
1

© Robert B. France 2-1

Introduction to Software
Modeling & Class Modeling

Robert B. France

Colorado State University

© Robert B. France 2-2

Objectives

• Understand role of modeling in software
development

• Understand role of class modeling in
requirements and design modeling

• Introduce basic class diagram constructs

• Provide insights into how to develop class
models

2

© Robert B. France 2-3

Why Model Software?

• To manage complexity
– What are the factors that contribute to software

complexity?

– How does modeling help address these factors?

• Models can be used:
– to help create designs

– to permit analysis and review of those designs.

– as the core documentation describing the system.

© Robert B. France 2-4

Essential versus Accidental
Complexity

• Fred Brooks: The Mythical Man-Month
• Essential complexity: inherent in the problem and

cannot be eliminated by technological or
methodological means
– E.g., making airplanes fly

• Accidental complexity: unnecessary complexity
introduced by a technology or method
– E.g., building construction without using power tools
– …or, translating designs (models) into programs without

the help of computers

3

© Robert B. France 2-5

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

A Bit of Modern Software…

Can you spot the Can you spot the
architecture?architecture?

© Robert B. France 2-6

…and its UML Model

consumerconsumerconsumer
producerproducerproducer

start out1 in1

link1

Can you spot the Can you spot the
architecture?architecture?

4

© Robert B. France 2-7

The Software and Its Model

«sc_ctor»

consumer
«sc_«sc_ctorctor»»

consumerconsumer
«sc_ctor»

producer
«sc_«sc_ctorctor»»

producerproducer
start out1 in1

«sc_link_mp»

link1

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

© Robert B. France 2-8

Models in Traditional Engineering

• Probably as old as engineering

5

© Robert B. France 2-9

Engineering Models
• Engineering model:

A reduced representation of some system that highlights
the properties of interest from a given viewpoint

Functional ModelFunctional ModelModeled systemModeled system

� We don’t see everything at once

� We use a representation (notation) that is easily understood for
the purpose on hand

� We don’t see everything at once

� We use a representation (notation) that is easily understood for
the purpose on hand

© Robert B. France 2-10

How Engineering Models are Used

1. To help us understand complex systems
– Useful for both requirements and designs

– Minimize risk by detecting errors and omissions early in the
design cycle (at low cost)

• Through analysis and experimentation

• Investigate and compare alternative solutions

– To communicate understanding
• Stakeholders: Clients, users, implementers, testers, documenters, etc.

2. To drive implementation
� The model as a blueprint for construction

6

© Robert B. France 2-11

Characteristics of Useful Models

• Abstract
– Emphasize important aspects while removing irrelevant ones

• Understandable
– Expressed in a form that is readily understood by observers

• Accurate
– Faithfully represents the modeled system

• Predictive
– Can be used to answer questions about the modeled system

• Inexpensive
– Much cheaper to construct and study than the modeled system

To be useful, engineering models must satisfy
all of these characteristics!
To be useful, engineering models must satisfy
all of these characteristics!

© Robert B. France 2-12

Characteristics of good software
models

• A model should
– provide abstraction (abstraction)

– use a standard notation (understandability)

– be understandable by clients and users
(understandability)

– lead software engineers to have insights about
the system (predicatbility, accuracy)

– be easier to build than code (cost)

7

© Robert B. France 2-13

The Remarkable Thing About
Software

Software has the rare property that it
allows us to directly evolve models into
full-fledged implementations without
changing the engineering medium, tools, or
methods!

The model evolves into the system it was modelingThe model evolves into the system it was modeling

© Robert B. France 2-14

Model-Driven Style of Development
(MDD)

• An approach to software development in which the focus
and primary artifacts of development are models (as
opposed to programs)

• Based on two time-proven methods

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

«sc_module»«sc_module»

producerproducer
start out1

(1) ABSTRACTION (2) AUTOMATION

«sc_module»«sc_module»

producerproducer
start out1

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

Realm of
modeling
languages

Realm of
tools

8

© Robert B. France 2-15

OMG’s Model-Driven Architecture
(MDA)

• An OMG initiative
– A framework for a set of open standards in support of MDD

MDA
OpenOpen

StandardsStandards

«sc_module»«sc_module»

producerproducer
start out1

(1) ABSTRACTION (2) AUTOMATION

«sc_module»«sc_module»

producerproducer
start out1

Standards for:Standards for:

••Modeling languagesModeling languages

••Model transformationsModel transformations

••Software processesSoftware processes

••Model interchange…Model interchange…

© Robert B. France 2-16

The Unified Modeling Language
• The UML is standard diagramming language to

visualize the results of analysis and design.
• UML is a tool

– Learning how to create high-quality models is not
equivalent to learning the UML

– UML is simply a language for expressing models

• The UML is not
– a process or methodology
– an object-oriented analysis and design technique
– a modeling technique

9

© Robert B. France 2-17

• Define an easy-to-learn but semantically rich visual
modeling language

• Unify the Booch, OMT, and Objectory modeling
languages

• Include ideas from other modeling languages
• Incorporate industry best practices
• Address contemporary software development issues

– scale, distribution, concurrency, executability, etc.
• Provide flexibility for applying different processes

UML Goals

© Robert B. France 2-18

What are we modeling?
Modeling problems vs. modeling solutions

• A problem can be expressed as:
– A difficulty the users or customers are facing,

– Or as an opportunity that will result in some benefit such as
improved productivity or sales.

– Requirements documents describe problems

• The solution to the problem entails developing software
– Software designs and their implementations in source code

describe solutions

• UML can be used to model both problems (requirements)
and solutions (designs and implementations)

10

© Robert B. France 2-19

UML Class Diagrams

© Robert B. France 2-20

What is a class?
• A class is a description of a set of objects that

share the same properties (expressed as attributes
and relationships)
– At the requirements level a class describes a concept in

the problem domain
– At the design level a class describes a concept in the

solution domain
– At the programming level a class defines objects that

will perform computations

• An object is a concept, abstraction, or thing with
identity that has meaning for an application.
– An object is an instance of a class
– Each object “knows” its class

11

© Robert B. France 2-21

What is a Class Model?
• Syntactically, a class model is a structure of

classes.
• Semantically,

– a requirements class modeldescribes problem concepts
and their relationships

– a design class modeldescribes solution concepts and
their relationships

– an implementation class modeldescribes program-level
objects (e.g., Java objects) and their links

• Key Question: What are the objects of interest in
the problem/solution space?
– their properties (in terms of attributes and operations)?
– their relationships?

© Robert B. France 2-22

An example of a requirements
class diagram

Video

ID

Stocks4

Rents4

Rents-from 4

0..1
*

1 *1*

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

Diagram vs. model: A diagram can be a partial view of a
model; large models can be described using multiple
models

12

© Robert B. France 2-23

Structure of a class

• A class has the following structure:
– Name compartment (mandatory)
– Attributes compartment (optional)
– Operations compartment (optional)

• Every class must have a unique name.
• An object of a requirements or design class

must have values associated with each
attribute of the class

© Robert B. France 2-24

Style Guidelines for Classes
• Center class name in boldface.
• Capitalize the first letter of class names (if the character set

supports uppercase).
• Left justify attributes and operations in plain face.
• Begin attribute and operation names with a lowercase

letter.
• Put the class name in italics if the class is abstract.

– An abstract class is one whose instances must be instances of a
specialized class

– At the implementation level, this translates to a class that cannot be
instantiated

• Show full attributes and operations when needed and
suppress them in other contexts or when merely referring
to a class.

13

© Robert B. France 2-25

Depicting Classes

Rectangle

height: int
width: int

getArea(): int
resize(int,int)

Rectangle

height
width

getArea
resize

Rectangle

height
width

Rectangle

getArea
resize

Rectangle

© Robert B. France 2-26

Attributes

• An attribute is a named property. Each class
instance associates value(s) with each
attribute of a concept.

14

© Robert B. France 2-27

What should be an attribute?

• Properties with types that we want to treat
as primitive are modeled as attributes

• Connections to other concepts are to be
represented as associations, not attributes.

© Robert B. France 2-28

Operations
• An operation is a procedure that may be applied to or by objects in a

class
• Each operation has a signature and a specification of its behavior.

– Signature: operation name, a list of argument types and the result type (the
argument list and return type can be suppressed in a class diagram)

– Specification is expressed in terms of pre-and postconditions (the Object
Constraint Language is used for this purpose)

– The complete signature of an operation is:
operationName(parameterName: parameterType …): returnType

• A method is the implementation of an operation in a class.
• In this course, classes in requirements class models DO NOT contain

operations
– Rationale: in most cases, distributing operations across classes requires

making design-level decision. For this reason I discourage students from
putting operations in requirements-level class models (i.e., domain
models).

15

© Robert B. France 2-29

Identifying requirements classes

• Look at a source material such as a description of
requirements

• Extract the nouns and noun phrases
• Eliminate nouns that:

– are redundant
– represent instances
– are vague or highly general
– not needed in the application

• Pay attention to classes in a domain model that
represent types of users or other actors

© Robert B. France 2-30

Identifying and specifying valid
attributes

– It is not good to have many duplicate attributes

– If a subset of a class’s attributes form a coherent group,
then create a distinct class containing these attributes

*

Person

name
addresses

addresses
Person

name
street1
municipality1
provOrState1
country1
postalCode1
street2
municipality2
provOrState2
country2
postalCode2

Person

name

Address

street
municipality
provOrState
country
postalcode
type

Bad due to
a plural
attribute

Bad due to too many
attributes, and inability
to add more addresses

Good solution. The
type indicates whether
it is a home address,
business address etc.

16

© Robert B. France 2-31

Modeling Static Relationships

• Two kinds of static relationships:
– Associations

• Represent structural relationships among objects

• An association specifies a collection of links, where a link is a
physical or conceptual connection among objects.

– Generalizations
• Represent generalization/specialization class structures

• The two kinds of relationships are orthogonal

© Robert B. France 2-32

Associations

SalePOST Records-current 4
11

association name multiplicity

-"direction reading arrow"
-it has no meaning except to indicate direction of
 reading the association label
-often excluded

17

© Robert B. France 2-33

Multiplicity

zero or more;
"many"

one or more

one to forty

exactly five

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8 exactly three,

five or eight

Customer

Video

Rents 6

*

One instance of a
Customer may be renting
zero or more Videos.

One instance of a Video
may be being rented by
zero or one Customers.

0..1

© Robert B. France 2-34

Association Multiplicity Examples

0,3..8 ******

Employee

*

* *****1..*

*0..1

Secretary

Office

Person

Company

Employee Company

Manager

BoardOfDirectors

BoardOfDirectors

18

© Robert B. France 2-35

Labelling associations
– Each association can be labelled with a name that gives

insight into the meaning of the association

*
supervisor

*****1..*

* worksFor

*allocatedTo0..1

boardMember

0,3..8 ******

Employee

Secretary

Office

Person

Company

Employee Company

Manager

BoardOfDirectors

BoardOfDirectors

© Robert B. France 2-36

Association Roles

• When a class is part of an association it
plays a role in the relationship.

• You can name the role that a class plays in
an association by placing the name at the
class’s association end.

• Formally, a class role is the set of objects
that are linked via the association.

19

© Robert B. France 2-37

ProjectPerson

project leader

project member

managed
project

assigned
project

class roles

1 0..1

1..

© Robert B. France 2-38

Analyzing and validating
associations

– Many-to-one
• A company has many employees,

• An employee can only work for one company.

• A company can have zero employees
– E.g. a ‘shell’ company

• It is not possible to be an employee unless you work
for a company

* worksFor
Employee Company

20

© Robert B. France 2-39

Analyzing and validating
associations

– Many-to-many
• A secretary can work for many managers
• A manager can have many secretaries
• Secretaries can work in pools
• Managers can have a group of secretaries
• Some managers might have zero secretaries.
• Is it possible for a secretary to have, perhaps

temporarily, zero managers?

*

supervisor

*****1..*Secretary Manager

© Robert B. France 2-40

Analyzing and validating
associations

– One-to-one
• For each company, there is exactly one board of

directors

• A board is the board of only one company

• A company must always have a board

• A board must always be of some company

Company BoardOfDirectors

21

© Robert B. France 2-41

Analyzing and validating
associations

•Avoid unnecessary one-to-one associations

• Avoid this do this
Person

name
address
email
birthdate

Person

name

PersonInfo

address
email
birthdate

© Robert B. France 2-42

A more complex example
– A booking is always for exactly one passenger

• no booking with zero passengers

• a booking could never involve more than one
passenger.

– A Passenger can have any number of Bookings
• a passenger could have no bookings at all

• a passenger could have more than one booking

************Passenger SpecificFlightBooking

22

© Robert B. France 2-43

Describing Associations

• In my course, an association must have a name or
at least one role name.
– An association without some name is meaningless! Do

not rely on the reader to “fill in the blanks”
– In the cases where there are multiple associations

between two classes having an association name or role
name is needed to disambiguate the model.

• Associations are often implemented as references
– You may be tempted to model references as attributes;

PLEASE avoid doing this; use association instead (also
don’t use both attributes and associations to model
references!)

© Robert B. France 2-44

Do Not Use Attributes
To Relate Concepts

Video

...

Rents4
1 1..*Customer

...
Better

Video

renter : Customer

Customer

rentedVideos: List of Video
Worse

23

© Robert B. France 2-45

Focus on Important Associations

Video

...Rents4

Influenced-by 4

1

1..*

1 Loan Policy

...

Customer

...

Important association.
Need to remember.

Low value association.
Possible, but so what?

© Robert B. France 2-46

Association classes
– Sometimes, an attribute that concerns two

associated classes cannot be placed in either of
the classes

– The following are equivalent

Registration

grade

Student CourseSection* ******

Registration

grade

Student CourseSection* *

24

© Robert B. France 2-47

Reflexive associations

– It is possible for an association to connect a
class to itself

Course * isMutuallyExclusiveWith

*

*

prerequisite

successor *

© Robert B. France 2-48

Navigability

• One can indicate that an object “knows about”
another object it is linked to by using navigation
arrows on associations
– In UML 2.0 one can also explicitly show that one

object does not know about the objects it is linked to.

• Show navigability ONLY in solution models(i.e.,
design and implementation models)
– Do not show navigability in requirements class models

25

© Robert B. France 2-49

•The top pair AB shows a binary association with two navigable ends.
•The second pair CD shows a binary association with two non-navigable ends.
•The third pair EF shows a binary association with unspecified navigability.
•The fourth pair GH shows a binary association with one end navigable and the other
non-navigable.
•The fifth pair IJ shows a binary association with one end navigable and the other having
unspecified navigability.

The constructs in
diagrams 1, 2, and
4 are new to UML
2.0 and thus are
most likely not
supported by UML
tools as yet.

© Robert B. France 2-50

Association End Property Strings:
Predefined Constraints

• {subsets <property-name>} to show that the end is a subset
of the property called <property-name>.

• {union} to show that the end is derived by being the union
of its subsets.

• {ordered} to show that the end represents an ordered set.

• {bag} to show that the end represents a collection that
permits the same element to appear more than once.

• {sequence} or {seq} to show that the end represents a
sequence (an ordered bag).

26

© Robert B. France 2-51

© Robert B. France 2-52

Binary and N-ary Associations

• A binary association relates two classes.

• An n-ary association relates n (n > 2)
classes.

• N-ary associations can often be modeled as
binary associations.

27

© Robert B. France 2-53

Can you interpret the following?

© Robert B. France 2-54

Aggregation

• Aggregation is a special form of association
– reflect whole-part relationships

• In a solution model, the whole delegates
responsibilities to its parts
– the parts are subordinate to the whole

– This is unlike associations in which classes
have equal status

28

© Robert B. France 2-55

UML Forms of Aggregation

• Composition (strong aggregation)
– parts are existent-dependent on the whole

– parts are generated at the same time, before, or
after the whole is created (depending on
cardinality at whole end) and parts are deleted
before or at the same time the whole dies

– multiplicity at whole end must be 1 or 0..1

• (weak) Aggregation

© Robert B. France 2-56

Composition

Window

scrollbar title body

Header
Panel

2
1 1

Slider

1

1
1

29

© Robert B. France 2-57

Guidelines to Identifying Associations
• Focus on associations for which knowledge of the

relationship must be preserved for some duration
– An association should exist if a class

– possesses
– controls
– is connected to
– is related to
– is a part of
– has as parts
– is a member of, or
– has as members

another class

• More important to identify concepts than associations
– Too many associations can lead to confusing models

• Avoid showing redundant/derivable associations

© Robert B. France 2-58

Modeling Associations

• If an object is part of another object and
there is no existence dependency between
the objects, model as a weak aggregation.

• If the part is existentially dependent on the
whole model as a composition.

• If there is a conceptual relationship between
two peer objects, model as a general
association.

30

© Robert B. France 2-59

Actions versus associations

– A common mistake is to represent actions as if
they were associations

*

LibraryPatron

borrow Loan

borrowedDate
dueDate
returnedDate

Bad, due to the use of associations
that are actions

*

return

CollectionItem

*

*

LibraryPatron

CollectionItem

*

*

Better: The borrow operation creates a Loan , and
the return operation sets the returnedDate
attribute.

© Robert B. France 2-60

Generalization/Specialization

• A generalization (or specialization) is a
relationship between a general concept and
its specializations.
– Objects of specializations can be used

anywhere an object of a generalization is
expected (but not vice versa).

• Example: Mechanical Engineer and
Aeronautical Engineer are specializations
of Engineer

31

© Robert B. France 2-61

Rendering Generalizations

• Generalization is rendered as a solid
directed line with a large open arrowhead.
– Arrowhead points towards generalization

• A discriminator can be used to identify the
nature of specializations

© Robert B. France 2-62

Generalization

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

32

© Robert B. France 2-63

Generalization

Fig. 3-48, UML Notation Guide

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

© Robert B. France 2-64

Avoiding unnecessary generalizations

RockRecordingBluesRecordingClassicalRecordingJazzRecordingMusicVideo

VideoRecoding AudioRecording

Recording

rockbluesclassicaljazzmusic video

video audio

subcategory subcategorysubcategorysubcategorysubcategory

:RecordingCategory :RecordingCategory

:RecordingCategory :RecordingCategory :RecordingCategory :RecordingCategory:RecordingCategory

9th Symphony
:Recording

Let it be
:Recording

The BeatlesBeethoven

RecordingCategory
*
subcategorydescription

Recording *
hasCategory

title
artist

Inappropriate hierarchy of
classes, which should be
instances

Improved class diagram,
with its corresponding
instance diagram

33

© Robert B. France 2-65

Handling multiple discriminators

Animal

habitat

LandAnimalAquaticAnimal

AquaticCarnivore AquaticHerbivore LandCarnivore LandHerbivore

typeOfFood typeOfFood

– Creating higher-level generalization

© Robert B. France 2-66

– Using multiple inheritance

– Using the Player-Role pattern (in Chapter 6)

Handling multiple discriminators
Animal

habitat typeOfFood

HerbivoreCarnivoreLandAnimalAquaticAnimal

AquaticCarnivore AquaticHerbivore LandCarnivore LandHerbivore

34

© Robert B. France 2-67

Avoiding having instances
change class

Student

attendance

PartTimeStudentFullTimeStudent

– An instance should never need to change class

© Robert B. France 2-68

Identifying generalizations and
interfaces
•There are two ways to identify generalizations:

– bottom-up
• Group together similar classes creating a new superclass

– top-down
• Look for more general classes first, specialize them if needed

•Create an interface, instead of a superclass if
– The classes are very dissimilar except for having a few

operations in common
– One or more of the classes already have their own

superclasses
– Different implementations of the same class might be

available

35

© Robert B. France 2-69

An example (generalization)

*

supervisor

RegularFlight

time
flightNumber

*

PassengerRole

SpecificFlight

date

Person

name
idNumber

0..20..20..20..20..20..2

EmployeeRole

jobFunction

Booking

seatNumber

PersonRole

© Robert B. France 2-70

Handling Large Domain Models
• Use packages to

provide views of
large domain
models

• Developers may
not have to draw
package boxes
around groups as
in this example.
Rather, a CASE
tool will allow
“drill down”.

Domain Concepts

Core/Misc Payments Products Sales

Core/Misc

Person

VideoStore

address
name

Managed-by

11
...etc...

Products

Rents

1..*1

Product

description
...

Video

...

Software
Game

...

AudioTape

...

Note how one
can reference
types from
other
packages.

Core::VideoStore

36

© Robert B. France 2-71

Object Diagrams
• An object diagram describes a structure of

objects.

• One can view a class diagram as specifying
a collection of object structures
– Conformant object structures have objects and

links that satisfy the multiplicity and other
constraints specified in the class diagram.

© Robert B. France 2-72

Object Diagram Example

Carla:Employee

Ali:Employee

Wayne:Employee
OOCorp:Company OOCorp's Board:

UML inc's BoardUML inc:Company

Pat:Employee

Terry:Employee

37

© Robert B. France 2-73

Associations versus generalizations in

object diagrams

• Associations describe the relationships that will
exist between objects at run time.
– When you show an object diagram generated from a

class diagram, there will be an instance of both classes
joined by an association

• Generalizations describe relationships between
classes in class diagrams.
– They do not appear in object diagrams at all.
– An instance of any class should also be considered to

be an instance of each of that class’s superclasses

© Robert B. France 2-74

Requirements versus Design Class Diagrams

• Domain analysis: Exploratory domain models are
class diagrams in which classes represent domain
concepts.
– Classes in these diagrams DO NOT represent software

concepts.

• Requirements specification: A requirements class
model (system domain model) consists of class
diagrams in which the classes represent
information that will be maintained by the
software.

• Design specification: A design class model
(system model) consists of class diagrams in
which classes represent solution concepts.

38

© Robert B. France 2-75

An Example of a Requirements Class Diagram

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID

Stocks4

Rents4

Rents-from 4

Pays-for 4

Initiates 4

Owns-a 4

 Described-by 6

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges 4

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

 Determines-rental-charge 4

1

Defines3

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of 6

0..1

1

Has 6 Maintains6

*

1

1

© Robert B. France 2-76

Requirements Class Diagram
Exercise

Develop a class diagram of an invoicing
system that keeps track of orders and
invoices orders against a stock in an
inventory. Each order has exactly one order
item. An order item consists of a part
identifier and a quantity.

39

© Robert B. France 2-77

Another Exercise

Develop Requirements Class Diagram for the
following application:
A school video library tracking system is to be developed. Videos can be
scientific or non-scientific. Students and professors can belong to research
groups. A research group must have at least 1 professor. Students that
belong to a research group are called research students. A research group
can consist of members with various subject area interests. Professors can
check out any number of videos. Students can check out at most 2 non-
scientific videos. Research students can check out only scientific videos in
the subject areas represented in their research groups.

© Robert B. France 2-78

Design Class Modeling

• Requirements class models should not
include operations in classes.

• To obtain a design class model consider
how responsibilities are distributed across
classes.
– Determines attributes and operations of design

classes.

40

© Robert B. France 2-79

Allocating responsibilities to
classes
•A responsibility is something that the system is required to
do.

– Each functional requirement must be attributed to one of the classes
• All the responsibilities of a given class should be clearly related.
• If a class has too many responsibilities, consider splitting it into distinct

classes
• If a class has no responsibilities attached to it, then it is probably useless
• When a responsibility cannot be attributed to any of the existing classes,

then a new class should be created

– To determine responsibilities
• Perform use case analysis
• Look for verbs and nouns describing actions in the system description

© Robert B. France 2-80

Categories of responsibilities

• Setting and getting the values of attributes
• Creating and initializing new instances
• Loading to and saving from persistent storage
• Destroying instances
• Adding and deleting links of associations
• Copying, converting, transforming, transmitting or

outputting
• Computing numerical results
• Navigating and searching
• Other specialized work

41

© Robert B. France 2-81

An example (responsibilities)

• Creating a new
regular flight

• Searching for a
flight

• Modifying
attributes of a
flight

• Creating a
specific flight

• Booking a
passenger

• Canceling a
booking

*

supervisor

RegularFlight

time
flightNumber

*

PassengerRole

SpecificFlight

date

******Person

name
idNumber

0..20..20..20..20..20..2

EmployeeRole

jobFunction

Booking

seatNumber

PersonRole
Airline

© Robert B. France 2-82

Identifying operations

• Operations are needed to realize the
responsibilities of each class
– There may be several operations per

responsibility

– The main operations that implement a
responsibility are normally declared public

– Other methods that collaborate to perform the
responsibility must be as private as possible

42

© Robert B. France 2-83

An example of a design class
diagram

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ specifyAirplane [a1]
+ createFlightLog [b1]

+ makeBooking [c1]

+ changeAirplane [d1]
+ findCrewMember [e1]

EmployeeRole

+ getName [e2]

FlightLog

FlightLog [b2]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]

*

0..1

*

*

crewMember

0..1

addLinkToBooking [c3]

© Robert B. France 2-84

• Making a bi-directional link between two
existing objects;

• e.g. adding a link between an instance of
SpecificFlight and an instance of
Airplane .

a1. (public) The instance of
SpecificFlight

• makes a one-directional link to the instance of Airplane
• then calls operation a2.

a2. (non-public) The instance of Airplane
• makes a one-directional link back to the instance of

SpecificFlight

Airplane

addLinkToSpecificFlight [a2, d3]

SpecificFlight

+ specifyAirplane [a1]

* 0..1

43

© Robert B. France 2-85

• Creating an object and linking it to an existing
object

• e.g. creating a FlightLog , and linking it to a
SpecificFlight .

b1. (public) The instance of SpecificFlight
calls the constructor of FlightLog (operation b2)
then makes a one-directional link to the new instance of

FlightLog .

b2. (non-public) Class FlightLog ’s constructor
makes a one-directional link back to the instance of

SpecificFlight .

SpecificFlight

+ createFlightLog [b1]

FlightLog

FlightLog [b2]

0..10..10..10..10..10..1

© Robert B. France 2-86

• Creating an association class, given two existing objects
• e.g. creating an instance of Booking , which will link

a SpecificFlight to a PassengerRole .
c1. (public) The instance of PassengerRole

• calls the constructor of Booking (operation 2).

c2. (non-public) Class Booking ’s constructor, among its other
actions

• makes a one-directional link back to the instance of PassengerRole

• makes a one-directional link to the instance of SpecificFlight

• calls operations 3 and 4.

c3. (non-public) The instance of SpecificFlight
• makes a one-directional link to the instance of Booking .

c4. (non-public) The instance of PassengerRole
• makes a one-directional link to the instance of Booking .

SpecificFlight
+ makeBooking [c1]

Booking

Booking [c2]

PassengerRole

addLinkToBooking [c4]
* ****** addLinkToBooking [c3]

44

© Robert B. France 2-87

• Changing the destination of a link
• e.g. changing the Airplane of to a

SpecificFlight , from airplane1 to
airplane2

d 1. (public) The instance of SpecificFlight
• deletes the link to airplane1
• makes a one-directional link to airplane2
• calls operation d2
• then calls operation d3.

d2. (non-public) airplane1
• deletes its one-directional link to the instance of SpecificFlight .

d3. (non-public) airplane2
• makes a one-directional link to the instance of SpecificFlight .

Airplane

addLinkToSpecificFlight [a2, d3]
deleteLinkToSpecificFlight [d2]

SpecificFlight

+ changeAirplane [d1]

* 0..1

© Robert B. France 2-88

• Searching for an associated instance
• e.g. searching for a crew member associated

with a SpecificFlight that has a certain
name.

•
e1. (public) The instance of SpecificFlight

• creates an Iterator over all the crewMember links of the
SpecificFlight \

• for each of them call operation e2, until it finds a match.

e2. (may be public) The instance of
EmployeeRole returns its name.

SpecificFlight

+ findCrewMember [e1]

EmployeeRole

+ getName [e2]
* *
crewMember

45

© Robert B. France 2-89

Implementing Class Diagrams in
Java

•Attributes are implemented as instance variables
•Generalizations are implemented using extends

•Interfaces are implemented using implements

•Associations are normally implemented using instance
variables

• Divide each two-way association into two one-way associations
—so each associated class has an instance variable.

• For a one-way association where the multiplicity at the other end is
‘one’ or ‘optional’

—declare a variable of that class (a reference)

• For a one-way association where the multiplicity at the other end is
‘many’:

—use a collection class implementing List , such as Vector

© Robert B. France 2-90

Example: SpecificFlight

class SpecificFlight
{

private Calendar date;
private RegularFlight regularFlight;
private TerminalOfAirport destination;
private Airplane airplane;
private FlightLog flightLog;

private ArrayList crewMembers;
// of EmployeeRole

private ArrayList bookings
...

}

46

© Robert B. France 2-91

Example: SpecificFlight

• // Constructor that should only be
called from

• // addSpecificFlight

• SpecificFlight(

• Calendar aDate,

• RegularFlight aRegularFlight)

• {

• date = aDate;

• regularFlight = aRegularFlight;
• }

© Robert B. France 2-92

Example: RegularFlight
class RegularFlight
{

private ArrayList specificFlights;
...
// Method that has primary
// responsibility

public void addSpecificFlight(
Calendar aDate)

{
SpecificFlight newSpecificFlight;
newSpecificFlight =

new SpecificFlight(aDate, this);
specificFlights.add(newSpecificFlight);

}
...

}

