
11Software and software
engineering

The software engineer’s job is to solve problems economically by developing

high-quality software. In this first chapter we will present important issues that

all software engineers should understand to do their jobs well.

1.1 The nature of software

Similarly to mechanical engineers who design mechanical systems and electrical

engineers who design electrical systems, software engineers design software

systems. However, software differs in important ways from the types of artifacts

produced by other types of engineers:

■ Software is largely intangible. Unlike most other engineering artifacts, you

cannot feel the shape of a piece of software, and its design can be hard to

In this chapter you will learn about the following
■ How does software differ from other products? How does software change

over time? What do we mean when we talk about high-quality software?

What types of software are there and what are their main differences?

■ How are software projects organized? How successful are typical projects?

■ How can we define software engineering? Why will following a disciplined

approach to software engineering help us produce successful software

systems?

■ What activities occur in every software project?

■ What should we keep in mind as we perform any software engineering

activity?

 Lethbridge.book Page 1 Tuesday, November 16, 2004 12:22 PM

2 Chapter 1
Software and software engineering

visualize. It is therefore difficult for people to assess its quality or to appreciate

the amount of work involved in its development. This is one of the reasons why

people consistently underestimate the amount of time it takes to develop a

software system.

■ The mass-production of duplicate pieces of software is trivial. Most other types

of engineers are very concerned about the cost of each item in terms of parts

and labor to manufacture it. In other words, for tangible objects, the processes

following completion of design tend to be the expensive ones. Software, on the

other hand, can be duplicated at very little cost by downloading over a network

or creating a CD. Almost all the cost of software is therefore in its development,

not its manufacturing.

■ The software industry is labor intensive. It has become possible to automate

many aspects of manufacturing and construction using machinery; therefore,

other branches of engineering have been able to produce increasing amounts of

product with less labor. However, it would require truly ‘intelligent’ machines

to fully automate software design or programming. Attempts to make steps in

this direction have so far met with little success.

■ It is all too easy for an inadequately trained software developer to create a piece

of software that is difficult to understand and modify. A novice programmer

can create a complex system that performs some useful function but is highly

disorganized in terms of its design. In other areas of engineering, you can

create a poor design too, but the flaws will normally be easier to detect since

they will not be buried deep within thousands of pages of source code. For

Offshoring: an exaggerated fear?
The software engineering labor market has been increasingly affected by the recent trend towards
offshoring: this occurs when organizations in developed countries outsource software development
to countries that have much lower labor costs yet have highly educated populations and are politically
stable. India and some Eastern European countries have particularly benefited from this. Many
economists believe offshoring represents a healthy redistribution of wealth that will result, in the
longer run, in increased wages and consumer demand in the recipient countries. Citizens of these
countries are also becoming big consumers of software, increasing the total market.

However, fear that offshoring will contribute to a lack of jobs is one factor that has caused
a sharp drop in university computing enrolments in many developed countries. This fear is
exaggerated for three reasons.

First, students studying computing still have a much higher chance of finding a job in their
field than students studying most other subjects. Second, as we will learn in this book, close
and constant interaction with end-users is essential to the development of quality software;
it will always therefore remain important to have a significant part of the development team
close to the user. And thirdly, as software development becomes distributed, there will be
an increasing need for the disciplined approaches to modeling, requirements, architecture and
quality assurance as taught in this book.

 Lethbridge.book Page 2 Tuesday, November 16, 2004 12:22 PM

Section 1.1 3The nature of software

example, if a civil engineer designed an unsafe bridge, it would normally be

easy for inspectors to notice the flaws since they know exactly what to look for

in each drawing and calculation. A poorly designed software system will

usually at least partly work, but many other types of engineering artifact will

not work at all if they are badly designed.

■ Software is physically easy to modify; however, because of its complexity it is

very difficult to make changes that are correct. People tend to make changes

without fully understanding the software. As a side effect of their

modifications, new bugs appear.

■ Software does not wear out with use like other engineering artifacts, but instead

its design deteriorates as it is changed repeatedly. As mentioned in the previous

point, changes tend to introduce new defects; consequently the changed

software tends to be worse in terms of design than the original. Over time, the

designs of successive versions of software may show significant deterioration to

the point where a complete redesign is needed.

Taken together, the above characteristics mean that much existing software is of

relatively poor quality and is steadily becoming worse. At the same time, there

is strong demand for new and changed software, which customers expect to be

of high quality and to be produced rapidly. Therefore, software developers have

often not been able to live up to the expectations of their managers and

customers – many software projects are either never delivered, or are delivered

late and over budget. Furthermore, many software systems that are delivered are

never put to use because they have so many problems; others require major

modification before they can be used.

This whole situation has been called the software crisis, despite the fact that

the crisis has been going on for several decades. The term ‘crisis’ was chosen

with the hope that the problems which arose as the software industry expanded

would be resolved by implementing improved software engineering methods.

Although this sentiment still holds true, we now realize that the difficulties of

the software industry are, to some extent, a natural consequence of the complex

nature of software, coupled with the laws of economics and the vagaries of

human psychology.

It is an objective of this book to teach you how to engineer software so that it

meets expectations and doesn’t contribute to the crisis. To do that, you will have

to learn techniques that allow you to minimize or hide the complexity, and take

account of economic and psychological realities.

Types of software and their differences
There are many different types of software. One of the most important

distinctions is between custom software, generic software and embedded

software.

Custom software is developed to meet the specific needs of a particular

customer and tends to be of little use to others (although in some cases

 Lethbridge.book Page 3 Tuesday, November 16, 2004 12:22 PM

4 Chapter 1
Software and software engineering

developing custom software might reveal a problem shared by several similar

organizations). Much custom software is developed in-house within the same

organization that uses it; in other cases, the development is contracted out to

consulting companies. Custom software is typically used by only a few people

and its success depends on meeting their needs.

Examples of custom software include web sites, air-traffic control systems and

software for managing the specialized finances of large organizations.

Generic software, on the other hand, is designed to be sold on the open

market, to perform functions that many people need, and to run on general-

purpose computers. Requirements are determined largely by market research.

There is a tendency in the business world to attempt to use generic software

instead of custom software because it can be far cheaper and more reliable. The

main difficulty is that it might not fully meet the organization’s specific needs.

Generic software is often called Commercial Off-The-Shelf software (COTS),

and it is sometimes also called shrink-wrapped software since it is commonly

sold in packages wrapped in plastic. Generic software producers hope that they

will sell many copies, but their success is at the mercy of market forces.

Examples of generic software include word processors, spreadsheets,

compilers, web browsers, operating systems, computer games and accounting

packages for small businesses.

Embedded software runs specific hardware devices which are typically sold

on the open market. Such devices include washing machines, DVD players,

microwave ovens and automobiles. Unlike generic software, users cannot

usually replace embedded software or upgrade it without also replacing the

hardware. The open-market nature of the hardware devices means that

developing embedded software has similarities to developing generic software;

however, we place it in a different category due to the distinct processes used to

develop it.

Since embedded systems are finding their way into a vast number of

consumer and commercial products, they now account for the bulk of software

copies in existence. Generic systems, on the other hand, account for most of the

software running today on general-purpose computers. Although custom

software has fewer copies than either of the other types, it accounts for many

more distinct systems and hence is what most developers work on.

It is possible to take generic software and customize it. The risk in doing this,

however, is that when a new release of the generic software is issued, the

customization work may have to be re-done.

Table 1.1 Differences among custom, generic and embedded software

Custom Generic Embedded

Number of copies in use Low Medium High

Total processing power devoted to running this type of

software

Low High Medium

Worldwide annual development effort High Medium Medium

 Lethbridge.book Page 4 Tuesday, November 16, 2004 12:22 PM

Section 1.1 5The nature of software

You can also take custom software and try to make it generic; however, this

can be a complex process if the software was not designed in a flexible way.

Table 1.1 summarizes some of the important characteristics of custom,

generic and embedded software.

Another important way to categorize software in general is whether it is real-

time or data processing software. The most distinctive feature of real-time

software is that it has to react immediately (i.e. in real time) to stimuli from the

environment (e.g. the pushing of buttons by the user, or a signal from a sensor).

Much design effort goes into ensuring that this responsiveness is always

guaranteed. Much real-time software is used to operate special-purpose

hardware; in fact almost all embedded systems operate in real time. Many

aspects of the custom systems that run industrial plants and telephone

networks are also real-time.

Generic applications, such as spreadsheets and computer games, have some

real-time characteristics, since they must be responsive to their users’ inputs.

However, these tend to be soft real-time characteristics: when timing

constraints are not met, such systems merely become sluggish to use. In

contrast, most embedded systems have hard real-time constraints, and will fail

completely if these are not met. Safety is thus a key concern in the design of

such systems.

Data processing software is used to run businesses. It performs functions

such as recording sales, managing accounts, printing bills etc. The biggest

design issues are how to organize the data and provide useful information to

the users so they can perform their work effectively. Accuracy and security of

the data are important concerns, as is the privacy of the information gathered

about people. A key characteristic of traditional

data processing tasks is that rather than

processing data the moment it is available, it is

instead gathered together in batches to be

processed at a later time.

Some software has both real-time and data

processing aspects. For example, a telephone

system has to manage phone calls in real time,

but billing for those calls is a data processing

activity.

Software varies in terms of its age. Much

custom software written in the 1960s and

1970s is still in use today. That software differs

from newly developed software in terms of

programming languages, data storage technol-

ogies, user interface technology and design

techniques. Many of the web-based user inter-

faces we use today, e.g. for banking, are just

new front ends on much older custom data

processing software.

Usage of the word ‘software’ – a
common mistake made by non-native
speakers of English.
Many non-native speakers of English
erroneously say sentences such as the
following: ‘I will create a software to update
the database’. The error is that you cannot
talk about ‘a software’. When the word
‘software’ is used as a noun, it is a mass noun,
like ‘water’ and ‘sand’, and cannot be preceded
by the indefinite article ‘a’. Therefore you
have to say, ‘I will create some software to
update the database’, or ‘I will create a piece of
software to update the database’. You can also
use the word software as an adjective, as in ‘I
will create a software system to update the
database’. In this latter case the indefinite
article is referring to ‘system’, not ‘software’.

 Lethbridge.book Page 5 Tuesday, November 16, 2004 12:22 PM

6 Chapter 1
Software and software engineering

Exercise

E1 Classify the following software according to whether it is likely to be custom,

generic or embedded (or some combination); and whether it is data processing or

real-time.

(a) A system to control the reaction rate in a nuclear reactor.

(b) A program that runs inside badges worn by nuclear plant workers that

monitors radiation exposure.

(c) A program used by administrative assistants at the nuclear plant to write

letters.

(d) A system that logs all activities of the reactor and its employees so that

investigators can later uncover the cause of any accident.

(e) A program used to generate annual summaries of the radiation exposure

experienced by workers.

(f) An educational web site containing a Flash animation describing how the

nuclear plant works.

1.2 What is software engineering?

Not all software development should be called software engineering, in the same

way as not all construction is civil engineering. A do-it-yourselfer can build a

wooden footbridge spanning a 60-cm-wide stream in his or her garden, but it

requires a civil engineer to build a bridge across a wider span that public vehicles

will traverse. Similarly, a self-trained shareware author may write a small

program to track a personal stock portfolio, but it requires a software engineer

to develop a complete trading and accounting system for a large brokerage

company.

Each of the words in this definition has been chosen carefully. Let us therefore

split up the definition and examine each component.

Solving customers’ problems
Solving customers’ problems should be the goal of every software engineering

project. Before finalizing any software engineering decision, you should

therefore ask yourself whether the proposed alternative will help achieve this

goal. In particular, it is important to recognize activities that are not consistent

Definition: software engineering is the process of solving customers’ problems by the
systematic development and evolution of large, high-quality software systems
within cost, time and other constraints.

 Lethbridge.book Page 6 Tuesday, November 16, 2004 12:22 PM

Section 1.2 7What is software engineering?

with this goal, such as adding unnecessary features. Software engineers have

the responsibility to recognize situations when it would be most cost effective

not to develop software at all, to develop simpler software or to purchase

existing software.

The problems being solved by software engineers are usually related to

human activities. Software engineers must therefore learn to communicate

and negotiate effectively with people, to understand how people do their

work, and to understand what impact any proposed software may have on its

users’ productivity.

Systematic development and evolution
Software development becomes an engineering process when the developers

apply well-understood techniques in an organized and disciplined way.

Software engineering is a young field, and its technology and techniques are

still undergoing rapid development. Nevertheless, there are many well-

accepted practices that have been formally standardized by bodies such as the

IEEE, ISO (International Organization for Standardization) and various

national standards bodies.

Sometimes a software engineering team sets out to develop completely new

software. However, most development work involves modifying software that

has been already written – this is because software is normally continually

changed over a period of years until it becomes obsolete. Ensuring that this

constant change, called maintenance or evolution, is done in a systematic way

is an integral part of software engineering. We will discuss this in more detail

in Section 1.6 below.

Large, high-quality software systems
A small system can often be successfully developed by a programmer working

alone. However, large systems with many functions and components become

too complex unless engineering discipline is applied. A system of many

thousands of lines of code cannot be completely understood by one person,

and certainly would take one person far too long to develop, therefore

teamwork is essential to software engineering. One of the hardest challenges

is dividing up the work and ensuring that the teams communicate effectively

and produce subsystems that properly connect with each other to produce a

large but functioning system.

The techniques discussed in this book are therefore essential for large

systems, although many of them are also useful for small systems.

The end product that is produced must be of sufficient quality. Some

software engineering techniques are aimed at increasing the quality of the

design, whereas others are used to verify that sufficient quality is present

before the software is released. Quality is discussed in more detail in

Section 1.5 and Chapter 10.

 Lethbridge.book Page 7 Tuesday, November 16, 2004 12:22 PM

8 Chapter 1
Software and software engineering

Cost, time and other constraints
One of the essential characteristics of engineering is that you have to consider

economic constraints as you try to solve each problem. The main economic

constraints are: 1) resources are finite, 2) it is not worth doing something unless

the benefit gained from it outweighs its cost, and 3) if somebody else can

perform some particular task more cheaply or faster than us, they will probably

succeed instead of us. Software engineers, like other engineers, therefore must

ensure their systems can be produced within a limited budget and by a certain

due date. Achieving this requires careful planning

and sticking to the plan in a disciplined way.

Furthermore, creating a realistic plan in the first

place requires a great deal of knowledge about

what is required to produce a system, and how

long each activity should take.

Unfortunately, failure to stick to cost and time

budgets has been widespread in software

engineering projects. The reasons for this are many,

but include the inherent complexity of software, the

relative immaturity of software engineering and its

technologies, lack of knowledge and experience on

the part of software engineers, the inherent human

tendency towards over-confidence, and pressure to

offer excessively low prices and short development

times in order to obtain contracts or make sales.

1.3 Software engineering as a branch of the engineering profession

People have talked about software engineering since 1968 when the term was

coined at a NATO conference. However, only since the mid-1990s has there

been a shift towards recognizing software engineering as a distinct branch of the

engineering profession. Some parts of the world, notably Europe and Australia,

were somewhat ahead of others in this regard.

In most countries, in order to legally perform consulting or self-employed

work where you call yourself an ‘engineer’, you must be licensed. Similarly, a

company that sells engineering services may be required to employ licensed

engineers who take formal responsibility for projects, ensuring they are

conducted following accepted engineering practices.

Prior to the 1940s, very few jurisdictions required engineers to be licensed.

However, various disasters caused by the failure of designs eventually

convinced almost all governments to establish licensing requirements.

Licensing agencies have the responsibility to ensure that anyone who calls

himself or herself an engineer has sufficient engineering education and

experience. To exercise this responsibility, the agencies accredit educational

institutions they believe are providing a proper engineering education, and

Other definitions of software
engineering
We have presented our definition of software
engineering. Here are two other definitions:
■ IEEE: (1) The application of a systematic,

disciplined, quantifiable approach to the
development, operation, maintenance
of software; that is, the application of
engineering to software. (2) The study
of approaches as in (1).

■ The Canadian Standards Association:
The systematic activities involved in
the design, implementation and testing
of software to optimize its production
and support.

 Lethbridge.book Page 8 Tuesday, November 16, 2004 12:22 PM

Section 1.3 9Software engineering as a branch of the engineering profession

scrutinize the background of those who are applying to be engineers, often

requiring them to write exams.

We can characterize the work of engineers as follows: engineers design

artifacts following well-accepted practices, which normally involve the

application of science, mathematics and economics. Since engineering has

become a licensed profession, adherence to codes of ethics and taking personal

responsibility for work have also become essential characteristics. Some people

only include in engineering those design activities that have a potential to

impact public safety and well-being; however, since most people who are trained

as engineers do not in fact work on such critical projects, most people define

engineering in the broader sense.

Historically, engineering has evolved several specialties, most notably civil,

mechanical, electrical and chemical engineering. Computer engineering evolved

in the 1980s to focus on the design of computer systems that involve both

hardware and software components. However, most of the practitioners

performing what we have defined above to be software engineering have not

historically been formally educated as engineers.

Many of the earliest programmers were mathematicians or physicists;

then in the 1970s the discipline of computer science developed, and educated

many of the current generation of software developers. The computer

science community recognized the need for a disciplined approach to the

creation of large software systems, and developed the software engineering

discipline.

In the mid-1990s the first jurisdictions started to recognize software

engineering as a distinct branch of engineering. For example, in the United

Kingdom those who study software engineering in computer science departments

Ethics in Software Engineering
It is very important as a software engineer-in-training that you develop a sense of professional ethics.
Many people perform software development work without fully realizing some of the ethical issues
that can arise. The following are highlights of the IEEE/ACM code of ethics. For details about the IEEE
and the ACM, see the ‘For More Information’ section at the end of the chapter.

Software engineers shall:
■ Act consistently with the public interest.
■ Act in the best interests of their client or employer, as long as this is consistent with the public

interest.
■ Develop and maintain their product to the highest standards possible.
■ Maintain integrity and independence when making professional judgments.
■ Promote an ethical approach in management.
■ Advance the integrity and reputation of the profession, as long as doing so is consistent with the

public interest.
■ Be fair and supportive to colleagues.
■ Participate in lifelong learning.

 Lethbridge.book Page 9 Tuesday, November 16, 2004 12:22 PM

10 Chapter 1
Software and software engineering

at universities have been able to achieve the status of Chartered Engineer, after a

standard period of work experience and passing certain exams. In North America,

the State of Texas and the Province of Ontario were among the first jurisdictions

to license software engineers (in 1998 and 1999 respectively).

In parallel with the process of licensing software engineers, universities have

been establishing academic programs in universities that focus on software

engineering, and are clearly distinct from either computer science or computer

engineering. Since considerable numbers of these graduates are now entering

the workforce, software engineering has become firmly established as a branch

of engineering.

1.4 Stakeholders in software engineering

Many people are involved in a software engineering project and expect to

benefit from its success. We will classify these stakeholders into four major

categories, or roles, each having different motivations, and seeing the software

engineering process somewhat differently.

■ Users. These are the people who will use the software. Their goals usually

include doing enjoyable or interesting work, and gaining recognition for the

work they have done. Often they will welcome new or improved software,

although some might fear it could jeopardize their jobs. Users appreciate

software that is easy to learn and use, makes their life easier, helps them achieve

more, or allows them to have fun.

■ Customers (also known as clients). These are the people who make the

decisions about ordering and paying for the software. They may or may not be

users – the users may work for them. Their goal is either to increase profits or

simply to run their business more effectively. Customers appreciate software

that helps their organization save or make money, typically by improving the

productivity of the users and the organization as a whole. If you are developing

custom software, then you know who your customers are; if you are developing

generic software, then you often only have potential customers in mind.

■ Software developers. These are the people who develop and maintain the

software, many of whom may be called software engineers. Within the

development team there are often specialized roles, including requirements

specialists, database specialists, technical writers, configuration management

specialists, etc. Development team members normally desire rewarding

careers, although some are more motivated by the challenge of solving difficult

problems or by being a well-respected ‘guru’ in a certain area of expertise.

Many developers are motivated by the recognition they receive by doing high-

quality work.

■ Development managers. These are the people who run the organization that is

developing the software; they often have an educational background in

 Lethbridge.book Page 10 Tuesday, November 16, 2004 12:22 PM

Section 1.5 11Software quality

business administration. Their goal is to please the customer or sell the most

software, while spending the least money. It is important that they have

considerable knowledge about how to manage software projects, but they may

not be as intimately familiar with small details of the project as are some of the

software developers. For this reason, it is important that software developers

keep their managers informed of any problems.

In some cases, two, three or even all four of these stakeholder roles may be held

by the same person. In the simplest case, if you were privately developing

software for your own use, then you would have all four roles.

Exercise

E2 How do you think each of the four types of stakeholders described above would

react in each of the following situations?

(a) You study a proposal for a new system that will completely automate the

work of one individual in the customer’s company. You discover that the

cost of developing the system would be far more than the cost of

continuing to do the work manually, so you recommend against

proceeding with the project.

(b) You implement a system according to the precise specifications of a

customer. However, when the software is put into use, the users find it does

not solve their problem.

1.5 Software quality

Almost everybody says they want software to be of ‘high quality’. But what does

the word ‘quality’ really mean? There is no single answer to this question since,

like beauty, quality is largely in the eye of the beholder.

Figure 1.1 shows what quality means to each of the stakeholders. They each

consider the software to be of good quality if the outcome of its development

and maintenance helps them meet their personal objectives.

Attributes of software quality
The following are five of the most important attributes of software quality.

Software engineers try to balance the relative importance of these attributes so

as to design systems with the best overall quality, as limited by the money and

time available.

■ Usability. The higher the usability of software, the easier it is for users to work

with it. There are several aspects of usability, including learnability for novices,

efficiency of use for experts, and handling of errors. We will discuss more about

usability in Chapter 7.

 Lethbridge.book Page 11 Tuesday, November 16, 2004 12:22 PM

12 Chapter 1
Software and software engineering

■ Efficiency. The more efficient software is, the less it uses of CPU-time,

memory, disk space, network bandwidth and other resources. This is important

to customers in order to reduce their costs of running the software, although

with today’s powerful computers, CPU-time, memory and disk usage are less of

a concern than in years gone by.

■ Reliability. Software is more reliable if it has fewer failures. Since software

engineers do not deliberately plan for their software to fail, reliability depends

on the number and type of mistakes they make. Designers can improve

reliability by ensuring the software is easy to implement and change, by testing

it thoroughly, and also by ensuring that if failures occur, the system can handle

them or can recover easily.

■ Maintainability. This is the ease with which you can change the software. The

more difficult it is to make a change, the lower the maintainability. Software

engineers can design highly maintainable software by anticipating future

changes and adding flexibility. Software that is more maintainable can result in

reduced costs for both developers and customers.

■ Reusability. A software component is reusable if it can be used in several

different systems with little or no modification. High reusability can reduce the

long-term costs faced by the development team. We will discuss reusable

technology in Chapter 3.

All of these attributes of quality are important. However, the relative importance

of each will vary from stakeholder to stakeholder and from system to system.

For example, reliability and efficiency are usually both of concern to customers

and users; however, in a safety-critical system for controlling a nuclear power

plant, reliability would be far more important than efficiency – assuming that

faster hardware could be bought if efficiency became a problem. On the other

hand, efficiency might be highly important in a program for biologists that

calculates how proteins fold – such a program might take days to run, but if it

fails no disaster will occur. The program can simply be corrected and re-run.

Figure 1.1 What software quality means to different stakeholders

Quality software

Developer:
easy to design;
easy to maintain;
easy to reuse its parts

User:
easy to learn;
efficient to use;
helps get work done

Customer:
solves problems at an acceptable
cost in terms of money paid and
resources used

Development manager:
sells more and pleases customers
while costing less to develop
and maintain

 Lethbridge.book Page 12 Tuesday, November 16, 2004 12:22 PM

Section 1.5 13Software quality

Often, software engineers improve one quality at the expense of another. In

other words, they have to consider various trade-offs. The following are some

examples of this:

■ Improving efficiency may make a design less easy to understand. This can

reduce maintainability, which leads to defects that reduce reliability.

■ Achieving high reliability often entails repeatedly checking for errors and

adding redundant computations; achieving high efficiency, in contrast, may

require removing such checks and redundancy.

■ Improving usability may require adding extra code to provide feedback to the

users, which might in turn reduce overall efficiency and maintainability.

One of the characteristics that distinguishes good engineering practice is setting

objectives for quality when starting a project, and then designing the system to

meet these objectives. The objectives are set in such a way that if they are met,

all the stakeholders will be happy. Also, since there is no need to exceed the

objectives, they help engineers to avoid spending more effort than is necessary.

To compete in the market successfully, it is sometimes necessary to optimize

certain aspects of designs. This means achieving the best possible levels of

certain qualities, while not exceeding a certain budget and at the same time

meeting objectives for the other qualities.

Exercise

E3 For each of the following systems, which attributes of quality do you think

would be the most important and the least important?

(a) A web-based banking system, enabling the user to do all aspects of banking

on-line.

(b) An air traffic control system.

(c) A program that will enable users to view digital images or movies stored in

all known formats.

(d) A system to manage the work schedule of nurses that respects all the

constraints and regulations in force at a particular hospital.

(e) An application that allows you to purchase any item seen while watching TV.

Internal quality criteria
Above, we have largely been talking about external quality attributes that can be

observed by the stakeholders and have a direct impact on them. There are also

many internal quality criteria that characterize aspects of the design of software

 Lethbridge.book Page 13 Tuesday, November 16, 2004 12:22 PM

14 Chapter 1
Software and software engineering

and have an effect on the external quality attributes. The following are a couple

of examples:

■ The amount of commenting of the code. This can be measured as the fraction

of total lines in the source code that are comments. This impacts

maintainability, and indirectly it impacts reliability.

■ The complexity of the code measured in terms of the nesting depth, the

number of branches and the use of certain complex programming constructs.

This directly impacts maintainability and reliability.

In Sections 2.10 and 9.2, when we talk about design, we will discuss additional

internal quality criteria that affect the externally visible qualities.

Quality for the short term vs. quality for the long term
It is human nature to worry more about short-term needs and ignore the longer-

term consequences of decisions. This can have severe consequences. Examples

of short-term quality concerns are: Does the software meet the customer’s

immediate needs? Is it sufficiently efficient for the volume of data we have

today?

These questions are important, and must be answered. However, if you take

an exclusively short-term focus you are likely to ignore maintainability, and also

to ignore the longer-term needs of the customers. This is a mistake made by

numerous software engineers over the years, resulting in much higher costs later

on. Unfortunately, at the height of excitement about new projects with

impending deadlines and markets to capture, even seasoned developers fall into

the same trap.

1.6 Software engineering projects

Software engineering work is normally organized into projects. For a small

software system, there may only be a single team of three or four developers

working on the project. For a larger system, the work is usually subdivided into

many smaller projects.

We can divide software projects into three major categories: 1) those that

involve modifying an existing system; 2) those that involve starting to develop a

system from scratch, and 3) those that involve building most of a new system

from existing components, while developing new software only for missing

details.

Evolutionary projects
Most software projects are of the first type – modifying an existing system. The

term maintenance is often used to describe this process; however, for many

people the word maintenance implies keeping something running by simply

fixing problems, but without adding significant new features. The reality of

 Lethbridge.book Page 14 Tuesday, November 16, 2004 12:22 PM

Section 1.6 15Software engineering projects

software change is somewhat different: there tends to be constant pressure from

users and customers not only to fix problems but also to make many other kinds

of changes. After several years of such changes, software systems are often

significantly larger and barely resemble their original state. We will thus use the

term evolution to more accurately describe what happens to software over its

life-span.

Evolutionary or maintenance projects can be of several different types:

■ Corrective projects involve fixing defects.

■ Adaptive projects involve changing the system in response to changes in the

environment in which the software runs. For example, it might be necessary to

make changes so that the system will continue to work with a new version of

the operating system or database, or with a new set of tax laws.

■ Enhancement projects involve adding new features for the users.

■ Re-engineering or perfective projects involve changing the system internally so

that it is more maintainable, without making significant changes that the user

will notice.

In reality, most evolutionary projects involve more than one of the above.

In many cases, a software engineering team must undertake evolution of a

system when the original developers are no longer available, or when their

memory of the design is starting to fade. Such a system is called a legacy system.

A team can take great pride in evolving a high-quality product such that it

continues to meet the needs of customers. However, it is important to ensure

that the product does not become a ‘victim of its own success’. This occurs

when customers constantly want new features added, so the software becomes

so large and bloated that it becomes difficult to maintain at a high level of

quality.

Greenfield projects
Projects to develop an entirely new software system from scratch are

significantly less common than evolutionary projects. Developers often enjoy

such brand new, or greenfield, projects because they have a wider freedom to be

creative about the design.

In a greenfield project you are not constrained by the design decisions and

errors made by predecessors. However, it takes a lot of work to build a complex

system from scratch.

Projects that involve building on a framework or a set of existing components
The third type of software project can be considered neither evolutionary

nor new development. This type of project, which is becoming increasingly

common, starts with a framework, or involves plugging together several

components that are already developed and provide significant functionality.

 Lethbridge.book Page 15 Tuesday, November 16, 2004 12:22 PM

16 Chapter 1
Software and software engineering

A framework is a software system especially designed to be reused in different

projects, or in the various products of a product line. A framework contains

important functionality, but must be adapted to handle the requirements of

particular customers or products.

For example, imagine an application framework for ticketing. Such a system

would have basic capabilities for reserving and printing tickets for events or

travel. These functions would be well designed and tested by the original

developers of the framework. However, many details would need to be added to

handle the particular needs of each new organization that adopts the

framework. Selling tickets for a theater can be quite different from selling tickets

for a sporting event, a tropical holiday package or even a cinema.

As an example of the use of components, imagine you had an accounting

package and a package for tracking meetings, appointments etc. You might hook

these together to create a product for a lawyer’s office. The meetings and

appointments would automatically result in charges for time being recorded in

the accounting package. The code that you write to connect the two component

packages is called glue.

The use of frameworks or components allows you to benefit from reusing

software that has been shown to be reliable. Yet, at the same time, it gives you

much of the freedom to innovate that you would have if you were performing

greenfield development.

In Chapter 3 we will discuss frameworks in detail. We will also present a

framework that you will use in exercises and projects throughout this book.

1.7 Activities common to software projects

The following subsections briefly describe many of the activities commonly

found in software engineering projects. We will discuss most of these in more

detail later in the book.

Requirements and specification
In order to solve the customer’s problems, you must first understand the

problems, the customer’s business environment, and the available technology

which can be used to solve the problems. Once you have done this, you can meet

with the customers and users to decide on a course of action that will solve the

problems. If you decide that developing or modifying software is the best course

of action, then you can decide in detail what facilities the software should provide.

This overall process may include the following activities.

■ Domain analysis: understanding the background needed so as to be able to

understand the problem and make intelligent decisions.

■ Defining the problem: narrowing down the scope of the system by

determining the precise problem that needs solving.

 Lethbridge.book Page 16 Tuesday, November 16, 2004 12:22 PM

Section 1.7 17Activities common to software projects

■ Requirements gathering: obtaining all the ideas people have about what the

software should do.

■ Requirements analysis: organizing the information that has been gathered,

and making decisions about what in fact the software should do. The term

‘requirements analysis’ is often used more broadly to include some of the other

steps in this list.

■ Requirements specification: writing a precise set of instructions that define

what the software should do. These instructions should describe how the

software behaves from the perspective of the user, but should not describe any

details of the implementation.

One of the most important principles of requirements is to separate the ‘what’

from the ‘how’. The ‘what’ refers to the requirements – what is needed to solve

the problem. The ‘how’ refers to how the solution will be designed and

implemented.

Although initial requirements should be established early in a project, the

customers’ needs tend to change. Requirements analysis therefore should be

continued throughout the life of a software system. We will discuss

requirements in detail in Chapter 4.

Design
Design is the process of deciding how the requirements should be implemented

using the available technology. Important activities during design include:

■ Deciding what requirements should be implemented in hardware and what in

software. This is called systems engineering and is normally only necessary for

embedded and other real-time systems. Even for these systems, there is a trend

towards implementing more and more facilities in software so that the

hardware can be simpler and more generic.

■ Deciding how the software is to be divided into subsystems and how the

subsystems are to interact. This process is often called software architecture;

there are several well-known ways of structuring software which are called

architectural patterns or styles. In Chapter 3 we will introduce the client–server

architecture, and in Chapter 9 we will look at other architectural patterns.

■ Deciding how to construct the details of each subsystem. Such details include

the data structures, classes, algorithms and procedures. This process is often

called detailed design.

■ Deciding in detail how the user is to interact with the system, and the look and

feel of the system. This is called user interface design, and will be discussed in

Chapter 7.

■ Deciding how the data will be stored on disk in databases or files. We do not

discuss this topic in this book – it is addressed in many specialized books.

 Lethbridge.book Page 17 Tuesday, November 16, 2004 12:22 PM

18 Chapter 1
Software and software engineering

Quite often, for large systems, software engineers work on architectural design

in conjunction with high-level requirements. This allows them to divide a

system effectively into subsystems. Detailed requirements can then be

developed for each subsystem. For smaller systems and lower-level subsystems

though, it is conventional to develop the requirements before starting the design

since otherwise the design may have to be re-done if requirements change.

Modeling
Modeling is the process of creating a representation of the domain or the

software. Various modeling approaches can be used during both requirements

analysis and design. These include:

■ Use case modeling. This involves representing the sequences of actions

performed by the users of the software. We will discuss this in Chapter 4.

■ Structural modeling. This involves representing such things as the classes and

objects present in the domain or in the software. This is the topic of Chapters 5

and 6.

■ Dynamic and behavioral modeling. This involves representing such things as

the states that the system can be in, the activities it can perform, and how its

components interact. This is the topic of Chapter 8.

Modeling can be performed visually, using diagrams, or else using semi-formal

or formal languages that express the information systematically or

mathematically. In this book, we will primarily use semi-formal notations and

diagrams – in particular a visual language called UML.

Programming
Programming is an integral part of software engineering. It involves the

translation of higher-level designs into particular programming languages. It

Agile versus conventional development
There is a community of software engineers who practice what is called agile development. Agile
methods emphasize the ability to quickly modify software and have been found to work well for small
to medium-sized systems. The most well-known such method is called eXtreme Programming (XP).
We will contrast agile methods with more conventional methods at several places in this book.

One way in which agile and conventional methods differ is in how they treat requirements
and design. Agile practitioners gather requirements in very small increments, and design and
implement each increment before gathering the next small requirements increment. They
fully acknowledge that this may require the design to be changed to accommodate the new
requirements, and use techniques called refactoring to make the necessary design changes.
Conventional practitioners, on the other hand, prefer to develop a design that will be robust
in the face of changing requirements. We will revisit all these ideas at various points in the
book.

 Lethbridge.book Page 18 Tuesday, November 16, 2004 12:22 PM

Section 1.7 19Activities common to software projects

should be thought of as the final stage

of design because it involves making

decisions about the appropriate use of

programming language constructs,

variable declarations etc. Most people

who call themselves programmers also

perform many higher-level design

activities. People who limit their work

to programming (i.e. who do no

higher-level design or analysis) are

often today called ‘coders’.

One of the objectives of software engineering researchers has been to

automate programming. There has been some success in this regard – some

tools now generate much of the code for you from models typically represented

in UML. However, there will always be a need for some programming done by

humans.

We assume that readers of this book have some object-oriented program-

ming background. We will use Java for the example code in this book, and you

will be asked to translate designs into programs so you can get a feel for the

effects of various design decisions. If you know an object-oriented language

other than Java (e.g. C++, C# or Smalltalk) it should not be difficult to learn

enough Java to use the book effectively.

Quality assurance
Quality assurance (QA) encompasses all the processes needed to ensure that the

quality objectives discussed in Section 1.5 are met. Quality assurance occurs

throughout a project, and includes many activities, including the following:

■ Reviews and inspections. These are formal meetings organized to discuss

requirements, designs or code to see if they are satisfactory.

■ Testing. This is the process of systematically executing the software to see if it

behaves as expected.

Quality assurance is also often divided into validation, which is the process of

determining whether the requirements will solve the customer’s problem, and

verification, which is the process of making sure the requirements have been

adhered to.

In various chapters, we present checklists that you can use to conduct reviews.

Testing and some other aspects of quality assurance are presented in detail in

Chapter 10.

Deployment
Deployment involves distributing and installing the software and any other

components of the system such as databases, special hardware etc. It also

involves managing the transition from any previous system.

Pair programming
One of the recommended approaches in the agile method
‘eXtreme Programming’ is called pair programming. In this
technique, two programmers always work together in
front of a single computer. The idea is that their constant
interaction should stimulate good ideas and prevent
errors. Whether this approach should be widely adopted
is still being studied and debated.

 Lethbridge.book Page 19 Tuesday, November 16, 2004 12:22 PM

20 Chapter 1
Software and software engineering

Deploying a new release of a large system with many users can pose great

difficulties – the amount of work is often under-estimated. To keep this book

short, we have decided not to discuss deployment.

Managing software configurations
Configuration management involves identifying all the components that

compose a software system, including files containing requirements, designs

and source code. It also involves keeping track of these as they change, and

ensuring that changes are performed in an organized way. All software

engineers must participate in the configuration management of the parts of the

system for which they are responsible.

Managing the process
Managing software projects is considered an integral part of software

engineering. All software engineers assist their managers to some extent, and

most will, at some point in their careers, become managers themselves.

Management issues are discussed briefly in Chapter 11. In addition to leading

the other activities described above, the manager has to undertake the following

tasks:

■ Estimating the cost of the system. This involves studying the requirements

and determining how much effort they will take to design and implement.

■ Planning. This is the process of allocating work to particular developers, and

setting a schedule with deadlines.

Both cost estimates and plans need to be examined and revised on a regular

basis, since initial estimates will only be rough.

1.8 The themes emphasized in this book

The nine general themes discussed below are emphasized through many of the

chapters in this book. They represent general principles or unifying approaches

that can be used in any software project.

Theme 1: understanding the customer and user
Interaction with customers and users should occur in virtually all of the

software engineering activities discussed in the previous section. These two

groups of stakeholders are most heavily involved in requirements analysis, user

interface design and deployment, but also may play a role in design, quality

assurance and project management.

If software engineers can learn how users and customers think and behave,

then it will be easier to produce software that meets their needs. Ensuring that

they feel involved in the software engineering process will result in fewer

mistakes being made and greater acceptance of the finished product.

 Lethbridge.book Page 20 Tuesday, November 16, 2004 12:22 PM

Section 1.8 21The themes emphasized in this book

Theme 2: basing development on solid principles and reusable technology
A fundamental tenet of engineering is that once techniques or technology

become well established, their use should become routine. Civil engineers, for

example, have a well-established set of principles, which they use to decide what

kind of bridge to build. They also have standard bridge designs that they adapt

for most routine bridge projects.

Even though software engineering is still a maturing discipline, many

principles have become well established. We discuss these principles throughout

the book.

As for technology, we base our designs on Java, a language with wide

acceptance. Furthermore, in Chapter 3 we present a framework – a collection of

classes that forms the basic structure upon which many different applications

can be built. We demonstrate how this framework can be used to rapidly build

several different applications.

Applying well-understood principles and reusing designs means that we are

building on the experience and work of others, rather than ‘reinventing the

wheel’. The creative task of the engineer is to put knowledge to use in innovative

ways to solve problems. This contrasts with the role of the scientist, which is to

seek out new knowledge.

Theme 3: object orientation
Object-oriented (OO) techniques are based on the use of classes that act as

abstractions of data, and that contain a set of procedures which act on that data.

It is now widely recognized that object orientation is an effective design

approach to manage the complexity inherent in most large systems.

In this book we discuss three major areas of software engineering in an object-

oriented context: analysis, design and programming. In Chapter 2, we review

basic OO principles and OO programming; then, in the rest of the book, we

approach analysis and design from a primarily OO perspective. We will ask you

to implement your designs in the OO language Java, so that you can see the

consequences of your design decisions.

Theme 4: visual modeling using UML
The Unified Modeling Language (UML) is a set of notations for representing

software requirements and design. It is now widely accepted as the standard

approach to representing many aspects of software.

We will teach you in some detail how to use several different aspects of UML,

including class diagrams (Chapter 5), state diagrams and interaction diagrams

(both in Chapter 8).

Theme 5: evaluation of alternatives in requirements and design
There is rarely a single straightforward answer to any problem in software

engineering. Whether you are developing requirements or performing design,

 Lethbridge.book Page 21 Tuesday, November 16, 2004 12:22 PM

22 Chapter 1
Software and software engineering

there are often several alternatives that must be assessed systematically to

decide which is best.

In both requirements analysis and design we will encourage you to list

alternatives, and discuss their advantages and disadvantages before making a

decision. We will also encourage you to document your reasoning, frequently

called rationale, so that others can understand your decisions.

Theme 6: incorporating quantitative and logical thinking
It is becoming increasingly necessary to incorporate mathematical thinking into

software development. We will present basic ways to measure aspects of

software systems and software engineering processes. The objective of doing

this measurement is to help make predictions of development time and quality

in order to better control these factors. This topic, commonly known as software

metrics, is covered in the chapters on object-orientation (Chapter 2),

requirements (Chapter 4), design (Chapter 9), testing (Chapter 10) and project

management (Chapter 11).

We will also show several ways to make use of logic in order to develop software:

in Chapter 5 we will introduce OCL, a language for formally describing properties

of designs; and in Chapter 9 we will show how logic can be used in a technique

called defensive programming.

Theme 7: iterative and agile development
Traditionally, software engineering has been performed following what is called

the waterfall model. In this approach you first develop requirements; once these

are complete you move on to design, and then to programming, testing and

deployment. An outdated view held that you should completely finish each of

these steps before moving on to the next; then, when you complete deployment,

you are finished. In contrast, the currently accepted view is that software

engineering is, and should be, a highly iterative process. So-called agile

techniques are the most highly iterative of all (see the sidebar ‘Agile versus

conventional development’ earlier in this chapter).

It is typical to develop the first iteration of a system as a prototype, with only

rough requirements and little functionality. Doing this serves to help establish

the requirements for the next iteration. Several iterations of prototypes may be

needed before the stakeholders are finally satisfied with the requirements, at

which time you can proceed with a more rigorous process involving more

complete specification and design.

Even after delivering software to customers, you typically continue to build a

series of new releases, each one involving most of the activities discussed in

Section 1.6. Iterative development results in delivering smaller units of work

(prototypes or releases) quite frequently. This means that the first release can be

in the customers’ hands earlier than if you had tried to develop a fully fledged

system. It also means that if the system turns out to be a disaster, less work has

been wasted.

 Lethbridge.book Page 22 Tuesday, November 16, 2004 12:22 PM

Section 1.8 23The themes emphasized in this book

We will practice the iterative approach in this book, starting in Chapter 3, by

asking you to make a series of small changes to a project. You will do the

requirements, design and implementation of each change, with changes

becoming more sophisticated as you learn more of the material in the book.

We discuss processes the waterfall, iterative and other approaches in more

detail in Chapter 11.

Theme 8: communicating effectively using documentation
Software engineers communicate with each other orally both in meetings and at

each other’s desks; however, it would never be possible to run a large project if

all information had to be conveyed in this manner.

Writing clear documentation is therefore an

essential skill. Documentation should be written at

all stages of development and includes requirements,

designs, user manuals, instructions for testers and

project plans. One of the keys to writing good

documentation is to understand the audience. You

must provide the information the readers will need,

and organize it in such a way that the readers can find it easily. For example, the

audience for design documentation includes other software engineers with whom

you are currently working, as well as those who will need to make changes later. Both

groups need to understand what you did and why you did it.

Unfortunately, unless it is managed appropriately, writing documentation can

waste resources and can be a source of rigidity in software development. The

waste of resources can occur if documentation is never read – this will be the

case if it is excessively voluminous, poorly written or not made readily available.

Excessive documentation means that the readers cannot find what they want

easily, and ‘can’t find the forest for the trees’. It is therefore as bad as if you had

not created enough documentation to start with.

Forcing software developers to write documents prematurely just to meet

specific deadlines can mean that the overall objective becomes writing

documents, instead of solving problems. Furthermore, such documents can

entrench poorly made decisions that are hard to change.

In this book, we will encourage you to write documentation but we will

emphasize that it should be as short and succinct as possible, and it should serve

the purpose of documenting your decisions and communicating them to others.

Furthermore, documentation should be written in the context of risk

management, discussed below, which means that it is always subject to change.

We will give you outlines of each type of document as well as several example

documents. You will have the opportunity to practice writing the documents

and also reviewing them in groups.

When writing documentation you should also be aware that there are often

standards that you should adhere to. It is important that documentation used

within a company have a standard format so that people can more easily use it.

Agile documentation
Agile developers prefer to write very little
documentation. Some would prefer that
anything that needs documenting be put in
code comments and nowhere else.

 Lethbridge.book Page 23 Tuesday, November 16, 2004 12:22 PM

24 Chapter 1
Software and software engineering

Theme 9: risk management in all software engineering activities
Whereas documentation allows future readers to keep an eye on the past, we

must also constantly keep an eye on the future. Risk analysis is a key software

engineering activity in which we constantly assess any new information to

determine whether it will cause problems for the project. If you believe there is

a significant risk that a certain type of problem will arise, then you can take steps

to reduce the risk.

Software is an investment that should provide benefits; and risks are natural

in any investment. The objective must be to reduce risks to acceptable levels,

while still achieving the benefits. Taking action to reduce risks is like adjusting

your investment portfolio. Sometimes you put more effort into certain tasks to

ensure the project is completed successfully; at other times you must cut parts

of the system to avoid losses.

The last numbered section of every chapter will discuss the difficulties and

risks to be considered in the material covered by that chapter. In the next section

we begin this process by reviewing the most important risks in software

engineering.

1.9 Difficulties and risks in software engineering as a whole

The following is a selection of general factors, or challenges, that can have a

major impact on the success of a software engineering project. Software

engineers should regularly analyze whether any of these poses a risk, and take

the suggested corrective action if necessary.

Some of these points serve as a review of what we said earlier in this chapter.

We will discuss many of them in more detail in subsequent chapters.

After each challenge listed below, we list some suggestions for resolution.

These suggestions can be used both to reduce risk and solve problems. However,

since each situation is different, the suggestions will not always work –

experience and good judgment must be your ultimate guide. As you read

through the rest of the book, you will learn more details about how to go about

resolving the difficulties.

■ Complexity and large numbers of details. Software systems tend to become

complex because: a) it is easy to add new features, b) software developers

typically add features without fully understanding a system, and c) the system

may not have been originally designed to accommodate the features.

Resolution. Design the system for flexibility right from the start. Divide the system

into smaller subsystems, so that each one is naturally simpler. Resist the urge to

add new features, and consider removing those that are not needed. Use tools

designed to help you more fully understand the structure of a software system.

Budget sufficient time to learn about the software before making changes. When

faced with an over-complex system, redesign parts of it as necessary.

 Lethbridge.book Page 24 Tuesday, November 16, 2004 12:22 PM

Section 1.9 25Difficulties and risks in software engineering as a whole

■ Uncertainty about technology. You can never be sure whether the technology

on which a system depends will work as expected. Hardware tends to be

reliable, but special-purpose hardware or future versions of the hardware may

differ from what you expect. Software libraries and other software systems with

which a system interacts can be expected to have bugs and incompatibilities.

Resolution. Avoid technology sold by just a single vendor and which has relatively

few other customers. Widely used technology is more likely to be supported and to

have had its defects removed. Avoid obscure features of any technology. Balance

the benefits of your use of third-party technology with the risks of problems.

Create prototypes to try out the technology you will be using.

■ Uncertainty about requirements. Until a system is delivered and in use, you

can never be quite sure whether it meets the customer’s needs.

Resolution. Understand the application domain so you can communicate

effectively with clients and users. Follow a good requirements gathering and

analysis process. Prototype to get an early view of potential problems. Continually

interact with users and clients to keep up to date on their needs. Design with

change in mind.

■ Uncertainty about software engineering skills. Software engineering is

heavily labor-intensive; however, skills of team members can vary

dramatically and probably are the biggest single factor affecting success of a

project.

Resolution. Make sure software engineers have sufficient general education,

plus training in the technology to be used. Make sure they have sufficient

experience by ‘practicing’ on prototypes or systems that are of lesser importance.

Put in place a mentoring system so that the software engineers can effectively

learn from others.

■ Constant change. Both technology and requirements can be expected to

change regularly.

Resolution. Design for flexibility to accommodate potential changes. Stay aware of

things that may change. Adjust the requirements or design as soon as important

changes are discovered. Avoid changing too much too frequently, however.

■ Deterioration of software design. Software deteriorates due to successive

changes that introduce bugs.

Resolution. Build flexibility and other aspects of maintainability into the software

from the start so that changes are easier to make. Ensure software engineers have

sufficient training. Ensure changes are not rushed. Perform quality assurance

activities on each change.

■ ‘Political’ risks. Not everybody will be happy with the requirements. Not

everybody may want the system. Competition or organizational changes might

render the system less important or might result in project cancelation. Various

stakeholders may not understand certain software-engineering practices and

may want you to do things with which you disagree.

 Lethbridge.book Page 25 Tuesday, November 16, 2004 12:22 PM

26 Chapter 1
Software and software engineering

Resolution. Participate in promoting and marketing the project. Enhance your

negotiating and other ‘people’ skills. Regularly evaluate how the system will

impact all the stakeholders, and work closely with them to foster increased

understanding of issues.

1.10 Summary

We have emphasized in this chapter that software engineering is an emerging

engineering specialty in which you focus on solving a customer’s problem by

developing high-quality software.

Since software is relatively intangible, our ability to work with it is different

from other engineering products. It is possible for a beginner to rapidly program

a significantly sized system, make changes to source code in a matter of minutes,

and distribute thousands of copies at little cost. Unfortunately, developing

systems in a rapid and ad hoc way like this leads to excessive complexity and

increasing numbers of problems.

To perform good software engineering, it is necessary to incorporate

discipline into software development. Some ways of doing this include carefully

understanding users and their requirements, taking time to perform design, and

carefully evaluating the quality of the software. You also must keep systems

small at first to reduce the risk of failure, focus on delivering systems within a

fixed amount of time, and constantly reassess what you are doing so that you can

take action when problems arise.

Throughout the rest of this book we will present many different software

engineering techniques so that you can learn how to achieve the goal of solving

customers’ problems more effectively.

1.11 For more information

At the end of each chapter we will discuss sources of information that you can

consult to learn more about the material in that chapter. In this chapter, we list

general software engineering resources; in later chapters we list resources

covering specific issues.

The resources include web sites, books and periodicals. We have only listed

web sites that we believe to contain reasonably reliable information or useful sets

of links, which have stood the test of time, and are likely to be maintained. This

book’s web site (www.lloseng.com) contains a page with all the links shown in

the book, updated as necessary.

Software engineering magazines published by major organizations
■ IEEE Software, http://www.computer.org/software/

The IEEE Computer Society is one of the two most important international

organizations that focus on software engineering. They produce many software

 Lethbridge.book Page 26 Tuesday, November 16, 2004 12:22 PM

Section 1.11 27For more information

engineering publications, but IEEE Software is probably the one most readable

by practitioners.

■ IEEE Computer, http://www.computer.org/computer/

Also published by the IEEE Computer Society, this magazine covers a broader

spectrum of computing topics, including software engineering. All members of

the society receive this.

■ Communications of the ACM, http://www.acm.org

The Association for Computing Machinery (ACM) is the other main

international organization involved in the development of software

engineering. CACM is not exclusively about software engineering, but has

many articles on this topic. It is included with membership in the ACM.

Other selected software engineering Internet sites

■ The Software Engineering Body of Knowledge (SWEBOK), www.swebok.org

The goal of this project, initiated by the ACM and the IEEE, is to gather

together all the most important and widely accepted knowledge in software

engineering. The SWEBOK initiative is under continuous development, and is

an excellent resource to find detailed background material about the field.

■ The ACM/IEEE software engineering code of ethics, http://www.acm.org/

serving/se/code.htm

■ The Community for Software Engineers, www.software-engineer.org

■ The Wikipedia entry for software engineering: http://en.wikipedia.org/wiki/

Software_engineering

■ The Software Engineering Institute (SEI) at Carnegie Mellon University,

www.sei.cmu.edu

One of the foremost research institutes on software engineering.

General software engineering books

■ Roger Pressman, Software Engineering: a Practitioner’s Approach, 6th edition,

McGraw Hill, 2004. This is one of the classic books covering all areas of

software engineering in considerable depth. http://www.rspa.com/about/

sepa.html

■ Stephen R. Schach, Object-Oriented and Classical Software Engineering, 6th

edition, McGraw Hill, 2004. http://www.mhhe.com/catalogs/0072865512.mhtml

■ Ian Sommerville, Software Engineering, 7th Edition, Addison-Wesley, 2004,

http://www.software-engin.com/

■ Bernd Bruegge and Allen Dutoit, Object-Oriented Software Engineering: Using

UML, Patterns and Java, 2nd edition, Prentice Hall, 2004

 Lethbridge.book Page 27 Tuesday, November 16, 2004 12:22 PM

28 Chapter 1
Software and software engineering

■ Shari Lawrence Pfleeger, Software Engineering: Theory and Practice, 2nd

edition, Prentice Hall, 2001.

The profession of engineering
■ Greatest achievements of engineering: http://www.greatachievements.org

■ Professional Engineering Institutions (UK): http://www.pei.org.uk

■ Canadian Council of Professional Engineers: http://www.ccpe.ca

■ National Society of Professional Engineers (US): http://www.nspe.org

 Lethbridge.book Page 28 Tuesday, November 16, 2004 12:22 PM

