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Constraint Satisfaction Problems (CSPs) 

Russell and Norvig Chapter 6 

CSP example: map coloring 
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 Given a map of Australia, color it using three 
colors such that no neighboring territories have 
the same color. 

CSP example: map coloring 
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n  Solutions are assignments satisfying all constraints, e.g.: 
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green} 

Constraint satisfaction problems 

n  A CSP is composed of: 
q  A set of variables X1,X2,…,Xn with domains (possible values) 

D1,D2,…,Dn 

q  A set of constraints C1,C2, …,Cm 

q  Each constraint Ci limits the values that a subset of variables can 
take, e.g., V1 ≠ V2 

In our example: 
n  Variables: WA, NT, Q, NSW, V, SA, T 
n  Domains: Di={red,green,blue} 
n  Constraints: adjacent regions must have different colors. 

q  E.g., WA ≠ NT (if the language allows this) or 
q  (WA,NT) in {(red,green),(red,blue),(green,red),(green,blue),(blue,red),

(blue,green)} 
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Constraint satisfaction problems 

n  A state is defined by an assignment of values to some or 
all variables. 

n  Consistent (or legal) assignment: assignment that does 
not  violate the constraints. 

n  Complete assignment: every variable is mentioned. 
n  Goal:  a complete, consistent assignment. 

 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green} 

9/28/15 5 

Constraint satisfaction problems 
n  Simple example of a factored representation: splits each state 

into a fixed set of variables, each of which has a value 
n  CSP benefits 

q  Standard representation language 
q  Generic goal and successor functions 
q  Useful general-purpose algorithms with more power than 

standard search algorithms, including generic heuristics  
n  Applications: 

q  Time table problems (exam/teaching schedules) 
q  Assignment problems (who teaches what) 
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Varieties of CSPs 

n  Discrete variables 
q  Finite domains of size d ⇒O(dn) complete assignments. 

n  The satisfiability problem:  a Boolean CSP 
q  (AvBvC)^(~BvCvD)^(~AvBv~D)… 

q  Infinite domains (integers, strings, etc.) 
n  e.g., job scheduling where variables are start/end times for each job. 
n  Need a constraint language, e.g., StartJob1 +5 ≤ StartJob2. 

n  Continuous variables 
q  e.g., start/end times for Hubble Telescope observations. 
q  Linear constraints solvable in poly time by linear programming 

methods (dealt with in the field of operations research). 
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Varieties of constraints 

n  Unary constraints involve a single variable. 
q  e.g., SA ≠ green 

n  Binary constraints involve pairs of variables. 
q  e.g., SA ≠ WA 

n  Global constraints involve an arbitrary number of variables. 
n  Preference (soft constraints), e.g., red is better than green; often 

representable by a cost for each variable assignment; not 
considered here. 

September 28, 2015 8 



3	



Constraint graph 

n  Binary CSP: each constraint relates two variables 
n  Constraint graph: nodes are variables, edges are 

constraints 
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Example: cryptharithmetic puzzles 
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Hypergraph	



Variables: F,T,U,W,R,O,C10,C100,C1000

Domains: {0,1, 2,3, 4, 5, 6, 7,8, 9}
Constraints: 
      alldiff (F,T,U,W,R,O)
      O+O = R+10∗C10

CSP as a standard search problem 

n  Incremental formulation 
q  Initial State: the empty assignment {}. 
q  Successor function: Assign value to unassigned variable 

provided that there is not conflict. 
q  Goal test: the current assignment is complete. 

n  Same formulation for all CSPs !!! 
n  Solution is found at depth n (n variables). 

q  What search method would you choose? 
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Constraint propagation 

n  Is a type of inference 
q  Enforce local consistency 
q  Propagate the implications of each constraint 

September 28, 2015 12 



4	



Arc consistency 

n  X → Y is arc-consistent iff 
  for every value x of X there is some allowed y 

 
n  Constraint: Y=X2 or ((X,Y), {(0,0), (1,1), (2,4), (3,9)} 

q  X → Y  reduce X’s domain to {0,1,2,3} 
q  Y → X  reduce Y’s domain to {0,1,4,9} 
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Arc Consistency Algorithm 
function AC-3(csp) returns false if an inconsistency is found and true otherwise 

 inputs: csp, a binary csp with components {X, D, C}   
 local variables: queue, a queue of arcs initially the arcs in csp 
 while queue is not empty do 
  (Xi, Xj) ← REMOVE-FIRST(queue) 
  if REVISE(csp, Xi, Xj)  then 
   if size of  Di=0 then return false 
   for each Xk in Xi.NEIGHBORS – {Xj} do 
   add (Xi, Xj) to queue  
 return true 

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi 
 revised ←  false 
 for each x in Di do 
  if no value y in Di allows (x,y) to satisfy the constraints between Xi and Xj 
  then delete x from Di  

   revised ←  true 
 return revised 
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Arc consistency limitations 

n  X → Y is arc-consistent iff 
  for every value x of X there is some allowed y 

n  Yet SA → WA is consistent under all of the following: 
q  {(red, green), (red, blue), (green, red), (green, blue), (blue, red)} 

n  So it doesn’t help 
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Path Consistency 

n  Looks at triples of variables 
q  The set {Xi, Xj} is path-consistent with respect 

to Xm if for every assignment consistent with 
the constraints of Xi, Xj, there is an assignment 
to Xm that satisfies the constraints on {Xi, Xm} 
and {Xm, Xj}  
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Path consistency 

n  If SA=blue and NSW=red is a consistent assignment wrt Q, then 
SA → Q → NSW is consistent. 

n  Arc can be made consistent by removing blue from NSW 
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Path consistency 

n  But need to RECHECK neighbors !! 
q  Remove red and blue from V to ensure path-consistency for 

SA → V→ NSW   
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K-consistency 

n  Stronger forms of propagation can be defined using the 
notion of k-consistency. 

n   A CSP is k-consistent if for any set of k-1 variables and 
for any consistent assignment to those variables, a 
consistent value can always be assigned to any kth 
variable. 

n  Not practical! 
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Backtracking search 

n  Observation: the order of assignment doesn’t matter 
 ⇒ can consider assignment of a single variable at a time. 
Results in dn leaves. 

n  Backtracking search: DFS for CSPs with single-
variable assignments (backtracks when a variable 
has no value that can be assigned) 

n  The basic uninformed algorithm for CSP 
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Backtracking search 
function BACKTRACKING-SEARCH(csp) returns a solution or failure 

 return BACKTRACK({} , csp) 
 
function BACKTRACK(assignment, csp) returns a solution or failure 

 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment then 
  add {var=value} to assignment  
  inferences ← INFERENCE(csp, var, value) 
  if inferences ≠ failure  then 
   add inferences to assignment 
   result ← BACKTRACK(assignment, csp) 
   if result ≠ failure  then return result 
  remove {var=value} and inferences from assignment 
 return failure 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Backtracking example 
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Improving backtracking efficiency 

n  General-purpose methods can give huge 
gains in speed: 
q  Which variable should be assigned next? 
q  In what order should its values be tried? 
q  Can we detect inevitable failure early? 
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Most constrained variable 

 var ← SELECT-UNASSIGNED-VARIABLE(csp) 

 Choose the variable with the fewest legal values 
 (most constrained variable) 
 a.k.a. minimum remaining values (MRV) or “fail first” heuristic 
q  What is the intuition behind this choice? 
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Degree heuristic 

n  Select the variable that is involved in the largest number of 
constraints on other unassigned variables. 

n  Often used as a tie breaker, e.g., in conjunction with MRV. 
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Least constraining value heuristic 

n  Guides the choice of which value to assign next. 
n  Given a variable, choose the least constraining value: 

q  the one that rules out the fewest values in the remaining 
variables 

q  why?  
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Forward checking 

n  Can we detect inevitable failure early? 
q  And avoid it later? 

n  Forward checking: keep track of remaining legal values for 
unassigned variables. 

n  Terminate search direction when a variable has no legal values. 
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Forward checking 

n  Assign {WA=red} 
n  Effects on other variables connected by constraints with WA 

q  NT can no longer be red 
q  SA can no longer be red 
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Forward checking 

n  Assign {Q=green} 
n  Effects on other variables connected by constraints with WA 

q  NT can no longer be green 
q  NSW can no longer be green 
q  SA can no longer be green 
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Forward checking 

n  If V is assigned blue 
n  Effects on other variables connected by constraints with WA 

q  SA is empty 
q  NSW can no longer be blue 

n  FC has detected that partial assignment is inconsistent with the constraints and 
backtracking can occur. 
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Example: 4-Queens Problem 

September 28, 2015 34 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Example: 4-Queens Problem 

September 28, 2015 35 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Example: 4-Queens Problem 

September 28, 2015 36 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 



10	



Example: 4-Queens Problem 

September 28, 2015 37 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Example: 4-Queens Problem 

September 28, 2015 38 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,  ,  ,  } 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 

Example: 4-Queens Problem 

September 28, 2015 39 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 

Example: 4-Queens Problem 

September 28, 2015 40 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 



11	



Example: 4-Queens Problem 

September 28, 2015 41 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,  ,3,  } 

X4 
{1,  ,3,4} 

X2 
{  ,  ,  ,4} 

Example: 4-Queens Problem 

September 28, 2015 42 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{1,  ,3,  } 

X2 
{  ,  ,  ,4} 

Example: 4-Queens Problem 

September 28, 2015 43 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{1,  ,3,  } 

X2 
{  ,  ,  ,4} 

Example: 4-Queens Problem 

September 28, 2015 44 

1 

3 

2 

4 

3 2 4 1 

X1 
{  ,2,3,4} 

X3 
{1,  ,  ,  } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,  ,4} 



12	



Example: 4-Queens Problem 
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Local search for CSP 

n  Local search methods use a “complete” state representation, i.e., 
all variables assigned.   

n  To apply to CSPs 
q  Allow states with unsatisfied constraints 
q  operators reassign variable values 

n  Select a variable: random conflicted variable 
n  Select a value: min-conflicts heuristic 

q  Value that violates the fewest constraints 
q  Hill-climbing like algorithm with the objective function being the 

number of violated constraints 

n  Works surprisingly well in problem like n-Queens 
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Min-Conflicts 
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure 

 inputs: csp, a constraint satisfaction problem 
     max_steps,  the number of steps allowed before giving up 
 current ← an initial complete assignment for csp 
 for I = 1 to max_steps do 
  if current is a solution for csp then return current 
  var← a randomly chosen conflicted variable from csp.VARIABLES 
  value← the value v for var that minimizes CONFLICTS(var, v, current, csp) 
  set var=value in current 
 return failure 
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Problem structure 

n  How can the problem structure help to find a solution 
quickly? 

n  Subproblem identification is important: 
q  Coloring Tasmania and mainland are independent subproblems 
q  Identifiable as connected components of constraint graph. 

n  Improves performance  
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Problem structure 

n  Suppose each problem has c variables out of a total of n. 
n  Worst case solution cost is O(n/c dc) instead of O(dn) 
n  Suppose n=80, c=20, d=2 

q  280 = 4 billion years at 1 million nodes/sec. 
q  4 * 220= .4 second at 1 million nodes/sec 
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Tree-structured CSPs 

n  Perform a topological sort of the variables 
n  Theorem: if the constraint graph has no loops then CSP can be 

solved in O(nd2) time 
n  Compare with general CSP, where worst case is O(dn) 
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Tree-structured CSPs 

Any tree-structured CSP can be solved in time linear in the number of variables. 
Function TREE-CSP-SOLVER(csp) returns a solution or failure 

 inputs: csp, a CSP with components X, D, C 
 n ← number of variables in X 
 assignment ← an empty assignment 
 root ← any variable in X 
 X ← TOPOLOGICALSORT(X, root) 
 for j = n down to 2 do 
  MAKE-ARC-CONSISTENT(PARENT(Xj),Xj) 
  if it cannot be made consistent then return failure 
 for i = 1 to n do 
  assignment[Xi] ← any consistent value from Di 

  if there is no consistent value then return failure 
 return assignment 
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Nearly tree-structured CSPs 

n  Can more general constraint graphs be reduced to trees? 
n  Two approaches: 

q  Remove certain nodes 
q  Collapse certain nodes 
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Nearly tree-structured CSPs 

n  Idea: assign values to some variables so that the remaining variables form a 
tree. 

n  Assign {SA=x} ← cycle cutset 
q  Remove any values from the other variables that are inconsistent. 
q  The selected value for SA could be the wrong: have to try all of them 
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Nearly tree-structured CSPs 

n  This approach is effective if cycle cutset is small. 
n  Finding the smallest cycle cutset is NP-hard 

q  Approximation algorithms exist 
n  This approach is called cutset conditioning. 
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