Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6

CSP example: map coloring

/

NS
Northern
Tertory \
Western Queensiand
Australia

South
Australia

New South Wales |/
\ | vetoria

Tasmania |
g °

Given a map of Australia, color it using three
colors such that no neighboring territories have
the same color.

September 28, 2015 2

= Solutions are assignments satisfying all constraints, e.g.:
{WA=red,NT=green,Q=red, NSW=green,V=red, SA=blue, T=green}

September 28, 2015

Constraint satisfaction problems H i
0—0l=
= A CSP is composed of:
o A set of variables X;,X,,...,X, with domains (possible values)
D,,D,,...,.D,
o A set of constraints C,,C,, ...,C,

o Each constraint C, limits the values that a subset of variables can
take, e.g., V4 #V, :
In our example: (7
= Variables: WA, NT, Q, NSW, V, SA, T
= Domains: D,={red,green,blue}
= Constraints: adjacent regions must have different colors.
o E.g., WA = NT (if the language allows this) or

a (WANT) in {(red,green),(red,blue),(green,red),(green,blue),(blue,red),
(blue,green)}

September 28, 2015 4

Constraint satisfaction problems £ }I' .
LAVAS
L o eoEN

A state is defined by an assignment of values to some or
all variables.

Consistent (or legal) assignment: assignment that does
not violate the constraints.

Complete assignment: every variable is mentioned.
Goal: a complete, consistent assignment. \.
-

s

{WA=red,NT=green,Q=red,NSW=green, V=red,SA=blue, T=g;;gn}

9/28/15 5

Constraint satisfaction problems EI A
6 omm
Simple example of a factored representation: splits each state
into a fixed set of variables, each of which has a value
CSP benefits
o Standard representation language
o Generic goal and successor functions

o Useful general-purpose algorithms with more power than
standard search algorithms, including generic heuristics

Applications:
o Time table problems (exam/teaching schedules)
o Assignment problems (who teaches what)

September 28, 2015 6

5

Varieties of CSPs

Discrete variables
o Finite domains of size d =0(d") complete assignments.
The satisfiability problem: a Boolean CSP
o (AvBvC)N~BvCvD)N~AvBv~D)...
o Infinite domains (integers, strings, etc.)
e.g., job scheduling where variables are start/end times for each job.
Need a constraint language, e.g., StartJob, +5 < StartJob,.
Continuous variables
o e.g., start/end times for Hubble Telescope observations.

o Linear constraints solvable in poly time by linear programming
methods (dealt with in the field of operations research).

September 28, 2015

5

Varieties of constraints

Unary constraints involve a single variable.

o e.g., SA =green

Binary constraints involve pairs of variables.

o eg., SA=WA

Global constraints involve an arbitrary number of variables.

Preference (soft constraints), e.g., red is better than green; often
representable by a cost for each variable assignment; not
considered here.

September 28, 2015 8

Constraint graph i i/

Binary CSP: each constraint relates two variables
Constraint graph: nodes are variables, edges are
constraints

2y

)

M

()

od,

September 28, 2015

Example: cryptharithmetic puzzles E :I' A

Hypergraph

|+
ol -
clz=
X0 O

Variables: F,T,U,W,R,0,C,,,C\y,C\up0
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints:
alldiff (F,T,U,W,R,0)
O0+0=R+10%C,

September 28, 2015

6 oEN

10

CSP as a standard search problem E i/

Incremental formulation
o Initial State: the empty assignment {}.

a Successor function: Assign value to unassigned variable
provided that there is not conflict.

o Goal test: the current assignment is complete.
Same formulation for all CSPs !!!

Solution is found at depth n (n variables).
o What search method would you choose?

September 28, 2015

Constraint propagation

o TR

S —)

b

od,

Is a type of inference
o Enforce local consistency
o Propagate the implications of each constraint

September 28, 2015

Arc consistency

X — Yis arc-consistent iff
for every value x of X there is some allowed y

Constraint: Y=X2 or ((X,Y), {(0,0), (1,1), (2,4), (3.9)}
o X — Y reduce X’'s domain to {0,1,2,3}
o Y — X reduce Y’s domain to {0,1,4,9}

September 28, 2015

Arc Consistency Algorithm i i a

coan

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary csp with components {X, D, C}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do
(X, X) < REMOVE-FIRST(queue)
if REVISE(csp, X; X)) then
if size of D=0 then return false
for each X in X,NEIGHBORS - {X} do
add (X, X)) to queue
return frue
function REVISE(csp, X; X)) returns true iff we revise the domain of X
revised < false
for each x in D, do
if no value y in D; allows (x,y) to satisfy the constraints between X; and X;
then delete x from D;
revised < true
return revised

September 28, 2015 14

Arc consistency limitations

O—
@‘@"‘a@

@
X — Yis arc-consistent iff
for every value x of X there is some allowed y
Yet SA — WA is consistent under all of the following:
a {(red, green), (red, blue), (green, red), (green, blue), (blue, red)}
So it doesn'’t help

September 28, 2015

BN

. |
(B
Path Consistency LA
¢ oEN
Looks at triples of variables
a The set {X, X} is path-consistent with respect
to X, if for every assignment consistent with
the constraints of X, X), there is an assignment
to X, that satisfies the constraints on {X, X}
and {X,, X}

9/28/15

Path consistency E ;|'
. ™
R '
‘@é“@ Ho—$o—4-n
O NT Q NSW v SA T

(] N[N NECN] E[EEE]
\}/

If SA=blue and NSW=red is a consistent assignment wrt Q, then
SA — Q — NSW: is consistent.

Arc can be made consistent by removing blue from NSW

September 28, 2015 17

Path consistency i i

()
'0

g
O w v o ww v s 1

(] E[ETTE EXD@E] N[N
¢

But need to RECHECK neighbors !!
o Remove red and blue from V to ensure path-consistency for
SA — V— NSW

September 28, 2015 18

K-consistency E 743

Stronger forms of propagation can be defined using the
notion of k-consistency.

A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

Not practical!

September 28, 2015 19

. m

(B
Backtracking search Ei
¢ oEN

Observation: the order of assignment doesn’t matter

= can consider assignment of a single variable at a time.
Results in d" leaves.

Backtracking search: DFS for CSPs with single-
variable assignments (backtracks when a variable
has no value that can be assigned)

The basic uninformed algorithm for CSP

September 28, 2015 20

Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK({} , csp)

function BACKTRACK(assignment, csp) returns a solution or failure
if assignment is complete then return assignment
var «[SELECT-UNASSIGNED-VARIABLEcsp)
for each value inlORDER-DOMAIN—VALUES(\}'ar, assignment, csp) do
if value is consistent with assignment then
add {var=value} to assignment
inferences <— INFERENCE(csp, var, value)
if inferences = failure then
add inferences to assignment
result < BACKTRACK(assignment, csp)
if result = failure then return result
remove {var=value} and inferences from assignment
return failure

September 28, 2015

Backtracking example

September 28, 2015

R

Backtracking example

R

—F

¢ o e

September 28, 2015

=

Backtracking example

September 28, 2015

¢ o e

R

—F

A

&S

"

Backtracking example H i

R

—f —
L S SO S8
—
e &
— T~

&

September 28, 2015

Improving backtracking efficiency E ':|‘ />

: : "

Most constrained variable VA
|

¢ oEN

SSEA Stps SShe S

var <~ SELECT-UNASSIGNED-VARIABLE((csp)

Choose the variable with the fewest legal values

(most constrained variable)

a.k.a. minimum remaining values (MRV) or “fail first” heuristic
o What is the intuition behind this choice?

September 28, 2015

L o oEN
General-purpose methods can give huge
gains in speed:
o Which variable should be assigned next?
o In what order should its values be tried?
o Can we detect inevitable failure early?
.. m
Degree heuristic LE7aY
¢ oEN

LR

Select the variable that is involved in the largest number of
constraints on other unassigned variables.

Often used as a tie breaker, e.g., in conjunction with MRV.

September 28, 2015 28

Least constraining value heuristic §

Allows 1 value for SA

=
_Ly: - ‘_L!: - ‘\!L’: <‘\g,_% Allows 0 values for SA

Guides the choice of which value to assign next.

Given a variable, choose the least constraining value:

o the one that rules out the fewest values in the remaining
variables

o why?

September 28, 2015 29

Forward checking Hi

R

WA NT Q NSW \ SA T

CECICE LI I LI I IC

Can we detect inevitable failure early?
o And avoid it later?

Forward checking: keep track of remaining legal values for
unassigned variables.

Terminate search direction when a variable has no legal values.

September 28, 2015 30

Forward checking H s

@ ¢ oER
‘s'e:@ SSme o

@ NT Q NSW 4 SA T
CICIC I IC T CCIC]
(]| SEjErE[ESE[ESE] SE[EEE]

Assign {WA=red}

Effects on other variables connected by constraints with WA
a NT can no longer be red

a SA can no longer be red

September 28, 2015 31

Forward checking H s

6 omE
O

%

R

Assign {Q=green}

Effects on other variables connected by constraints with WA
a NT can no longer be green

o NSW can no longer be green

o SA can no longer be green

September 28, 2015 32

Forward checking E ;I'

%
S J S S

If Vis assigned blue

Effects on other variables connected by constraints with WA
o SAisempty

o NSW can no longer be blue

FC has detected that partial assignment is inconsistent with the constraints and
backtracking can occur.

September 28, 2015 33

‘l‘i‘ /%

BN

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1,2,3,4} {1,2,3,4}
1+oe/e®
2l @
3 []
4 L J X3 X4
{1,2,3,4} {1,2,3,4}

September 28, 2015 35

|
Example: 4-Queens Problem &
‘;.,!{
X1 X2
12 3 4 {1,2,3,4} {1,2,3,4}
1
2
3
N X3 X4
{1,234} {1,234}
N
Example: 4-Queens Problem Livas
el
X1 X2
1 2 3 4 {1121314} { I 1314}
1+eee
2 @
3 o
N ® X3 X4
{ 121 14} { 12131 }

September 28, 2015

Example: 4-Queens Problem

m)
Example: 4-Queens Problem &
.—..=
X1 X2
12 3 4 {1,2,3,4} {., .34
a0
2l 0@
3 o0
N ee X3 X4
{ ’21 l4} { l2l3l }
|)
Example: 4-Queens Problem &
.—..=
X1 X2
12 3 4 { 2,34} {1,2,3,4}
1 /@
2000
3 @
4 o X3 X4
{1,2,3,4} {1,2,3,4}

September 28, 2015

[|
| |
X1 X2
Ly a4 1234 |{, 34
1+oe®
2l 0@
3 o0
4 o0 X3 X4
{ I I I } { I2I3I }
|
Example: 4-Queens Problem &
.—..=
X1)
1 2 3 4 { 12’3’4} { r 7 l4}
1 @
2000
3| @
4 o X3 X4
{1’ /3/ } {1’ ’3’4}

September 28, 2015

40

10

Example: 4-Queens Problem

m)
Example: 4-Queens Problem &
.—..=
X1 X2
1 2 3 4 { ’21314} { oI 14}
1 @
2000
3 90
JI+Hee X3 X4
{1, .3, } {1, 34}
|)
Example: 4-Queens Problem &
.—..=
X1 X2
1 2 3 4 { 121314} { ror l4}
1 | O+e
2000
3 90
T+Hele X3 X4
{11 o } {11 131 }

September 28, 2015

[|
-] |
X1 X2
1 2 3 4 { ’2’3’4} { r 7 14}
1 @
2000
3| 9O
T+Hele X3 X4
{1I I I } {1I I3I }
|
Example: 4-Queens Problem &
o omill
X1)
1 2 3 4 { 12’3’4} { r 7 l4}
1 @HH®
2000
3| 9O
T+Hele X3 X4
{ll r 7 } { I /3/ }

September 28, 2015

11

Example: 4-Queens Problem i

X1 X2
123 4 {234 {, 0 4
1 OHH®
2000
3 @0
I+Hele X3 X4

{11 r oI } { I I3I }

September 28, 2015 45

Local search for CSP _

Local search methods use a “complete” state representation, i.e.,
all variables assigned.

To apply to CSPs

o Allow states with unsatisfied constraints

o operators reassign variable values

Select a variable: random conflicted variable

Select a value: min-conflicts heuristic

o Value that violates the fewest constraints

o Hill-climbing like algorithm with the objective function being the
number of violated constraints

Works surprisingly well in problem like n-Queens

. . |)
Min-Conflicts a2/~
¢ on =
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up
current < an initial complete assignment for csp
for / = 1 to max_steps do
if current is a solution for csp then return current
var<- a randomly chosen conflicted variable from csp.VARIABLES
value< the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var=value in current
return failure

September 28, 2015 r

Problem structure (B
LAVAS
_ G oHNE
O—a
@“
90@

©)

How can the problem structure help to find a solution
quickly?

Subproblem identification is important:

o Coloring Tasmania and mainland are independent subproblems
o Identifiable as connected components of constraint graph.

Improves performance

September 28, 2015 48

12

Problem structure E ;I'
()
S
O
)
®

Suppose each problem has c variables out of a total of n.
Worst case solution cost is O(n/c d°) instead of O(d")
Suppose n=80, ¢=20, d=2

o 280 =4 billion years at 1 million nodes/sec.

o 4 *220= 4 second at 1 million nodes/sec

September 28, 2015

Tree-structured CSPs E ;I'

®) B
OnOSN0,0,010:6\6
© ®

(a) (b)

Perform a topological sort of the variables

Theorem: if the constraint graph has no loops then CSP can be
solved in O(nd?) time

Compare with general CSP, where worst case is O(d")

September 28, 2015 50

Tree-structured CSPs E /%

BN

Any tree-structured CSP can be solved in time linear in the number of variables.
Function TREE-CSP-SOLVER(csp) returns a solution or failure
inputs: csp, a CSP with components X, D, C
n <= number of variables in X
assignment < an empty assignment
root < any variable in X
X <= TOPOLOGICALSORT(X, root)
for j=ndown to 2 do
MAKE-ARC-CONSISTENT(PARENT(X;),X;)
if it cannot be made consistent then return failure
fori=1tondo
assignment[X] <= any consistent value from D,
if there is no consistent value then return failure
return assignment

September 28, 2015

Nearly tree-structured CSPs i i/

el

() @ @)
>89 S

ea‘“.@ 0@

® ©)

Can more general constraint graphs be reduced to trees?

Two approaches:
o Remove certain nodes
o Collapse certain nodes

September 28, 2015

13

Neatly tree-structured CSPs E ;I'

O— & O—@®
<13 %

Idea: assign values to some variables so that the remaining variables form a
tree.

Assign {SA=x} < cycle cutset

o Remove any values from the other variables that are inconsistent.

o The selected value for SA could be the wrong: have to try all of them

September 28, 2015 53

Neatly tree-structured CSPs E ;I'

]
¢ osnl
This approach is effective if cycle cutset is small.
Finding the smallest cycle cutset is NP-hard
o Approximation algorithms exist
This approach is called cutset conditioning.
September 28, 2015 54

14

