed-address declaration that lists an IP address that is valid for the network segment to which the client is
connected. In this case, the DHCP server will never do dynamic address allocation. In this case, the client
is required to take the address specified in the host declaration. If the client sends a DHCPREQUEST for
some other address, the server will respond with a DHCPNAK.

When the DHCP server allocates a new address for a client (remember, this only happens if the client has
sent a DHCPDISCOVER), it first looks to see if the client already has a valid lease on an IP address, or if
there is an old IP address the client had before that hasn’t yet been reassigned. In that case, the server will

4



dhcpd.conf(5) dhcpd.conf(5)

take that address and check it to see if the client is still permitted to use it. If the client is no longer permit-
ted to use it, the lease is freed if the server thought it was still in use - the fact that the client has sent a
DHCPDISCOVER proves to the server that the client is no longer using the lease.

If no existing lease is found, or if the client is forbidden to receive the existing lease, then the server will
look in the list of address pools for the network segment to which the client is attached for a lease that is not
in use and that the client is permitted to have. It looks through each pool declaration in sequence (all range
declarations that appear outside of pool declarations are grouped into a single pool with no permit list). If
the permit list for the pool allows the client to be allocated an address from that pool, the pool is examined
to see if there is an address available. If so, then the client is tentatively assigned that address. Otherwise,
the next pool is tested. If no addresses are found that can be assigned to the client, no response is sent to
the client.

If an address is found that the client is permitted to have, and that has never been assigned to any client
before, the address is immediately allocated to the client. If the address is available for allocation but has
been previously assigned to a different client, the server will keep looking in hopes of finding an address
that has never before been assigned to a client.

The DHCP server generates the list of available IP addresses from a hash table. This means that the
addresses are not sorted in any particular order, and so it is not possible to predict the order in which the
DHCP server will allocate IP addresses. Users of previous versions of the ISC DHCP server may have
become accustomed to the DHCP server allocating IP addresses in ascending order, but this is no longer
possible, and there is no way to configure this behavior with version 3 of the ISC DHCP server.

IP ADDRESS CONFLICT PREVENTION
The DHCP server checks IP addresses to see if they are in use before allocating them to clients. It does
this by sending an ICMP Echo request message to the IP address being allocated. If no ICMP Echo reply
is received within a second, the address is assumed to be free. This is only done for leases that have been
specified in range statements, and only when the lease is thought by the DHCP server to be free - i.e., the
DHCP server or its failover peer has not listed the lease as in use.

If a response is received to an ICMP Echo request, the DHCP server assumes that there is a configuration
error - the IP address is in use by some host on the network that is not a DHCP client. It marks the address
as abandoned, and will not assign it to clients.

If a DHCP client tries to get an IP address, but none are available, but there are abandoned IP addresses,
then the DHCP server will attempt to reclaim an abandoned IP address. It marks one IP address as free,
and then does the same ICMP Echo request check described previously. If there is no answer to the ICMP
Echo request, the address is assigned to the client.

The DHCP server does not cycle through abandoned IP addresses if the first IP address it tries to reclaim is
free. Rather, when the next DHCPDISCOVER comes in from the client, it will attempt a new allocation
using the same method described here, and will typically try a new IP address.

DHCP FAILOVER
This version of the ISC DHCP server supports the DHCP failover protocol as documented in draft-ietf-dhc-
failover-07.txt. This is not a final protocol document, and we have not done interoperability testing with
other vendors’ implementations of this protocol, so you must not assume that this implementation conforms
to the standard. If you wish to use the failover protocol, make sure that both failover peers are running the
same version of the ISC DHCP server.

The failover protocol allows two DHCP servers (and no more than two) to share a common address pool.
Each server will have about half of the available IP addresses in the pool at any giv en time for allocation.
If one server fails, the other server will continue to renew leases out of the pool, and will allocate new
addresses out of the roughly half of available addresses that it had when communications with the other
server were lost.

It is possible during a prolonged failure to tell the remaining server that the other server is down, in which
case the remaining server will (over time) reclaim all the addresses the other server had available for alloca-
tion, and begin to reuse them. This is called putting the server into the PARTNER-DOWN state.

5



dhcpd.conf(5) dhcpd.conf(5)

You can put the server into the PARTNER-DOWN state either by using the omshell (1) command or by
stopping the server, editing the last peer state declaration in the lease file, and restarting the server. If you
use this last method, be sure to leave the date and time of the start of the state blank:

failover peer name state {
my state partner-down;
peer state state at date;
}

When the other server comes back online, it should automatically detect that it has been offline and request
a complete update from the server that was running in the PARTNER-DOWN state, and then both servers
will resume processing together.

It is possible to get into a dangerous situation: if you put one server into the PARTNER-DOWN state, and
then *that* server goes down, and the other server comes back up, the other server will not know that the
first server was in the PARTNER-DOWN state, and may issue addresses previously issued by the other
server to different clients, resulting in IP address conflicts. Before putting a server into PARTNER-DOWN
state, therefore, make sure that the other server will not restart automatically.

The failover protocol defines a primary server role and a secondary server role. There are some differences
in how primaries and secondaries act, but most of the differences simply have to do with providing a way
for each peer to behave in the opposite way from the other. So one server must be configured as primary,
and the other must be configured as secondary, and it doesn’t matter too much which one is which.

FAILOVER STARTUP
When a server starts that has not previously communicated with its failover peer, it must establish commu-
nications with its failover peer and synchronize with it before it can serve clients. This can happen either
because you have just configured your DHCP servers to perform failover for the first time, or because one
of your failover servers has failed catastrophically and lost its database.

The initial recovery process is designed to ensure that when one failover peer loses its database and then
resynchronizes, any leases that the failed server gav e out before it failed will be honored. When the failed
server starts up, it notices that it has no saved failover state, and attempts to contact its peer.

When it has established contact, it asks the peer for a complete copy its peer’s lease database. The peer
then sends its complete database, and sends a message indicating that it is done. The failed server then
waits until MCLT has passed, and once MCLT has passed both servers make the transition back into normal
operation. This waiting period ensures that any leases the failed server may have giv en out while out of
contact with its partner will have expired.

While the failed server is recovering, its partner remains in the partner-down state, which means that it is
serving all clients. The failed server provides no service at all to DHCP clients until it has made the transi-
tion into normal operation.

In the case where both servers detect that they hav e never before communicated with their partner, they
both come up in this recovery state and follow the procedure we have just described. In this case, no ser-
vice will be provided to DHCP clients until MCLT has expired.

CONFIGURING FAILOVER
In order to configure failover, you need to write a peer declaration that configures the failover protocol, and
you need to write peer references in each pool declaration for which you want to do failover. You do not
have to do failover for all pools on a given network segment. You must not tell one server it’s doing
failover on a particular address pool and tell the other it is not. You must not have any common address
pools on which you are not doing failover. A pool declaration that utilizes failover would look like this:

pool {
failover peer "foo";
deny dynamic bootp clients;
pool specific parameters

};

Dynamic BOOTP leases are not compatible with failover, and, as such, you need to disallow BOOTP in

6



dhcpd.conf(5) dhcpd.conf(5)

pools that you are using failover for.

The server currently does very little sanity checking, so if you configure it wrong, it will just fail in odd
ways. I would recommend therefore that you either do failover or don’t do failover, but don’t do any
mixed pools. Also, use the same master configuration file for both servers, and have a separate file that
contains the peer declaration and includes the master file. This will help you to avoid configuration mis-
matches. As our implementation ev olves, this will become less of a problem. A basic sample
dhcpd.conf file for a primary server might look like this:

failover peer "foo" {
primary;
address anthrax.rc.vix.com;
port 519;
peer address trantor.rc.vix.com;
peer port 520;
max-response-delay 60;
max-unacked-updates 10;
mclt 3600;
split 128;
load balance max seconds 3;

}

include "/etc/dhcpd.master";

The statements in the peer declaration are as follows:

The primary and secondary statements

[ primary | secondary ];

This determines whether the server is primary or secondary, as described earlier under DHCP
FAILOVER.

The address statement

address address;

The address statement declares the IP address or DNS name on which the server should listen for con-
nections from its failover peer, and also the value to use for the DHCP Failover Protocol server identi-
fier. Because this value is used as an identifier, it may not be omitted.

The peer address statement

peer address address;

The peer address statement declares the IP address or DNS name to which the server should connect
to reach its failover peer for failover messages.

The port statement

port port-number;

The port statement declares the TCP port on which the server should listen for connections from its
failover peer. This statement may not currently be omitted, because the failover protocol does not yet
have a reserved TCP port number.

The peer port statement

peer port port-number;

The peer port statement declares the TCP port to which the server should connect to reach its failover
peer for failover messages. This statement may not be omitted because the failover protocol does not
yet have a reserved TCP port number. The port number declared in the peer port statement may be
the same as the port number declared in the port statement.

The max-response-delay statement

7



dhcpd.conf(5) dhcpd.conf(5)

max-response-delay seconds;

The max-response-delay statement tells the DHCP server how many seconds may pass without
receiving a message from its failover peer before it assumes that connection has failed. This number
should be small enough that a transient network failure that breaks the connection will not result in the
servers being out of communication for a long time, but large enough that the server isn’t constantly
making and breaking connections. This parameter must be specified.

The max-unacked-updates statement

max-unacked-updates count;

The max-unacked-updates statement tells the DHCP server how many BNDUPD messages it can
send before it receives a BNDACK from the failover peer. We don’t hav e enough operational experi-
ence to say what a good value for this is, but 10 seems to work. This parameter must be specified.

The mclt statement

mclt seconds;

The mclt statement defines the Maximum Client Lead Time. It must be specified on the primary, and
may not be specified on the secondary. This is the length of time for which a lease may be renewed by
either failover peer without contacting the other. The longer you set this, the longer it will take for the
running server to recover IP addresses after moving into PARTNER-DOWN state. The shorter you set
it, the more load your servers will experience when they are not communicating. A value of some-
thing like 3600 is probably reasonable, but again bear in mind that we have no real operational experi-
ence with this.

The split statement

split index;

The split statement specifies the split between the primary and secondary for the purposes of load bal-
ancing. Whenever a client makes a DHCP request, the DHCP server runs a hash on the client identifi-
cation. If the hash comes out to less than the split value, the primary answers. If it comes out to
equal to or more than the split, the secondary answers. The only meaningful value is 128, and can
only be configured on the primary.

The hba statement

hba colon-separated-hex-list;

The hba statement specifies the split between the primary and secondary as a bitmap rather than a cut-
off, which theoretically allows for finer-grained control. In practice, there is probably no need for
such fine-grained control, however. An example hba statement:

hba ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00;

This is equivalent to a split 128; statement. You must only have split or hba defined, never both. For
most cases, the fine-grained control that hba offers isn’t necessary, and split should be used. As such,
the use of hba is deprecated.

The load balance max seconds statement

load balance max seconds seconds;

This statement allows you to configure a cutoff after which load balancing is disabled. The cutoff is
based on the number of seconds since the client sent its first DHCPDISCOVER or DHCPREQUEST
message, and only works with clients that correctly implement the secs field - fortunately most clients
do. We recommend setting this to something like 3 or 5. The effect of this is that if one of the failover
peers gets into a state where it is responding to failover messages but not responding to some client
requests, the other failover peer will take over its client load automatically as the clients retry.

8



dhcpd.conf(5) dhcpd.conf(5)

CLIENT CLASSING
Clients can be separated into classes, and treated differently depending on what class they are in. This sep-
aration can be done either with a conditional statement, or with a match statement within the class declara-
tion. It is possible to specify a limit on the total number of clients within a particular class or subclass that
may hold leases at one time, and it is possible to specify automatic subclassing based on the contents of the
client packet.

To add clients to classes based on conditional evaluation, you can specify a matching expression in the class
statement:

class "ras-clients" {
match if substring (option dhcp-client-identifier, 1, 3) = "RAS";

}

Note that whether you use matching expressions or add statements (or both) to classify clients, you must
always write a class declaration for any class that you use. If there will be no match statement and no in-
scope statements for a class, the declaration should look like this:

class "ras-clients" {
}

SUBCLASSES
In addition to classes, it is possible to declare subclasses. A subclass is a class with the same name as a
regular class, but with a specific submatch expression which is hashed for quick matching. This is essen-
tially a speed hack - the main difference between five classes with match expressions and one class with
five subclasses is that it will be quicker to find the subclasses. Subclasses work as follows:

class "allocation-class-1" {
match pick-first-value (option dhcp-client-identifier, hardware);

}

class "allocation-class-2" {
match pick-first-value (option dhcp-client-identifier, hardware);

}

subclass "allocation-class-1" 1:8:0:2b:4c:39:ad;
subclass "allocation-class-2" 1:8:0:2b:a9:cc:e3;
subclass "allocation-class-1" 1:0:0:c4:aa:29:44;

subnet 10.0.0.0 netmask 255.255.255.0 {
pool {
allow members of "allocation-class-1";
range 10.0.0.11 10.0.0.50;

}
pool {
allow members of "allocation-class-2";
range 10.0.0.51 10.0.0.100;

}
}

The data following the class name in the subclass declaration is a constant value to use in matching the
match expression for the class. When class matching is done, the server will evaluate the match expression
and then look the result up in the hash table. If it finds a match, the client is considered a member of both
the class and the subclass.

Subclasses can be declared with or without scope. In the above example, the sole purpose of the subclass
is to allow some clients access to one address pool, while other clients are given access to the other pool, so
these subclasses are declared without scopes. If part of the purpose of the subclass were to define different
parameter values for some clients, you might want to declare some subclasses with scopes.

9



dhcpd.conf(5) dhcpd.conf(5)

In the above example, if you had a single client that needed some configuration parameters, while most
didn’t, you might write the following subclass declaration for that client:

subclass "allocation-class-2" 1:08:00:2b:a1:11:31 {
option root-path "samsara:/var/diskless/alphapc";
filename "/tftpboot/netbsd.alphapc-diskless";

}

In this example, we’ve used subclassing as a way to control address allocation on a per-client basis. How-
ev er, it’s also possible to use subclassing in ways that are not specific to clients - for example, to use the
value of the vendor-class-identifier option to determine what values to send in the vendor-encapsulated-
options option. An example of this is shown under the VENDOR ENCAPSULATED OPTIONS head in
the dhcp-options(5) manual page.

PER-CLASS LIMITS ON DYNAMIC ADDRESS ALLOCATION
You may specify a limit to the number of clients in a class that can be assigned leases. The effect of this
will be to make it difficult for a new client in a class to get an address. Once a class with such a limit has
reached its limit, the only way a new client in that class can get a lease is for an existing client to relinquish
its lease, either by letting it expire, or by sending a DHCPRELEASE packet. Classes with lease limits are
specified as follows:

class "limited-1" {
lease limit 4;

}

This will produce a class in which a maximum of four members may hold a lease at one time.

SPAWNING CLASSES
It is possible to declare a spawning class. A spawning class is a class that automatically produces sub-
classes based on what the client sends. The reason that spawning classes were created was to make it pos-
sible to create lease-limited classes on the fly. The envisioned application is a cable-modem environment
where the ISP wishes to provide clients at a particular site with more than one IP address, but does not wish
to provide such clients with their own subnet, nor give them an unlimited number of IP addresses from the
network segment to which they are connected.

Many cable modem head-end systems can be configured to add a Relay Agent Information option to DHCP
packets when relaying them to the DHCP server. These systems typically add a circuit ID or remote ID
option that uniquely identifies the customer site. To take advantage of this, you can write a class declara-
tion as follows:

class "customer" {
spawn with option agent.circuit-id;
lease limit 4;

}

Now whenever a request comes in from a customer site, the circuit ID option will be checked against the
class’s hash table. If a subclass is found that matches the circuit ID, the client will be classified in that sub-
class and treated accordingly. If no subclass is found matching the circuit ID, a new one will be created
and logged in the dhcpd.leases file, and the client will be classified in this new class. Once the client has
been classified, it will be treated according to the rules of the class, including, in this case, being subject to
the per-site limit of four leases.

The use of the subclass spawning mechanism is not restricted to relay agent options - this particular exam-
ple is given only because it is a fairly straightforward one.

COMBINING MATCH, MATCH IF AND SPAWN WITH
In some cases, it may be useful to use one expression to assign a client to a particular class, and a second
expression to put it into a subclass of that class. This can be done by combining the match if and spawn
with statements, or the match if and match statements. For example:

class "jr-cable-modems" {
match if option dhcp-vendor-identifier = "jrcm";

10



dhcpd.conf(5) dhcpd.conf(5)

spawn with option agent.circuit-id;
lease limit 4;

}

class "dv-dsl-modems" {
match if opton dhcp-vendor-identifier = "dvdsl";
spawn with option agent.circuit-id;
lease limit 16;

}

This allows you to have two classes that both have the same spawn with expression without getting the
clients in the two classes confused with each other.

DYNAMIC DNS UPDATES
The DHCP server has the ability to dynamically update the Domain Name System. Within the configura-
tion files, you can define how you want the Domain Name System to be updated. These updates are RFC
2136 compliant so any DNS server supporting RFC 2136 should be able to accept updates from the DHCP
server.

Tw o DNS update schemes are currently implemented, and another is planned. The two that are currently
available are the ad-hoc DNS update mode and the interim DHCP-DNS interaction draft update mode. If
and when the DHCP-DNS interaction draft and the DHCID draft make it through the IETF standards pro-
cess, there will be a third mode, which will be the standard DNS update method. The DHCP server must
be configured to use one of the two currently-supported methods, or not to do dns updates. This can be
done with the ddns-update-style configuration parameter.

THE AD-HOC DNS UPDATE SCHEME
The ad-hoc Dynamic DNS update scheme is now deprecated and does not work. In future releases of the
ISC DHCP server, this scheme will not likely be available. The interim scheme works, allows for failover,
and should now be used. The following description is left here for informational purposes only.

The ad-hoc Dynamic DNS update scheme implemented in this version of the ISC DHCP server is a proto-
type design, which does not have much to do with the standard update method that is being standardized in
the IETF DHC working group, but rather implements some very basic, yet useful, update capabilities. This
mode does not work with the failover protocol because it does not account for the possibility of two dif-
ferent DHCP servers updating the same set of DNS records.

For the ad-hoc DNS update method, the client’s FQDN is derived in two parts. First, the hostname is
determined. Then, the domain name is determined, and appended to the hostname.

The DHCP server determines the client’s hostname by first looking for a ddns-hostname configuration
option, and using that if it is present. If no such option is present, the server looks for a valid hostname in
the FQDN option sent by the client. If one is found, it is used; otherwise, if the client sent a host-name
option, that is used. Otherwise, if there is a host declaration that applies to the client, the name from that
declaration will be used. If none of these applies, the server will not have a hostname for the client, and
will not be able to do a DNS update.

The domain name is determined based strictly on the server configuration, not on what the client sends.
First, if there is a ddns-domainname configuration option, it is used. Second, if there is a domain-name
option configured, that is used. Otherwise, the server will not do the DNS update.

The client’s fully-qualified domain name, derived as we hav e described, is used as the name on which an
"A" record will be stored. The A record will contain the IP address that the client was assigned in its lease.
If there is already an A record with the same name in the DNS server, no update of either the A or PTR
records will occur - this prevents a client from claiming that its hostname is the name of some network
server. For example, if you have a fileserver called "fs.sneedville.edu", and the client claims its hostname
is "fs", no DNS update will be done for that client, and an error message will be logged.

If the A record update succeeds, a PTR record update for the assigned IP address will be done, pointing to
the A record. This update is unconditional - it will be done even if another PTR record of the same name

11



dhcpd.conf(5) dhcpd.conf(5)

exists. Since the IP address has been assigned to the DHCP server, this should be safe.

Please note that the current implementation assumes clients only have a single network interface. A client
with two network interfaces will see unpredictable behavior. This is considered a bug, and will be fixed in
a later release. It may be helpful to enable the one-lease-per-client parameter so that roaming clients do
not trigger this same behavior.

The DHCP protocol normally involves a four-packet exchange - first the client sends a DHCPDISCOVER
message, then the server sends a DHCPOFFER, then the client sends a DHCPREQUEST, then the server
sends a DHCPACK. In the current version of the server, the server will do a DNS update after it has
received the DHCPREQUEST, and before it has sent the DHCPACK. It only sends the DNS update if it
has not sent one for the client’s address before, in order to minimize the impact on the DHCP server.

When the client’s lease expires, the DHCP server (if it is operating at the time, or when next it operates)
will remove the client’s A and PTR records from the DNS database. If the client releases its lease by send-
ing a DHCPRELEASE message, the server will likewise remove the A and PTR records.

THE INTERIM DNS UPDATE SCHEME
The interim DNS update scheme operates mostly according to several drafts that are being considered by
the IETF and are expected to become standards, but are not yet standards, and may not be standardized
exactly as currently proposed. These are:

draft-ietf-dhc-ddns-resolution-??.txt
draft-ietf-dhc-fqdn-option-??.txt
draft-ietf-dnsext-dhcid-rr-??.txt

Because our implementation is slightly different than the standard, we will briefly document the operation
of this update style here.

The first point to understand about this style of DNS update is that unlike the ad-hoc style, the DHCP server
does not necessarily always update both the A and the PTR records. The FQDN option includes a flag
which, when sent by the client, indicates that the client wishes to update its own A record. In that case, the
server can be configured either to honor the client’s intentions or ignore them. This is done with the state-
ment allow client-updates; or the statement ignore client-updates;. By default, client updates are allowed.

If the server is configured to allow client updates, then if the client sends a fully-qualified domain name in
the FQDN option, the server will use that name the client sent in the FQDN option to update the PTR
record. For example, let us say that the client is a visitor from the "radish.org" domain, whose hostname is
"jschmoe". The server is for the "example.org" domain. The DHCP client indicates in the FQDN option
that its FQDN is "jschmoe.radish.org.". It also indicates that it wants to update its own A record. The
DHCP server therefore does not attempt to set up an A record for the client, but does set up a PTR record
for the IP address that it assigns the client, pointing at jschmoe.radish.org. Once the DHCP client has an IP
address, it can update its own A record, assuming that the "radish.org" DNS server will allow it to do so.

If the server is configured not to allow client updates, or if the client doesn’t want to do its own update, the
server will simply choose a name for the client, possibly using the hostname supplied by the client
("jschmoe" in the previous example). It will use its own domain name for the client, just as in the ad-hoc
update scheme. It will then update both the A and PTR record, using the name that it chose for the client.
If the client sends a fully-qualified domain name in the fqdn option, the server uses only the leftmost part of
the domain name - in the example above, "jschmoe" instead of "jschmoe.radish.org".

The other difference between the ad-hoc scheme and the interim scheme is that with the interim scheme, a
method is used that allows more than one DHCP server to update the DNS database without accidentally
deleting A records that shouldn’t be deleted nor failing to add A records that should be added. The scheme
works as follows:

When the DHCP server issues a client a new lease, it creates a text string that is an MD5 hash over the
DHCP client’s identification (see draft-ietf-dnsext-dhcid-rr-??.txt for details). The update adds an A record
with the name the server chose and a TXT record containing the hashed identifier string (hashid). If this
update succeeds, the server is done.

If the update fails because the A record already exists, then the DHCP server attempts to add the A record

12



dhcpd.conf(5) dhcpd.conf(5)

with the prerequisite that there must be a TXT record in the same name as the new A record, and that TXT
record’s contents must be equal to hashid. If this update succeeds, then the client has its A record and PTR
record. If it fails, then the name the client has been assigned (or requested) is in use, and can’t be used by
the client. At this point the DHCP server gives up trying to do a DNS update for the client until the client
chooses a new name.

The interim DNS update scheme is called interim for two reasons. First, it does not quite follow the drafts.
The current versions of the drafts call for a new DHCID RRtype, but this is not yet available. The interim
DNS update scheme uses a TXT record instead. Also, the existing ddns-resolution draft calls for the
DHCP server to put a DHCID RR on the PTR record, but the interim update method does not do this. It is
our position that this is not useful, and we are working with the author in hopes of removing it from the
next version of the draft, or better understanding why it is considered useful.

In addition to these differences, the server also does not update very aggressively. Because each DNS
update involves a round trip to the DNS server, there is a cost associated with doing updates even if they do
not actually modify the DNS database. So the DHCP server tracks whether or not it has updated the record
in the past (this information is stored on the lease) and does not attempt to update records that it thinks it
has already updated.

This can lead to cases where the DHCP server adds a record, and then the record is deleted through some
other mechanism, but the server never again updates the DNS because it thinks the data is already there. In
this case the data can be removed from the lease through operator intervention, and once this has been
done, the DNS will be updated the next time the client renews.

DYNAMIC DNS UPDATE SECURITY
When you set your DNS server up to allow updates from the DHCP server, you may be exposing it to unau-
thorized updates. To avoid this, you should use TSIG signatures - a method of cryptographically signing
updates using a shared secret key. As long as you protect the secrecy of this key, your updates should also
be secure. Note, however, that the DHCP protocol itself provides no security, and that clients can therefore
provide information to the DHCP server which the DHCP server will then use in its updates, with the con-
straints described previously.

The DNS server must be configured to allow updates for any zone that the DHCP server will be updating.
For example, let us say that clients in the sneedville.edu domain will be assigned addresses on the
10.10.17.0/24 subnet. In that case, you will need a key declaration for the TSIG key you will be using, and
also two zone declarations - one for the zone containing A records that will be updates and one for the zone
containing PTR records - for ISC BIND, something like this:

key DHCP_UPDATER {
algorithm HMAC-MD5.SIG-ALG.REG.INT;
secret pRP5FapFoJ95JEL06sv4PQ==;

};

zone "example.org" {
type master;
file "example.org.db";
allow-update { key DHCP_UPDATER; };

};

zone "17.10.10.in-addr.arpa" {
type master;
file "10.10.17.db";
allow-update { key DHCP_UPDATER; };

};

You will also have to configure your DHCP server to do updates to these zones. To do so, you need to add
something like this to your dhcpd.conf file:

key DHCP_UPDATER {

13



dhcpd.conf(5) dhcpd.conf(5)

algorithm HMAC-MD5.SIG-ALG.REG.INT;
secret pRP5FapFoJ95JEL06sv4PQ==;

};

zone EXAMPLE.ORG. {
primary 127.0.0.1;
key DHCP_UPDATER;

}

zone 17.127.10.in-addr.arpa. {
primary 127.0.0.1;
key DHCP_UPDATER;

}

The primary statement specifies the IP address of the name server whose zone information is to be updated.

Note that the zone declarations have to correspond to authority records in your name server - in the above
example, there must be an SOA record for "example.org." and for "17.10.10.in-addr.arpa.". For example,
if there were a subdoman "foo.example.org" with no separate SOA, you could not write a zone declaration
for "foo.example.org." Also keep in mind that zone names in your DHCP configuration should end in a ".";
this is the preferred syntax. If you do not end your zone name in a ".", the DHCP server will figure it out.
Also note that in the DHCP configuration, zone names are not encapsulated in quotes where there are in the
DNS configuration.

You should choose your own secret key, of course. The ISC BIND 8 and 9 distributions come with a pro-
gram for generating secret keys called dnssec-keygen. The version that comes with BIND 9 is likely to
produce a substantially more random key, so we recommend you use that one even if you are not using
BIND 9 as your DNS server. If you are using BIND 9’s dnssec-keygen, the above key would be created as
follows:

dnssec-keygen -a HMAC-MD5 -b 128 -n USER DHCP_UPDATER

If you are using the BIND 8 dnskeygen program, the following command will generate a key as seen above:

dnskeygen -H 128 -u -c -n DHCP_UPDATER

You may wish to enable logging of DNS updates on your DNS server. To do so, you might write a logging
statement like the following:

logging {
channel update_debug {

file "/var/log/update-debug.log";
severity debug 3;
print-category yes;
print-severity yes;
print-time yes;

};
channel security_info {

file "/var/log/named-auth.info";
severity info;
print-category yes;
print-severity yes;
print-time yes;

};

category update { update_debug; };
category security { security_info; };

};

You must create the /var/log/named-auth.info and /var/log/update-debug.log files before starting the name

14



dhcpd.conf(5) dhcpd.conf(5)

server. For more information on configuring ISC BIND, consult the documentation that accompanies it.

REFERENCE: EVENTS
There are three kinds of events that can happen regarding a lease, and it is possible to declare statements
that occur when any of these events happen. These events are the commit event, when the server has made
a commitment of a certain lease to a client, the release event, when the client has released the server from
its commitment, and the expiry event, when the commitment expires.

To declare a set of statements to execute when an event happens, you must use the on statement, followed
by the name of the event, followed by a series of statements to execute when the event happens, enclosed in
braces. Events are used to implement DNS updates, so you should not define your own event handlers if
you are using the built-in DNS update mechanism.

The built-in version of the DNS update mechanism is in a text string towards the top of server/dhcpd.c. If
you want to use events for things other than DNS updates, and you also want DNS updates, you will have
to start out by copying this code into your dhcpd.conf file and modifying it.

REFERENCE: DECLARATIONS
The shared-network statement

shared-network name {
[ parameters ]
[ declarations ]

}

The shared-network statement is used to inform the DHCP server that some IP subnets actually share the
same physical network. Any subnets in a shared network should be declared within a shared-network state-
ment. Parameters specified in the shared-network statement will be used when booting clients on those
subnets unless parameters provided at the subnet or host level override them. If any subnet in a shared net-
work has addresses available for dynamic allocation, those addresses are collected into a common pool for
that shared network and assigned to clients as needed. There is no way to distinguish on which subnet of a
shared network a client should boot.

Name should be the name of the shared network. This name is used when printing debugging messages,
so it should be descriptive for the shared network. The name may have the syntax of a valid domain name
(although it will never be used as such), or it may be any arbitrary name, enclosed in quotes.

The subnet statement

subnet subnet-number netmask netmask {
[ parameters ]
[ declarations ]

}

The subnet statement is used to provide dhcpd with enough information to tell whether or not an IP address
is on that subnet. It may also be used to provide subnet-specific parameters and to specify what addresses
may be dynamically allocated to clients booting on that subnet. Such addresses are specified using the
range declaration.

The subnet-number should be an IP address or domain name which resolves to the subnet number of the
subnet being described. The netmask should be an IP address or domain name which resolves to the sub-
net mask of the subnet being described. The subnet number, together with the netmask, are sufficient to
determine whether any giv en IP address is on the specified subnet.

Although a netmask must be given with every subnet declaration, it is recommended that if there is any
variance in subnet masks at a site, a subnet-mask option statement be used in each subnet declaration to set
the desired subnet mask, since any subnet-mask option statement will override the subnet mask declared in
the subnet statement.

The range statement

range [ dynamic-bootp ] low-address [ high-address];

15



dhcpd.conf(5) dhcpd.conf(5)

For any subnet on which addresses will be assigned dynamically, there must be at least one range state-
ment. The range statement gives the lowest and highest IP addresses in a range. All IP addresses in the
range should be in the subnet in which the range statement is declared. The dynamic-bootp flag may be
specified if addresses in the specified range may be dynamically assigned to BOOTP clients as well as
DHCP clients. When specifying a single address, high-address can be omitted.

The host statement

host hostname {
[ parameters ]
[ declarations ]

}

The host declaration provides a scope in which to provide configuration information about a specific client,
and also provides a way to assign a client a fixed address. The host declaration provides a way for the
DHCP server to identify a DHCP or BOOTP client, and also a way to assign the client a static IP address.

If it is desirable to be able to boot a DHCP or BOOTP client on more than one subnet with fixed addresses,
more than one address may be specified in the fixed-address declaration, or more than one host statement
may be specified.

If client-specific boot parameters must change based on the network to which the client is attached, then
multiple host declaration should be used.

If a client is to be booted using a fixed address if it’s possible, but should be allocated a dynamic address
otherwise, then a host declaration must be specified without a fixed-address declaration. hostname should
be a name identifying the host. If a hostname option is not specified for the host, hostname is used.

Host declarations are matched to actual DHCP or BOOTP clients by matching the dhcp-client-identifier
option specified in the host declaration to the one supplied by the client, or, if the host declaration or the
client does not provide a dhcp-client-identifier option, by matching the hardware parameter in the host dec-
laration to the network hardware address supplied by the client. BOOTP clients do not normally provide a
dhcp-client-identifier, so the hardware address must be used for all clients that may boot using the BOOTP
protocol.

Please be aware that only the dhcp-client-identifier option and the hardware address can be used to match a
host declaration. For example, it is not possible to match a host declaration to a host-name option. This is
because the host-name option cannot be guaranteed to be unique for any giv en client, whereas both the
hardware address and dhcp-client-identifier option are at least theoretically guaranteed to be unique to a
given client.

The group statement

group {
[ parameters ]
[ declarations ]

}

The group statement is used simply to apply one or more parameters to a group of declarations. It can be
used to group hosts, shared networks, subnets, or even other groups.

REFERENCE: ALLOW AND DENY
The allow and deny statements can be used to control the response of the DHCP server to various sorts of
requests. The allow and deny keywords actually have different meanings depending on the context. In a
pool context, these keywords can be used to set up access lists for address allocation pools. In other con-
texts, the keywords simply control general server behavior with respect to clients based on scope. In a
non-pool context, the ignore keyword can be used in place of the deny keyword to prevent logging of
denied requests.

ALLOW DENY AND IGNORE IN SCOPE
The following usages of allow and deny will work in any scope, although it is not recommended that they
be used in pool declarations.

16



dhcpd.conf(5) dhcpd.conf(5)

The unknown-clients keyword

allow unknown-clients;
deny unknown-clients;
ignore unknown-clients;

The unknown-clients flag is used to tell dhcpd whether or not to dynamically assign addresses to unknown
clients. Dynamic address assignment to unknown clients is allowed by default. An unknown client is sim-
ply a client that has no host declaration.

The use of this option is now deprecated. If you are trying to restrict access on your network to known
clients, you should use deny unknown-clients; inside of your address pool, as described under the heading
ALLOW AND DENY WITHIN POOL DECLARAIONS.

The bootp keyword

allow bootp;
deny bootp;
ignore bootp;

The bootp flag is used to tell dhcpd whether or not to respond to bootp queries. Bootp queries are allowed
by default.

This option does not satisfy the requirement of failover peers for denying dynamic bootp clients. The deny
dynamic bootp clients; option should be used instead. See the ALLOW AND DENY WITHIN POOL
DECLARATIONS section of this man page for more details.

The booting keyword

allow booting;
deny booting;
ignore booting;

The booting flag is used to tell dhcpd whether or not to respond to queries from a particular client. This
keyword only has meaning when it appears in a host declaration. By default, booting is allowed, but if it is
disabled for a particular client, then that client will not be able to get an address from the DHCP server.

The duplicates keyword

allow duplicates;
deny duplicates;

Host declarations can match client messages based on the DHCP Client Identifer option or based on the
client’s network hardware type and MAC address. If the MAC address is used, the host declaration will
match any client with that MAC address - even clients with different client identifiers. This doesn’t nor-
mally happen, but is possible when one computer has more than one operating system installed on it - for
example, Microsoft Windows and NetBSD or Linux.

The duplicates flag tells the DHCP server that if a request is received from a client that matches the MAC
address of a host declaration, any other leases matching that MAC address should be discarded by the
server, even if the UID is not the same. This is a violation of the DHCP protocol, but can prevent clients
whose client identifiers change regularly from holding many leases at the same time. By default, duplicates
are allowed.

The declines keyword

allow declines;
deny declines;
ignore declines;

The DHCPDECLINE message is used by DHCP clients to indicate that the lease the server has offered is
not valid. When the server receives a DHCPDECLINE for a particular address, it normally abandons that
address, assuming that some unauthorized system is using it. Unfortunately, a malicious or buggy client
can, using DHCPDECLINE messages, completely exhaust the DHCP server’s allocation pool. The server
will reclaim these leases, but while the client is running through the pool, it may cause serious thrashing in

17



dhcpd.conf(5) dhcpd.conf(5)

the DNS, and it will also cause the DHCP server to forget old DHCP client address allocations.

The declines flag tells the DHCP server whether or not to honor DHCPDECLINE messages. If it is set to
deny or ignore in a particular scope, the DHCP server will not respond to DHCPDECLINE messages.

The client-updates keyword

allow client-updates;
deny client-updates;

The client-updates flag tells the DHCP server whether or not to honor the client’s intention to do its own
update of its A record. This is only relevant when doing interim DNS updates. See the documentation
under the heading THE INTERIM DNS UPDATE SCHEME for details.

ALLOW AND DENY WITHIN POOL DECLARATIONS
The uses of the allow and deny keywords shown in the previous section work pretty much the same way
whether the client is sending a DHCPDISCOVER or a DHCPREQUEST message - an address will be allo-
cated to the client (either the old address it’s requesting, or a new address) and then that address will be
tested to see if it’s okay to let the client have it. If the client requested it, and it’s not okay, the server will
send a DHCPNAK message. Otherwise, the server will simply not respond to the client. If it is okay to
give the address to the client, the server will send a DHCPACK message.

The primary motivation behind pool declarations is to have address allocation pools whose allocation poli-
cies are different. A client may be denied access to one pool, but allowed access to another pool on the
same network segment. In order for this to work, access control has to be done during address allocation,
not after address allocation is done.

When a DHCPREQUEST message is processed, address allocation simply consists of looking up the
address the client is requesting and seeing if it’s still available for the client. If it is, then the DHCP server
checks both the address pool permit lists and the relevant in-scope allow and deny statements to see if it’s
okay to give the lease to the client. In the case of a DHCPDISCOVER message, the allocation process is
done as described previously in the ADDRESS ALLOCATION section.

When declaring permit lists for address allocation pools, the following syntaxes are recognized following
the allow or deny keywords:

known-clients;

If specified, this statement either allows or prevents allocation from this pool to any client that has a host
declaration (i.e., is known). A client is known if it has a host declaration in any scope, not just the current
scope.

unknown-clients;

If specified, this statement either allows or prevents allocation from this pool to any client that has no host
declaration (i.e., is not known).

members of "class";

If specified, this statement either allows or prevents allocation from this pool to any client that is a member
of the named class.

dynamic bootp clients;

If specified, this statement either allows or prevents allocation from this pool to any bootp client.

authenticated clients;

If specified, this statement either allows or prevents allocation from this pool to any client that has been
authenticated using the DHCP authentication protocol. This is not yet supported.

unauthenticated clients;

If specified, this statement either allows or prevents allocation from this pool to any client that has not been
authenticated using the DHCP authentication protocol. This is not yet supported.

all clients;

18



dhcpd.conf(5) dhcpd.conf(5)

If specified, this statement either allows or prevents allocation from this pool to all clients. This can be
used when you want to write a pool declaration for some reason, but hold it in reserve, or when you want to
renumber your network quickly, and thus want the server to force all clients that have been allocated
addresses from this pool to obtain new addresses immediately when they next renew.

REFERENCE: PARAMETERS
The always-broadcast statement

always-broadcast flag;

The DHCP and BOOTP protocols both require DHCP and BOOTP clients to set the broadcast bit in
the flags field of the BOOTP message header. Unfortunately, some DHCP and BOOTP clients do not
do this, and therefore may not receive responses from the DHCP server. The DHCP server can be
made to always broadcast its responses to clients by setting this flag to ’on’ for the relevant scope; rele-
vant scopes would be inside a conditional statement, as a parameter for a class, or as a parameter for a
host declaration. To avoid creating excess broadcast traffic on your network, we recommend that you
restrict the use of this option to as few clients as possible. For example, the Microsoft DHCP client is
known not to have this problem, as are the OpenTransport and ISC DHCP clients.

The always-reply-rfc1048 statement

always-reply-rfc1048 flag;

Some BOOTP clients expect RFC1048-style responses, but do not follow RFC1048 when sending their
requests. You can tell that a client is having this problem if it is not getting the options you have con-
figured for it and if you see in the server log the message "(non-rfc1048)" printed with each BOOTRE-
QUEST that is logged.

If you want to send rfc1048 options to such a client, you can set the always-reply-rfc1048 option in
that client’s host declaration, and the DHCP server will respond with an RFC-1048-style vendor
options field. This flag can be set in any scope, and will affect all clients covered by that scope.

The authoritative statement

authoritative;

not authoritative;

The DHCP server will normally assume that the configuration information about a given network seg-
ment is not known to be correct and is not authoritative. This is so that if a naive user installs a DHCP
server not fully understanding how to configure it, it does not send spurious DHCPNAK messages to
clients that have obtained addresses from a legitimate DHCP server on the network.

Network administrators setting up authoritative DHCP servers for their networks should always write
authoritative; at the top of their configuration file to indicate that the DHCP server should send
DHCPNAK messages to misconfigured clients. If this is not done, clients will be unable to get a cor-
rect IP address after changing subnets until their old lease has expired, which could take quite a long
time.

Usually, writing authoritative; at the top level of the file should be sufficient. However, if a DHCP
server is to be set up so that it is aware of some networks for which it is authoritative and some net-
works for which it is not, it may be more appropriate to declare authority on a per-network-segment
basis.

Note that the most specific scope for which the concept of authority makes any sense is the physical
network segment - either a shared-network statement or a subnet statement that is not contained within
a shared-network statement. It is not meaningful to specify that the server is authoritative for some
subnets within a shared network, but not authoritative for others, nor is it meaningful to specify that the
server is authoritative for some host declarations and not others.

The boot-unknown-clients statement

boot-unknown-clients flag;

If the boot-unknown-clients statement is present and has a value of false or off, then clients for which

19



dhcpd.conf(5) dhcpd.conf(5)

there is no host declaration will not be allowed to obtain IP addresses. If this statement is not present
or has a value of true or on, then clients without host declarations will be allowed to obtain IP
addresses, as long as those addresses are not restricted by allow and deny statements within their pool
declarations.

The ddns-hostname statement

ddns-hostname name;

The name parameter should be the hostname that will be used in setting up the client’s A and PTR
records. If no ddns-hostname is specified in scope, then the server will derive the hostname automati-
cally, using an algorithm that varies for each of the different update methods.

The ddns-domainname statement

ddns-domainname name;

The name parameter should be the domain name that will be appended to the client’s hostname to form
a fully-qualified domain-name (FQDN).

The ddns-rev-domainname statement

ddns-rev-domainname name; The name parameter should be the domain name that will be appended
to the client’s rev ersed IP address to produce a name for use in the client’s PTR record. By default,
this is "in-addr.arpa.", but the default can be overridden here.

The reversed IP address to which this domain name is appended is always the IP address of the client,
in dotted quad notation, reversed - for example, if the IP address assigned to the client is 10.17.92.74,
then the reversed IP address is 74.92.17.10. So a client with that IP address would, by default, be
given a PTR record of 10.17.92.74.in-addr.arpa.

The ddns-update-style parameter

ddns-update-style style;

The style parameter must be one of ad-hoc, interim or none. The ddns-update-style statement is only
meaningful in the outer scope - it is evaluated once after reading the dhcpd.conf file, rather than each
time a client is assigned an IP address, so there is no way to use different DNS update styles for differ-
ent clients.

The ddns-updates statement

ddns-updates flag;

The ddns-updates parameter controls whether or not the server will attempt to do a DNS update when a
lease is confirmed. Set this to off if the server should not attempt to do updates within a certain scope.
The ddns-updates parameter is on by default. To disable DNS updates in all scopes, it is preferable to
use the ddns-update-style statement, setting the style to none.

The default-lease-time statement

default-lease-time time;

Time should be the length in seconds that will be assigned to a lease if the client requesting the lease
does not ask for a specific expiration time.

The do-forward-updates statement

do-forward-updates flag;

The do-forward-updates statement instructs the DHCP server as to whether it should attempt to update
a DHCP client’s A record when the client acquires or renews a lease. This statement has no effect
unless DNS updates are enabled and ddns-update-style is set to interim. Forward updates are
enabled by default. If this statement is used to disable forward updates, the DHCP server will never
attempt to update the client’s A record, and will only ever attempt to update the client’s PTR record if
the client supplies an FQDN that should be placed in the PTR record using the fqdn option. If forward
updates are enabled, the DHCP server will still honor the setting of the client-updates flag.

20



dhcpd.conf(5) dhcpd.conf(5)

The dynamic-bootp-lease-cutoff statement

dynamic-bootp-lease-cutoff date;

The dynamic-bootp-lease-cutoff statement sets the ending time for all leases assigned dynamically
to BOOTP clients. Because BOOTP clients do not have any way of renewing leases, and don’t
know that their leases could expire, by default dhcpd assignes infinite leases to all BOOTP clients.
However, it may make sense in some situations to set a cutoff date for all BOOTP leases - for
example, the end of a school term, or the time at night when a facility is closed and all machines
are required to be powered off.

Date should be the date on which all assigned BOOTP leases will end. The date is specified in the
form:

W YYYY/MM/DD HH:MM:SS

W is the day of the week expressed as a number from zero (Sunday) to six (Saturday). YYYY is
the year, including the century. MM is the month expressed as a number from 1 to 12. DD is the
day of the month, counting from 1. HH is the hour, from zero to 23. MM is the minute and SS is
the second. The time is always in Coordinated Universal Time (UTC), not local time.

The dynamic-bootp-lease-length statement

dynamic-bootp-lease-length length;

The dynamic-bootp-lease-length statement is used to set the length of leases dynamically assigned
to BOOTP clients. At some sites, it may be possible to assume that a lease is no longer in use if
its holder has not used BOOTP or DHCP to get its address within a certain time period. The
period is specified in length as a number of seconds. If a client reboots using BOOTP during the
timeout period, the lease duration is reset to length, so a BOOTP client that boots frequently
enough will never lose its lease. Needless to say, this parameter should be adjusted with extreme
caution.

The filename statement

filename "filename";

The filename statement can be used to specify the name of the initial boot file which is to be
loaded by a client. The filename should be a filename recognizable to whatever file transfer proto-
col the client can be expected to use to load the file.

The fixed-address declaration

fixed-address address [, address ... ];

The fixed-address declaration is used to assign one or more fixed IP addresses to a client. It should
only appear in a host declaration. If more than one address is supplied, then when the client boots,
it will be assigned the address that corresponds to the network on which it is booting. If none of
the addresses in the fixed-address statement are valid for the network to which the client is con-
nected, that client will not match the host declaration containing that fixed-address declaration.
Each address in the fixed-address declaration should be either an IP address or a domain name that
resolves to one or more IP addresses.

The get-lease-hostnames statement

get-lease-hostnames flag;

The get-lease-hostnames statement is used to tell dhcpd whether or not to look up the domain
name corresponding to the IP address of each address in the lease pool and use that address for the
DHCP hostname option. If flag is true, then this lookup is done for all addresses in the current
scope. By default, or if flag is false, no lookups are done.

The hardware statement

hardware hardware-type hardware-address;

21



dhcpd.conf(5) dhcpd.conf(5)

In order for a BOOTP client to be recognized, its network hardware address must be declared
using a hardware clause in the host statement. hardware-type must be the name of a physical
hardware interface type. Currently, only the ethernet and token-ring types are recognized,
although support for a fddi hardware type (and others) would also be desirable. The hardware-
address should be a set of hexadecimal octets (numbers from 0 through ff) separated by colons.
The hardware statement may also be used for DHCP clients.

The lease-file-name statement

lease-file-name name;

Name should be the name of the DHCP server’s lease file. By default, this is
/var/lib/dhcp/dhcpd.leases. This statement must appear in the outer scope of the configuration file
- if it appears in some other scope, it will have no effect.

The local-port statement

local-port port;

This statement causes the DHCP server to listen for DHCP requests on the UDP port specified in
port, rather than on port 67.

The log-facility statement

log-facility facility;

This statement causes the DHCP server to do all of its logging on the specified log facility once
the dhcpd.conf file has been read. By default the DHCP server logs to the daemon facility. Pos-
sible log facilities include auth, authpriv, cron, daemon, ftp, kern, lpr, mail, mark, news, ntp, secu-
rity, syslog, user, uucp, and local0 through local7. Not all of these facilities are available on all
systems, and there may be other facilities available on other systems.

In addition to setting this value, you may need to modify your syslog.conf file to configure logging
of the DHCP server. For example, you might add a line like this:

local7.debug /var/log/dhcpd.log

The syntax of the syslog.conf file may be different on some operating systems - consult the sys-
log.conf manual page to be sure. To get syslog to start logging to the new file, you must first cre-
ate the file with correct ownership and permissions (usually, the same owner and permissions of
your /var/log/messages or /usr/adm/messages file should be fine) and send a SIGHUP to syslogd.
Some systems support log rollover using a shell script or program called newsyslog or logrotate,
and you may be able to configure this as well so that your log file doesn’t grow uncontrollably.

Because the log-facility setting is controlled by the dhcpd.conf file, log messages printed while
parsing the dhcpd.conf file or before parsing it are logged to the default log facility. To prevent
this, see the README file included with this distribution, which describes how to change the
default log facility. When this parameter is used, the DHCP server prints its startup message a sec-
ond time after parsing the configuration file, so that the log will be as complete as possible.

The max-lease-time statement

max-lease-time time;

Time should be the maximum length in seconds that will be assigned to a lease. The only excep-
tion to this is that Dynamic BOOTP lease lengths, which are not specified by the client, are not
limited by this maximum.

The min-lease-time statement

min-lease-time time;

Time should be the minimum length in seconds that will be assigned to a lease.

The min-secs statement

min-secs seconds;

22



dhcpd.conf(5) dhcpd.conf(5)

Seconds should be the minimum number of seconds since a client began trying to acquire a new
lease before the DHCP server will respond to its request. The number of seconds is based on what
the client reports, and the maximum value that the client can report is 255 seconds. Generally,
setting this to one will result in the DHCP server not responding to the client’s first request, but
always responding to its second request.

This can be used to set up a secondary DHCP server which never offers an address to a client until
the primary server has been given a chance to do so. If the primary server is down, the client will
bind to the secondary server, but otherwise clients should always bind to the primary. Note that
this does not, by itself, permit a primary server and a secondary server to share a pool of dynami-
cally-allocatable addresses.

The next-server statement

next-server server-name;

The next-server statement is used to specify the host address of the server from which the initial
boot file (specified in the filename statement) is to be loaded. Server-name should be a numeric
IP address or a domain name. If no next-server parameter applies to a given client, the DHCP
server’s IP address is used.

The omapi-port statement

omapi-port port;

The omapi-port statement causes the DHCP server to listen for OMAPI connections on the speci-
fied port. This statement is required to enable the OMAPI protocol, which is used to examine and
modify the state of the DHCP server as it is running.

The one-lease-per-client statement

one-lease-per-client flag;

If this flag is enabled, whenever a client sends a DHCPREQUEST for a particular lease, the server
will automatically free any other leases the client holds. This presumes that when the client sends
a DHCPREQUEST, it has forgotten any lease not mentioned in the DHCPREQUEST - i.e., the
client has only a single network interface and it does not remember leases it’s holding on networks
to which it is not currently attached. Neither of these assumptions are guaranteed or provable, so
we urge caution in the use of this statement.

The pid-file-name statement

pid-file-name name;

Name should be the name of the DHCP server’s process ID file. This is the file in which the
DHCP server’s process ID is stored when the server starts. By default, this is /var/run/dhcpd.pid.
Like the lease-file-name statement, this statement must appear in the outer scope of the configura-
tion file.

The ping-check statement

ping-check flag;

When the DHCP server is considering dynamically allocating an IP address to a client, it first
sends an ICMP Echo request (a ping) to the address being assigned. It waits for a second, and if
no ICMP Echo response has been heard, it assigns the address. If a response is heard, the lease is
abandoned, and the server does not respond to the client.

This ping check introduces a default one-second delay in responding to DHCPDISCOVER mes-
sages, which can be a problem for some clients. The default delay of one second may be config-
ured using the ping-timeout parameter. The ping-check configuration parameter can be used to
control checking - if its value is false, no ping check is done.

The ping-timeout statement

ping-timeout seconds;

23



dhcpd.conf(5) dhcpd.conf(5)

If the DHCP server determined it should send an ICMP echo request (a ping) because the ping-
check statement is true, ping-timeout allows you to configure how many seconds the DHCP server
should wait for an ICMP Echo response to be heard, if no ICMP Echo response has been received
before the timeout expires, it assigns the address. If a response is heard, the lease is abandoned,
and the server does not respond to the client. If no value is set, ping-timeout defaults to 1 second.

The server-identifier statement

server-identifier hostname;

The server-identifier statement can be used to define the value that is sent in the DHCP Server
Identifier option for a given scope. The value specified must be an IP address for the DHCP
server, and must be reachable by all clients served by a particular scope.

The use of the server-identifier statement is not recommended - the only reason to use it is to force
a value other than the default value to be sent on occasions where the default value would be incor-
rect. The default value is the first IP address associated with the physical network interface on
which the request arrived.

The usual case where the server-identifier statement needs to be sent is when a physical interface
has more than one IP address, and the one being sent by default isn’t appropriate for some or all
clients served by that interface. Another common case is when an alias is defined for the purpose
of having a consistent IP address for the DHCP server, and it is desired that the clients use this IP
address when contacting the server.

Supplying a value for the dhcp-server-identifier option is equivalent to using the server-identifier
statement.

The server-name statement

server-name name ;

The server-name statement can be used to inform the client of the name of the server from which
it is booting. Name should be the name that will be provided to the client.

The site-option-space statement

site-option-space name ;

The site-option-space statement can be used to determine from what option space site-local
options will be taken. This can be used in much the same way as the vendor-option-space state-
ment. Site-local options in DHCP are those options whose numeric codes are greater than 128.
These options are intended for site-specific uses, but are frequently used by vendors of embedded
hardware that contains DHCP clients. Because site-specific options are allocated on an ad hoc
basis, it is quite possible that one vendor’s DHCP client might use the same option code that
another vendor’s client uses, for different purposes. The site-option-space option can be used to
assign a different set of site-specific options for each such vendor, using conditional evaluation
(see dhcp-eval (5) for details).

The stash-agent-options statement

stash-agent-options flag;

If the stash-agent-options parameter is true for a given client, the server will record the relay agent
information options sent during the client’s initial DHCPREQUEST message when the client was
in the SELECTING state and behave as if those options are included in all subsequent DHCPRE-
QUEST messages sent in the RENEWING state. This works around a problem with relay agent
information options, which is that they usually not appear in DHCPREQUEST messages sent by
the client in the RENEWING state, because such messages are unicast directly to the server and
not sent through a relay agent.

The update-optimization statement

update-optimization flag;

24



dhcpd.conf(5) dhcpd.conf(5)

If the update-optimization parameter is false for a given client, the server will attempt a DNS
update for that client each time the client renews its lease, rather than only attempting an update
when it appears to be necessary. This will allow the DNS to heal from database inconsistencies
more easily, but the cost is that the DHCP server must do many more DNS updates. We recom-
mend leaving this option enabled, which is the default. This option only affects the behavior of
the interim DNS update scheme, and has no effect on the ad-hoc DNS update scheme. If this
parameter is not specified, or is true, the DHCP server will only update when the client informa-
tion changes, the client gets a different lease, or the client’s lease expires.

The update-static-leases statement

update-static-leases flag;

The update-static-leases flag, if enabled, causes the DHCP server to do DNS updates for clients
ev en if those clients are being assigned their IP address using a fixed-address statement - that is,
the client is being given a static assignment. This can only work with the interim DNS update
scheme. It is not recommended because the DHCP server has no way to tell that the update has
been done, and therefore will not delete the record when it is not in use. Also, the server must
attempt the update each time the client renews its lease, which could have a significant perfor-
mance impact in environments that place heavy demands on the DHCP server.

The use-host-decl-names statement

use-host-decl-names flag;

If the use-host-decl-names parameter is true in a given scope, then for every host declaration
within that scope, the name provided for the host declaration will be supplied to the client as its
hostname. So, for example,

group {
use-host-decl-names on;

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address joe.fugue.com;

}
}

is equivalent to

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address joe.fugue.com;
option host-name "joe";

}

An option host-name statement within a host declaration will override the use of the name in the
host declaration.

It should be noted here that most DHCP clients completely ignore the host-name option sent by
the DHCP server, and there is no way to configure them not to do this. So you generally have a
choice of either not having any hostname to client IP address mapping that the client will recog-
nize, or doing DNS updates. It is beyond the scope of this document to describe how to make this
determination.

The use-lease-addr-for-default-route statement

use-lease-addr-for-default-route flag;

If the use-lease-addr-for-default-route parameter is true in a given scope, then instead of sending
the value specified in the routers option (or sending no value at all), the IP address of the lease
being assigned is sent to the client. This supposedly causes Win95 machines to ARP for all IP

25



dhcpd.conf(5) dhcpd.conf(5)

addresses, which can be helpful if your router is configured for proxy ARP. The use of this fea-
ture is not recommended, because it won’t work for many DHCP clients.

The vendor-option-space statement

vendor-option-space string;

The vendor-option-space parameter determines from what option space vendor options are taken.
The use of this configuration parameter is illustrated in the dhcp-options(5) manual page, in the
VENDOR ENCAPSULATED OPTIONS section.

SETTING PARAMETER VALUES USING EXPRESSIONS
Sometimes it’s helpful to be able to set the value of a DHCP server parameter based on some value that the
client has sent. To do this, you can use expression evaluation. The dhcp-eval(5) manual page describes
how to write expressions. To assign the result of an evaluation to an option, define the option as follows:

my-parameter = expression ;

For example:

ddns-hostname = binary-to-ascii (16, 8, "-",
substring (hardware, 1, 6));

REFERENCE: OPTION STATEMENTS
DHCP option statements are documented in the dhcp-options(5) manual page.

REFERENCE: EXPRESSIONS
Expressions used in DHCP option statements and elsewhere are documented in the dhcp-eval(5) manual
page.

SEE ALSO
dhcpd(8), dhcpd.leases(5), dhcp-options(5), dhcp-eval(5), RFC2132, RFC2131.

AUTHOR
dhcpd.conf(5) was written by Ted Lemon under a contract with Vixie Labs. Funding for this project was
provided by the Internet Software Consortium. Information about the Internet Software Consortium can be
found at http://www.isc.org.

26


