
ntpq(1) ntpq(1)

NAME
ntpq - standard NTP query program

SYNOPSIS
ntpq [-inp] [-c command] [host] [...]

DESCRIPTION
The ntpq utility program is used to query NTP servers which implement the recommended NTP mode 6
control message format about current state and to request changes in that state. The program may be run
either in interactive mode or controlled using command line arguments. Requests to read and write arbitrary
variables can be assembled, with raw and pretty-printed output options being available. ntpq can also
obtain and print a list of peers in a common format by sending multiple queries to the server.

If one or more request options is included on the command line when ntpq is executed, each of the
requests will be sent to the NTP servers running on each of the hosts given as command line arguments, or
on localhost by default. If no request options are given, ntpq will attempt to read commands from the stan-
dard input and execute these on the NTP server running on the first host given on the command line, again
defaulting to localhost when no other host is specified. ntpq will prompt for commands if the standard
input is a terminal device.

ntpq uses NTP mode 6 packets to communicate with the NTP server, and hence can be used to query any
compatible server on the network which permits it. Note that since NTP is a UDP protocol this communica-
tion will be somewhat unreliable, especially over large distances in terms of network topology. ntpq
makes one attempt to retransmit requests, and will time requests out if the remote host is not heard from
within a suitable timeout time.

Command line options are described following. Specifying a command line option other than -i or -n will
cause the specified query (queries) to be sent to the indicated host(s) immediately. Otherwise, ntpq will
attempt to read interactive format commands from the standard input.

-c The following argument is interpreted as an interactive format command and is added to the list
of commands to be executed on the specified host(s). Multiple -c options may be given.

-i Force ntpq to operate in interactive mode. Prompts will be written to the standard output and
commands read from the standard input.

-n Output all host addresses in dotted-quad numeric format rather than converting to the canonical
host names.

-p Print a list of the peers known to the server as well as a summary of their state. This is equivalent
to the peers interactive command.

INTERNAL COMMANDS
Interactive format commands consist of a keyword followed by zero to four arguments. Only enough char-
acters of the full keyword to uniquely identify the command need be typed. The output of a command is
normally sent to the standard output, but optionally the output of individual commands may be sent to a file
by appending a < , followed by a file name, to the command line. A number of interactive format com-
mands are executed entirely within the ntpq program itself and do not result in NTP mode 6 requests being
sent to a server. These are described following.

? [command_keyword]

helpl [command_keyword] A ? by itself will print a list of all the command keywords known to
this incarnation of ntpq . A ? followed by a command keyword will print function and usage
information about the command. This command is probably a better source of information about
ntpq than this manual page.

ntp 4.1.1b-r5 1

ntpq(1) ntpq(1)

addvars variable_name [= value] [...]

rmvars variable_name [...]

clearvars The data carried by NTP mode 6 messages consists of a list of items of the form vari-
able_name = value , where the = value is ignored, and can be omitted, in requests to the server
to read variables. ntpq maintains an internal list in which data to be included in control messages
can be assembled, and sent using the readlist and writelist commands described below. The
addvars command allows variables and their optional values to be added to the list. If more than
one variable is to be added, the list should be comma-separated and not contain white space. The
rmvars command can be used to remove individual variables from the list, while the clearlist
command removes all variables from the list.

authenticate yes | no
Normally ntpq does not authenticate requests unless they are write requests. The command
authenticate yes causes ntpq to send authentication with all requests it makes. Authenticated
requests causes some servers to handle requests slightly differently, and can occasionally melt the
CPU in fuzzballs if you turn authentication on before doing a peer display. [I didn’t know that -
Ed.]

cooked Causes output from query commands to be "cooked", so that variables which are recognized by
ntpq will have their values reformatted for human consumption. Variables which ntpq thinks
should have a decodable value but didn’t are marked with a trailing ? .

debug more | less | off
Turns internal query program debugging on and off.

delay milliseconds Specify a time interval to be added to timestamps included in requests which require
authentication. This is used to enable (unreliable) server reconfiguration over long delay network
paths or between machines whose clocks are unsynchronized. Actually the server does not now
require timestamps in authenticated requests, so this command may be obsolete.

host hostname Set the host to which future queries will be sent. Hostname may be either a host name
or a numeric address.

hostnames [yes | no]
If yes is specified, host names are printed in information displays. If no is specified, numeric
addresses are printed instead. The default is yes , unless modified using the command line -n
switch.

keyid keyid This command allows the specification of a key number to be used to authenticate configu-
ration requests. This must correspond to a key number the server has been configured to use for
this purpose.

ntpversion 1 | 2 | 3 | 4
Sets the NTP version number which ntpq claims in packets. Defaults to 3, Note that mode 6 con-
trol messages (and modes, for that matter) didn’t exist in NTP version 1. There appear to be no
servers left which demand version 1.

quit Exit ntpq .

passwd This command prompts you to type in a password (which will not be echoed) which will be used
to authenticate configuration requests. The password must correspond to the key configured for
use by the NTP server for this purpose if such requests are to be successful.

raw Causes all output from query commands is printed as received from the remote server. The only
formating/interpretation done on the data is to transform nonascii data into a printable (but barely
understandable) form.

timeout millseconds Specify a timeout period for responses to server queries. The default is about 5000
milliseconds. Note that since ntpq retries each query once after a timeout, the total waiting time
for a timeout will be twice the timeout value set.

ntp 4.1.1b-r5 2

ntpq(1) ntpq(1)

CONTROL MESSAGE COMMANDS
Each peer known to an NTP server has a 16 bit integer association identifier assigned to it. NTP control
messages which carry peer variables must identify the peer the values correspond to by including its associ-
ation ID. An association ID of 0 is special, and indicates the variables are system variables, whose names
are drawn from a separate name space.

Control message commands result in one or more NTP mode 6 messages being sent to the server, and cause
the data returned to be printed in some format. Most commands currently implemented send a single mes-
sage and expect a single response. The current exceptions are the peers command, which will send a pre-
programmed series of messages to obtain the data it needs, and the mreadlist and mreadvar commands,
which will iterate over a range of associations.

associations
Obtains and prints a list of association identifiers and peer statuses for in-spec peers of the server
being queried. The list is printed in columns. The first of these is an index numbering the associa-
tions from 1 for internal use, the second the actual association identifier returned by the server
and the third the status word for the peer. This is followed by a number of columns containing
data decoded from the status word See the peers command for a decode of the condition field.
Note that the data returned by the associations" command is cached internally in ntpq . The
index is then of use when dealing with stupid servers which use association identifiers which are
hard for humans to type, in that for any subsequent commands which require an association iden-
tifier as an argument, the form and index may be used as an alternative.

clockvar [
assocID] [variable_name [= value [...]] [...]

cv [assocID] [variable_name [= value [...]][...] Requests that a list of the server’s clock variables
be sent. Servers which have a radio clock or other external synchronization will respond posi-
tively to this. If the association identifier is omitted or zero the request is for the variables of the
system clock and will generally get a positive response from all servers with a clock. If the
server treats clocks as pseudo-peers, and hence can possibly have more than one clock connected
at once, referencing the appropriate peer association ID will show the variables of a particular
clock. Omitting the variable list will cause the server to return a default variable display.

lassocations
Obtains and prints a list of association identifiers and peer statuses for all associations for which
the server is maintaining state. This command differs from the associations command only for
servers which retain state for out-of-spec client associations (i.e., fuzzballs). Such associations are
normally omitted from the display when the associations command is used, but are included in
the output of lassociations .

lpassociations
Print data for all associations, including out-of-spec client associations, from the internally
cached list of associations. This command differs from passociations only when dealing with
fuzzballs.

lpeers Like R peers, except a summary of all associations for which the server is maintaining state is
printed. This can produce a much longer list of peers from fuzzball servers.

mreadlist
assocID assocID

mrl assocID assocID Like the readlist command, except the query is done for each of a range of
(nonzero) association IDs. This range is determined from the association list cached by the most
recent associations command.

ntp 4.1.1b-r5 3

ntpq(1) ntpq(1)

mreadvar
assocID assocID [variable_name [= value [...]

mrv assocID assocID [variable_name [= value [...] Like the readvar command, except the
query is done for each of a range of (nonzero) association IDs. This range is determined from the
association list cached by the most recent associations command.

opeers An old form of the peers command with the reference ID replaced by the local interface address.

passociations
Displays association data concerning in-spec peers from the internally cached list of associations.
This command performs identically to the associations except that it displays the internally
stored data rather than making a new query.

peers Obtains a current list peers of the server, along with a summary of each peer’s state. Summary
information includes the address of the remote peer, the reference ID (0.0.0.0 if this is unknown),
the stratum of the remote peer, the type of the peer (local, unicast, multicast or broadcast), when
the last packet was received, the polling interval, in seconds, the reachability register, in octal, and
the current estimated delay, offset and dispersion of the peer, all in milliseconds. The character in
the left margin indicates the fate of this peer in the clock selection process. Following is a list of
these characters, the pigeon used in the rv command, and a short explanation of the condition
revealed.

space reject
The peer is discarded as unreachable, synchronized to this server (synch loop) or outrageous syn-
chronization distance.

x falsetick
The peer is discarded by the intersection algorithm as a falseticker.

The peer is discarded as not among the first ten peers sorted
by synchronization distance and so is probably a poor candidate for further consideration.

- outlyer
The peer is discarded by the clustering algorithm as an outlyer.

+ candidat
The peer is a survivor and a candidate for the combining algorithm.

selected
The peer is a survivor, but not among the first six peers sorted by synchronization distance. If the
assocation is ephemeral, it may be demobilized to conserve resources.

* sys.peer
The peer has been declared the system peer and lends its variables to the system variables.

o pps.peer
The peer has been declared the system peer and lends its variables to thesystem variables. How-
ev er, the actual system synchronization is derived from a pulse-per-second (PPS) signal, either
indirectly via the PPS reference clock driver or directly via kernel interface.

The flash variable is a valuable debugging aid. It displays the results of the original sanity checks
defined in the NTP specification RFC-1305 and additional ones added in NTP Version 4. There
are eleven tests called TEST1 through TEST11 . The tests are performed in a certain order
designed to gain maximum diagnostic information while protecting against accidental or mali-
cious errors. The flash variable is first initialized to zero. If after each set of tests one or more
bits are set, the packet is discarded. Tests TEST4 and TEST5 check the access permissions and
cryptographic message digest. If any bits are set after that, the packet is discarded. Tests TEST10
and TEST11 check the authentication state using Autokey public-key cryptography, as described
in the Authentication Options page. If any bits are set and the association has previously been
marked reachable, the packet is discarded; otherwise, the originate and receive timestamps are

ntp 4.1.1b-r5 4

ntpq(1) ntpq(1)

saved, as required by the NTP protocol, and processing continues.

Tests TEST1 through TEST3 check the packet timestamps from which the offset and delay are
calculated. If any bits are set, the packet is discarded; otherwise, the packet header variables are
saved. Tests TEST6 through TEST8 check the health of the server. If any bits are set, the packet
is discarded; otherwise, the offset and delay relative to the server are calculated and saved. Test
TEST9 checks the health of the association itself. If any bits are set, the packet is discarded; oth-
erwise, the saved variables are passed to the clock filter and mitigation algorithms.

The flash bits for each test read in increasing order from the least significant bit are defined as
follows.

TEST1 Duplicate packet. The packet is at best a casual retransmission and at worst a malicious replay.

TEST2 Bogus packet. The packet is not a reply to a message previously sent. This can happen when the
NTP daemon is restarted and before somebody else notices.

TEST3 Unsynchronized. One or more timestamp fields are invalid. This normally happens when the first
packet from a peer is received.

TEST4 Access is denied. See the Access Control Options page.

TEST5 Cryptographic authentication fails. See the Authentication Options page.

TEST6 The server is unsynchronized. Wind up its clock first.

TEST7 The server stratum is at the maximum than 15. It is probably unsynchronized and its clock needs
to be wound up.

TEST8 Either the root delay or dispersion is greater than one second, which is highly unlikely unless the
peer is synchronized to Mars.

TEST9 Either the peer delay or dispersion is greater than one second, which is higly unlikely unless the
peer is on Mars.

TEST10
The autokey protocol has detected an authentication failure. See the Authentication Options
page.

TEST11
The autokey protocol has not verified the server or peer is authentic and has valid public key cre-
dentials. See the Authentication Options page.

support include the following:

certificate
filestamp Shows the NTP seconds when the certificate file was created.

hostname
host Shows the name of the host as returned by the Unix gethostname() library function.

flags hex Shows the current flag bits, where the hex bits are interpreted as follows:

0x01 autokey enabled

0x02 RSA public/private key files present

0x04 PKI certificate file present

0x08 Diffie-Hellman parameters file present

0x10 NIST leapseconds table file present

ntp 4.1.1b-r5 5

ntpq(1) ntpq(1)

leapseconds
filestamp Shows the NTP seconds when the NIST leapseconds table file was created.

params filestamp Shows the NTP seconds when the Diffie-Hellman agreement parameter file was created.

publickey
filestamp Shows the NTP seconds when the RSA public/private key files were created.

refresh timestamp Shows the NTP seconds when the public cryptographic values were refreshed and
signed.

tai offset Shows the TAI-UTC offset in seconds obtained from the NIST leapseconds table.

support include the following:

certificate
filestamp Shows the NTP seconds when the certificate file was created.

flags hex Shows the current flag bits, where the hex bits are interpreted as in the system variable of the
same name. The bits are set in the first autokey message received from the server and then reset
as the associated data are obtained from the server and stored.

hcookie hex Shows the host cookie used in the key agreement algorithm.

initkey key Shows the initial key used by the key list generator in the autokey protocol.

initsequence
index Shows the initial index used by the key list generator in the autokey protocol.

pcookie hex Specifies the peer cookie used in the key agreement algorithm.

timestamp
time Shows the NTP seconds when the last autokey key list was generated and signed.

pstatus assocID Sends a read status request to the server for the given association. The names and values
of the peer variables returned will be printed. Note that the status word from the header is dis-
played preceding the variables, both in hexidecimal and in pidgeon English.

readlist [
assocID]

rl [assocID] Requests that the values of the variables in the internal variable list be returned by
the server. If the association ID is omitted or is 0 the variables are assumed to be system vari-
ables. Otherwise they are treated as peer variables. If the internal variable list is empty a request
is sent without data, which should induce the remote server to return a default display.

readvar assocID variable_name [= value] [...]

rv assocID [variable_name [= value] [Requests that the values of the specified variables be
returned by the server by sending a read variables request. If the association ID is omitted or is
given as zero the variables are system variables, otherwise they are peer variables and the values
returned will be those of the corresponding peer. Omitting the variable list will send a request
with no data which should induce the server to return a default display.

writevar
assocID variable_name [= value [...] Like the readvar request, except the specified variables
are written instead of read.

writelist [
assocID] Like the readlist request, except the internal list variables are written instead of read.

ntp 4.1.1b-r5 6

ntpq(1) ntpq(1)

BUGS
The peers command is non-atomic and may occasionally result in spurious error messages about invalid
associations occurring and terminating the command. The timeout time is a fixed constant, which means
you wait a long time for timeouts since it assumes sort of a worst case. The program should improve the
timeout estimate as it sends queries to a particular host, but doesn’t.

AUTHOR
David L. Mills <mills@udel.edu>

ntp 4.1.1b-r5 7

