
1	

Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6

CSP example: map coloring

September 28, 2015 2

 Given a map of Australia, color it using three
colors such that no neighboring territories have
the same color.

CSP example: map coloring

September 28, 2015 3

n  Solutions are assignments satisfying all constraints, e.g.:
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Constraint satisfaction problems

n  A CSP is composed of:
q  A set of variables X1,X2,…,Xn with domains (possible values)

D1,D2,…,Dn

q  A set of constraints C1,C2, …,Cm

q  Each constraint Ci limits the values that a subset of variables can
take, e.g., V1 ≠ V2

In our example:
n  Variables: WA, NT, Q, NSW, V, SA, T
n  Domains: Di={red,green,blue}
n  Constraints: adjacent regions must have different colors.

q  E.g., WA ≠ NT (if the language allows this) or
q  (WA,NT) in {(red,green),(red,blue),(green,red),(green,blue),(blue,red),

(blue,green)}

September 28, 2015 4

2	

Constraint satisfaction problems

n  A state is defined by an assignment of values to some or
all variables.

n  Consistent (or legal) assignment: assignment that does
not violate the constraints.

n  Complete assignment: every variable is mentioned.
n  Goal: a complete, consistent assignment.

 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

9/28/15 5

Constraint satisfaction problems
n  Simple example of a factored representation: splits each state

into a fixed set of variables, each of which has a value
n  CSP benefits

q  Standard representation language
q  Generic goal and successor functions
q  Useful general-purpose algorithms with more power than

standard search algorithms, including generic heuristics
n  Applications:

q  Time table problems (exam/teaching schedules)
q  Assignment problems (who teaches what)

September 28, 2015 6

Varieties of CSPs

n  Discrete variables
q  Finite domains of size d ⇒O(dn) complete assignments.

n  The satisfiability problem: a Boolean CSP
q  (AvBvC)^(~BvCvD)^(~AvBv~D)…

q  Infinite domains (integers, strings, etc.)
n  e.g., job scheduling where variables are start/end times for each job.
n  Need a constraint language, e.g., StartJob1 +5 ≤ StartJob2.

n  Continuous variables
q  e.g., start/end times for Hubble Telescope observations.
q  Linear constraints solvable in poly time by linear programming

methods (dealt with in the field of operations research).

September 28, 2015 7

Varieties of constraints

n  Unary constraints involve a single variable.
q  e.g., SA ≠ green

n  Binary constraints involve pairs of variables.
q  e.g., SA ≠ WA

n  Global constraints involve an arbitrary number of variables.
n  Preference (soft constraints), e.g., red is better than green; often

representable by a cost for each variable assignment; not
considered here.

September 28, 2015 8

3	

Constraint graph

n  Binary CSP: each constraint relates two variables
n  Constraint graph: nodes are variables, edges are

constraints

September 28, 2015 9

Example: cryptharithmetic puzzles

September 28, 2015 10

Hypergraph	

Variables: F,T,U,W,R,O,C10,C100,C1000

Domains: {0,1, 2,3, 4, 5, 6, 7,8, 9}
Constraints:
 alldiff (F,T,U,W,R,O)
 O+O = R+10∗C10

CSP as a standard search problem

n  Incremental formulation
q  Initial State: the empty assignment {}.
q  Successor function: Assign value to unassigned variable

provided that there is not conflict.
q  Goal test: the current assignment is complete.

n  Same formulation for all CSPs !!!
n  Solution is found at depth n (n variables).

q  What search method would you choose?

September 28, 2015 11

Constraint propagation

n  Is a type of inference
q  Enforce local consistency
q  Propagate the implications of each constraint

September 28, 2015 12

4	

Arc consistency

n  X → Y is arc-consistent iff
 for every value x of X there is some allowed y

n  Constraint: Y=X2 or ((X,Y), {(0,0), (1,1), (2,4), (3,9)}

q  X → Y reduce X’s domain to {0,1,2,3}
q  Y → X reduce Y’s domain to {0,1,4,9}

September 28, 2015 13

Arc Consistency Algorithm
function AC-3(csp) returns false if an inconsistency is found and true otherwise

 inputs: csp, a binary csp with components {X, D, C}
 local variables: queue, a queue of arcs initially the arcs in csp
 while queue is not empty do
 (Xi, Xj) ← REMOVE-FIRST(queue)
 if REVISE(csp, Xi, Xj) then
 if size of Di=0 then return false
 for each Xk in Xi.NEIGHBORS – {Xj} do
 add (Xi, Xj) to queue
 return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi
 revised ← false
 for each x in Di do
 if no value y in Di allows (x,y) to satisfy the constraints between Xi and Xj
 then delete x from Di

 revised ← true
 return revised

September 28, 2015 14

Arc consistency limitations

n  X → Y is arc-consistent iff
 for every value x of X there is some allowed y

n  Yet SA → WA is consistent under all of the following:
q  {(red, green), (red, blue), (green, red), (green, blue), (blue, red)}

n  So it doesn’t help

September 28, 2015 15

Path Consistency

n  Looks at triples of variables
q  The set {Xi, Xj} is path-consistent with respect

to Xm if for every assignment consistent with
the constraints of Xi, Xj, there is an assignment
to Xm that satisfies the constraints on {Xi, Xm}
and {Xm, Xj}

9/28/15 16

5	

Path consistency

n  If SA=blue and NSW=red is a consistent assignment wrt Q, then
SA → Q → NSW is consistent.

n  Arc can be made consistent by removing blue from NSW

September 28, 2015 17

Path consistency

n  But need to RECHECK neighbors !!
q  Remove red and blue from V to ensure path-consistency for

SA → V→ NSW

September 28, 2015 18

K-consistency

n  Stronger forms of propagation can be defined using the
notion of k-consistency.

n  A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

n  Not practical!

September 28, 2015 19

Backtracking search

n  Observation: the order of assignment doesn’t matter
 ⇒ can consider assignment of a single variable at a time.
Results in dn leaves.

n  Backtracking search: DFS for CSPs with single-
variable assignments (backtracks when a variable
has no value that can be assigned)

n  The basic uninformed algorithm for CSP

September 28, 2015 20

6	

Backtracking search
function BACKTRACKING-SEARCH(csp) returns a solution or failure

 return BACKTRACK({} , csp)

function BACKTRACK(assignment, csp) returns a solution or failure

 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment then
 add {var=value} to assignment
 inferences ← INFERENCE(csp, var, value)
 if inferences ≠ failure then
 add inferences to assignment
 result ← BACKTRACK(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} and inferences from assignment
 return failure

September 28, 2015 21

Backtracking example

September 28, 2015 22

Backtracking example

September 28, 2015 23

Backtracking example

September 28, 2015 24

7	

Backtracking example

September 28, 2015 25

Improving backtracking efficiency

n  General-purpose methods can give huge
gains in speed:
q  Which variable should be assigned next?
q  In what order should its values be tried?
q  Can we detect inevitable failure early?

September 28, 2015 26

Most constrained variable

 var ← SELECT-UNASSIGNED-VARIABLE(csp)

 Choose the variable with the fewest legal values
 (most constrained variable)
 a.k.a. minimum remaining values (MRV) or “fail first” heuristic
q  What is the intuition behind this choice?

September 28, 2015 27

Degree heuristic

n  Select the variable that is involved in the largest number of
constraints on other unassigned variables.

n  Often used as a tie breaker, e.g., in conjunction with MRV.

September 28, 2015 28

8	

Least constraining value heuristic

n  Guides the choice of which value to assign next.
n  Given a variable, choose the least constraining value:

q  the one that rules out the fewest values in the remaining
variables

q  why?

September 28, 2015 29

Forward checking

n  Can we detect inevitable failure early?
q  And avoid it later?

n  Forward checking: keep track of remaining legal values for
unassigned variables.

n  Terminate search direction when a variable has no legal values.

September 28, 2015 30

Forward checking

n  Assign {WA=red}
n  Effects on other variables connected by constraints with WA

q  NT can no longer be red
q  SA can no longer be red

September 28, 2015 31

Forward checking

n  Assign {Q=green}
n  Effects on other variables connected by constraints with WA

q  NT can no longer be green
q  NSW can no longer be green
q  SA can no longer be green

September 28, 2015 32

9	

Forward checking

n  If V is assigned blue
n  Effects on other variables connected by constraints with WA

q  SA is empty
q  NSW can no longer be blue

n  FC has detected that partial assignment is inconsistent with the constraints and
backtracking can occur.

September 28, 2015 33

Example: 4-Queens Problem

September 28, 2015 34

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

September 28, 2015 35

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

September 28, 2015 36

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

10	

Example: 4-Queens Problem

September 28, 2015 37

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

September 28, 2015 38

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

September 28, 2015 39

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

September 28, 2015 40

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

11	

Example: 4-Queens Problem

September 28, 2015 41

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Example: 4-Queens Problem

September 28, 2015 42

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

September 28, 2015 43

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

September 28, 2015 44

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

12	

Example: 4-Queens Problem

September 28, 2015 45

1

3

2

4

3 2 4 1

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Local search for CSP

n  Local search methods use a “complete” state representation, i.e.,
all variables assigned.

n  To apply to CSPs
q  Allow states with unsatisfied constraints
q  operators reassign variable values

n  Select a variable: random conflicted variable
n  Select a value: min-conflicts heuristic

q  Value that violates the fewest constraints
q  Hill-climbing like algorithm with the objective function being the

number of violated constraints

n  Works surprisingly well in problem like n-Queens

September 28, 2015 46

Min-Conflicts
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure

 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up
 current ← an initial complete assignment for csp
 for I = 1 to max_steps do
 if current is a solution for csp then return current
 var← a randomly chosen conflicted variable from csp.VARIABLES
 value← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var=value in current
 return failure

September 28, 2015 47

Problem structure

n  How can the problem structure help to find a solution
quickly?

n  Subproblem identification is important:
q  Coloring Tasmania and mainland are independent subproblems
q  Identifiable as connected components of constraint graph.

n  Improves performance

September 28, 2015 48

13	

Problem structure

n  Suppose each problem has c variables out of a total of n.
n  Worst case solution cost is O(n/c dc) instead of O(dn)
n  Suppose n=80, c=20, d=2

q  280 = 4 billion years at 1 million nodes/sec.
q  4 * 220= .4 second at 1 million nodes/sec

September 28, 2015 49

Tree-structured CSPs

n  Perform a topological sort of the variables
n  Theorem: if the constraint graph has no loops then CSP can be

solved in O(nd2) time
n  Compare with general CSP, where worst case is O(dn)

September 28, 2015 50

Tree-structured CSPs

Any tree-structured CSP can be solved in time linear in the number of variables.
Function TREE-CSP-SOLVER(csp) returns a solution or failure

 inputs: csp, a CSP with components X, D, C
 n ← number of variables in X
 assignment ← an empty assignment
 root ← any variable in X
 X ← TOPOLOGICALSORT(X, root)
 for j = n down to 2 do
 MAKE-ARC-CONSISTENT(PARENT(Xj),Xj)
 if it cannot be made consistent then return failure
 for i = 1 to n do
 assignment[Xi] ← any consistent value from Di

 if there is no consistent value then return failure
 return assignment

September 28, 2015 51

Nearly tree-structured CSPs

n  Can more general constraint graphs be reduced to trees?
n  Two approaches:

q  Remove certain nodes
q  Collapse certain nodes

September 28, 2015 52

14	

Nearly tree-structured CSPs

n  Idea: assign values to some variables so that the remaining variables form a
tree.

n  Assign {SA=x} ← cycle cutset
q  Remove any values from the other variables that are inconsistent.
q  The selected value for SA could be the wrong: have to try all of them

September 28, 2015 53

Nearly tree-structured CSPs

n  This approach is effective if cycle cutset is small.
n  Finding the smallest cycle cutset is NP-hard

q  Approximation algorithms exist
n  This approach is called cutset conditioning.

September 28, 2015 54

