Packet Switching

CS457
Fall 2014

Topics

* Learning bridges/switches
* Spanning tree algorithm

e Virtual LANSs

Switches: Tratftic Isolation

* Switch breaks subnet into LAN segments

* Switch filters packets
— Frame only forwarded to the necessary segments

— Segments become separate collision domains

— Bridge: a switch that connects two LAN segments

collision domain

xy switch/bridge

collision domain

collision
domain

Motivation For Self Learning

Switches forward frames selectively

® Forward frames only on segments that need them
Switch table

® Maps destination MAC address to outgoing interface

® (Goal: construct the switch table automatically
8-
A @—/—/—'@ ¢

switch

® o

Self Learning: Building the Table

e When a frame arrives
— Inspect the source MAC address

— Associate the address with the incoming interface
— Store the mapping in the switch table

— Use a time-to-live field to eventually forget the mapping

B
Switch learns @

how to reach A. —

A@—.
® o

Self Learning: Handling Misses

When frame arrives with unfamiliar destination
® Forward the frame out all of the interfaces
e ... except for the one where the frame arrived
e Hopefully, this case won’ t happen very often

When in
doubt,
shout!

Switch Filtering/Forwarding

When switch receives a frame:

index switch table using MAC dest address

if entry found for destination
then{

if dest on segment from which frame arrived
then drop the frame

else forward the frame on interface indicated

)

else flood

"~ forward on all but the interface
on which the frame arrived

Flooding Can Lead to Loops

Switches sometimes need to broadcast frames
® Upon recetving a frame with an unfamiliar destination
e Upon receiving a frame sent to the broadcast address
Broadcasting 1s implemented by flooding
® Transmitting frame out every interface
® .. cxcept the one where the frame arrived
Flooding can lead to forwarding loops
® E.g., if the network contains a cycle of switches
e FEither accidentally, or by design for higher reliability

Solution: Spanning Trees

* Ensure the topology has no loops

— Avoid using some of the links when flooding
— ... to avoid forming a loop

* Spanning tree
— Sub-graph that covers all vertices but contains no cycles
— Links not in the spanning tree do not forward frames

N\ N\
o\

IS
IS
IS
IS
e
.

Constructing a Spanning Tree

* Need a distributed algorithm
— Switches cooperate to build the spanning tree
— ... and adapt automatically when failures occur

* Key ingredients of the algorithm
— Switches need to elect a “root”

root
 The switch with the smallest identifier

— Each switch identifies 1f its interface /
1s on the shortest path from the root

 And exclude it from the tree if W
— Messages (Y, d, X) One hop .
 From node X — /

e Claiming Y is the root ™ 1\
 And the distance 1s d Three hops

Steps 1n Spanning Tree Algorithm

* Initially, each switch thinks it 1s the root
— Switch sends a message out every interface
— ... 1dentifying itself as the root with distance 0
— Example: switch X announces (X, 0, X)

* Switches update their view of the root
— Upon receiving a message, check the root ID
— If the new 1d 1s smaller, start viewing that switch as root

* Switches compute their distance from the root
— Add 1 to the distance received from a neighbor

— Identify interfaces not on a shortest path to the root
— ... and exclude them from the spanning tree

Example From Switch #4 s Viewpoint

* Switch #4 thinks it 1s the root
— Sends (4, 0, 4) message to 2 and 7

* Then, switch #4 hears from #2 1
— Receives (2, 0, 2) message from 2 / \
— ... and thinks that #2 is the root 3 \ S
— And realizes it 1s just one hop 2 \
away 4 — / \
* Then, switch #4 hears from #7 N - 6

— Receives (2, 1, 7) from 7
— And realizes this 1s a longer path
— So, prefers its own one-hop path

— And removes 4-7 link from the
tree

Example From Switch #4 s Viewpoint

* Switch #2 hears about switch #1
— Switch 2 hears (1, 1, 3) from 3

— Switch 2 starts treating 1 as root 1
— And sends (1, 2, 2) to neighbors / \

» Switch #4 hears from switch #2 - . S
— Switch 4 starts treating 1 as root 2 \
— And sends (1, 3, 4) to neighbors 4 — / \

* Switch #4 hears from switch #7 N 7 °

— Switch 4 receives (1, 3, 7) from 7
— And realizes this 1s a longer path

— So, prefers its own three-hop path
— And removes 4-7 link from the tree

Robust Spanning Tree Algorithm

* Algorithm must react to failures
— Failure of the root node
* Need to elect a new root, with the next lowest 1dentifier
— Failure of other switches and links
* Need to re-compute the spanning tree

* Root switch continues sending messages
— Periodically re-announcing itself as the root (1, 0, 1)
— Other switches continue forwarding messages

* Detecting failures through timeout (soft state!)

— Switch waits to hear from others

— Eventually times out and claims to be the root
See Section 3.2.2 in the textbook for details and another example

Evolution Toward Virtual LANSs

* In the olden days...
— Thick cables snaked through cable ducts in buildings
— Every computer they passed was plugged in
— All people 1n adjacent offices were put on the same LAN
— Independent of whether they belonged together or not
* More recently...
— Hubs and switches changed all that
— Every office connected to central wiring closets
— Often multiple LANSs (k hubs) connected by switches
— Flexibility in mapping offices to different LANs

Group users based on organizational structure,
rather than the physical layout of the building.

Why Group by Organizational Structure?

* Security
— Ethernet 1s a shared medium
— Any interface card can be put into “promiscuous” mode
— ... and get a copy of all of the traffic (e.g., midterm exam)
— So, 1solating traffic on separate LANs improves security

e Load

— Some LAN segments are more heavily used than others
— E.g., researchers running experiments get out of hand
— ... can saturate their own segment and not the others

— Plus, there may be natural locality of communication

— E.g., traffic between people in the same research group

People Move, and Roles Change

* Organizational changes are frequent
— E.g., faculty office becomes a grad-student office
— E.g., graduate student becomes a faculty member
* Physical rewiring 1s a major pain
— Requires unplugging the cable from one port
— ... and plugging it into another
— ... and hoping the cable 1s long enough to reach
— ... and hoping you don’ t make a mistake

« Would like to “rewire” the building in software
— The resulting concept 1s a Virtual LAN (VLAN)

Example: Two Virtual LANs

T T‘\TT

‘n

Red VLAN and
Bridges forward traffic as needed

Example: Two Virtual LANs

T/
7 N

Red VLAN and
Switches forward traffic as needed

Making VLANs Work

* Bridges/switches need configuration tables
— Saying which VLANSs are accessible via which interfaces

* Approaches to mapping to VLANSs
— Each interface has a VLAN color
* Only works 1f all hosts on same segment belong to same VLAN
— Each MAC address has a VLAN color
» Useful when hosts on same segment belong to different VLANSs
* Useful when hosts move from one physical location to another

* Changing the Ethernet header
— Adding a field for a VLAN tag
— Implemented on the bridges/switches
— ... but can still interoperate with old Ethernet cards

Moving From Switches to Routers

* Advantages of switches over routers
— Plug-and-play
— Fast filtering and forwarding of frames

— No pronunciation ambiguity (e.g., “rooter’ vs. “rowter’)

* Disadvantages of switches over routers
— Topology i1s restricted to a spanning tree
— Large networks require large ARP tables
— Broadcast storms can cause the network to collapse

Addressing

Topics

e [P addresses
— Dotted-quad notation

— IP prefixes for aggregation

 Address allocation

— Classful addresses
— Classless InterDomain Routing (CIDR)
— Growth 1n the number of prefixes over time

* Packet forwarding

— Forwarding tables
— Longest-prefix match forwarding
— Where forwarding tables come from

IP Address (IPv4)

* A unique 32-bit number (1.e., 4B addresses)
* Identifies an interface (on a host, on a router,

)

* Represented in dotted-quad notation
12 34 158 5

R

00001100 100100010| 10011110 |00000101

Grouping Related Hosts

e The Internet is an " INTER-NETwork”

— Connects networks together, not hosts
— Addresses a network (1.e., group of hosts)

host host | "= | host host host | "= | host

LAN 1 LAN 2

ot routerf = router

LAN = Local Area Network
WAN = Wide Area Network

Scalability Challenge

* Suppose hosts had arbitrary addresses

— Then every router would need a lot of information
— ...to know how to direct packets toward the host

1.2.3.4 5.6.7.8 2.4.6.8 1.2.3.5 5.6.7.9 2.4.6.9
host host | = | host host host | = | host
LAN 1

LAN 2

ot ot fouter

1.2.3.4 | <=
1.2.3.5 |)

forwarding table

Hierarchical Addressing: IP Prefixes

* Divided into network & host portions (left and
right)
e 12.34.158.0/24 is a 24-bit prefix with 28

addresses
12 34 158 5

R

00001100 | 00100010] 10011110 |00000101

f—————————

Network (24 bits) Host (8 bits)

IP Address and a 24-bit Subnet Mask
Address

12

|

34

|

158

|

5

|

00001100

00100010

10011110

00000101

11111111

11111111

11111111

00000000

Mask

|

255

|

255

|

255

|

0

Scalability Improved

 Number related hosts from a common subnet
— 1.2.3.0/24 on the left LAN
— 5.6.7.0/24 on the right LAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212
host host | = | host host host | = | host
LAN 1 LAN 2

ot ot fouter

1.2.3.0/24 | <
>

5.6.7.0/24

forwarding table

* No need to update the routers
— E.g., adding a new host 5.6.7.213 on the right

Easy to Add New Hosts

— Doesn’ t require adding a new forwarding entry

1.2.3.4 1.2.3.7 1.2.3.156

host

host

host

1.2.3.0/24

5.6.7.0/24

forwarding table

5.6.7.8 5.6.7.9 5.6.7.212

host

host

host

host ®

[\

\5.6.7.213./

— " m—m -

Address Allocation

Classful Addressing

* In the olden days, only fixed allocation sizes

—Class A: 0*
* Very large /8 blocks (e.g., MIT has 18.0.0.0/8)

—Class B: 10*
* Large /16 blocks (e.g,. CSU has 129.82.0.0/16)

—Class C: 110*
* Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)

* This 1s why folks use dotted-quad notation!

Classless Inter-Domain Routing (CIDR)

Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

Address || 00001100 |00000100 | 00000000 |00000000

Mask || 11111111 | 11111110 | 00000000 |00000000

| Written as 12.4.0.0/15 |

|(—— Network Prefix — | — fOr hosts —

33

CIDR: Hierarchal Address Allocation

» Prefixes are key to Internet scalability

— Address allocated 1n contiguous chunks (prefixes)

— Routing protocols and packet forwarding based on prefixes

— Today, routing tables contain over 400,000 prefixes

<

12.0.0.0/8

12.0.0.0/16
12.1.0.0/16
12.2.0.0/16
12.3.0.0/16

12.3.0.0/24
12.3. 1 0/24

12.3.254.0/24

12.253.0.0/19
12.253.32.0/19
12.253.64.0/19

12.254.0.0/16 12.253.96.0/19
12.253.128.0/19
12.253.160.0/19 34

(.

Scalability: Address Aggregation

Provider is given 201.10.0.0/21

-

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Routers in the rest of the Internet just need to know
how to reach 201.10.0.0/21. The provider can direct the
IP packets to the appropriate customer.

But, Aggregation Not Always Possible

201.10.0.0/21

- o> o>

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Multi-homed customer with 201.10.6.0/23 has two
providers. Other parts of the Internet need to know how
to reach these destinations through both providers.

Scalability Through Hierarchy

* Hierarchical addressing
— Critical for scalable system
— Don’ t require everyone to know everyone else
— Reduces amount of updating when something changes

* Non-uniform hierarchy
— Useful for heterogeneous networks of different sizes
— Initial class-based addressing was far too coarse
— Classless Inter Domain Routing (CIDR) helps

* Next few slides
— History of the number of globally-visible prefixes
— Plots are # of prefixes vs. time

Pre-CIDR (1988-1994): Steep Growth

25000 r .. . °rr T —"T1TTT™
@ i i i i i i
e s et p
2 | | | | | |
2 15000 |- ; . ko 1. 4
= : : : : :
G 10000 foooeri- ; i

5000 |- : L — alll

0

Date

Growth faster than improvements in equipment capability

BGP Table Size

CIDR Deployed (1994-1996): Much

Flatter
40000
35000
30000
25000
20000
15000 i i i i i i i
Mar-94 Jun-94 Sep-94 Dec-94 Mar-95 Jun-95 Sep-95 Dec-95 Mar-96
Date

Efforts to aggregate (even decreases after IETF meetings!)

CIDR Growth (1996-1998): Roughly
Linear

60000 T J T T
L 1 '

55000

50000

45000

BGP Table Size

40000

35000

30000

Date
Good use of aggregation, and peer pressure in CIDR report

BGP Table Size

Boom Period (1998-2001): Steep
Growth

110000

100000

s
g

Date

Internet boom and increased multi-homing

Active BGP entries (FIB)

Long-Term View (1989-2005): Post-

168088

148880

128880

188880

S8000

68880

48000

28800

Boom

o B B N N B N B b NN NN RN NN N NN

89 24 91 a2 a3 94 a5 96 a7 98 99 aa
Date

@
-

ag as a4 as

Obtaining a Block of Addresses

* Separation of control
— Prefix: assigned 7o an institution
— Addresses: assigned by the institution to their nodes

* Who assigns prefixes?
— Internet Corporation for Assigned Names and Numbers

* Allocates large address blocks to Regional Internet
Registries

— Regional Internet Registries (RIRs)

* E.g., ARIN (American Registry for Internet
Numbers)

* Allocates address blocks within their regions

* Allocated to Internet Service Providers and large
institutions

— Internet Service Providers (ISPs)

Figuring Out Who Owns an
Address

* Address registries
— Public record of address allocations

— Internet Service Providers (ISPs) should update
when giving addresses to customers

— However, records are notoriously out-of-date
* Ways to query
— UNIX: “whois —h whois.arin.net 128.112.136.35”
— http://www.arin.net/whois/
— http://www.geektools.com/whois.php

Example Output for 128.112.136.35

OrgName: Princeton University

OrgID: PRNU

Address: Office of Information Technology
Address: 87 Prospect Avenue

City: Princeton

StateProv: NJ

PostalCode: 08544-2007

Country: US

NetRange: 128.112.0.0 - 128.112.255.255
CIDR: 128.112.0.0/16

NetName: PRINCETON

NetHandle: NET-128-112-0-0-1

Parent: NET-128-0-0-0-0

NetType: Direct Allocation

RegDate: 1986-02-24

Are 32-bit Addresses Enough?

* Not all that many unique addresses
—232=4294,967,296 (just over four billion)
— Plus, some are reserved for special purposes
— And, addresses are allocated 1n larger blocks

* And, many devices need IP addresses
— Computers, PDAs, routers, tanks, toasters, ...

* Long-term solution: a larger address space
—IPv6 has 128-bit addresses (2128 = 3.403 x 103%)

* Short-term solutions: limping along with IPv4

— Private addresses
— Network address translation (NAT)
— Dynamically-assigned addresses (DHCP)

Hard Policy Questions

* How much address space per geographic region?
— Equal amount per country?
— Proportional to the population?
— What about addresses already allocated?

* Address space portability?

— Keep your address block when you change providers?

— Pro: avoid having to renumber your equipment

— Con: reduces the effectiveness of address aggregation
* Keeping the address registries up to date?

— What about mergers and acquisitions?

— Delegation of address blocks to customers?

— As a result, the registries are horribly out of date

