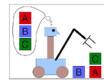
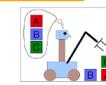
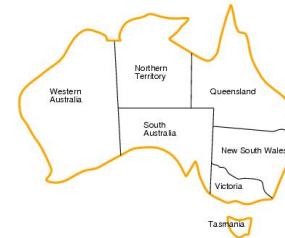


Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6



CSP example: map coloring

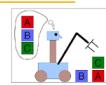


Given a map of Australia, color it using three colors such that no neighboring territories have the same color.

September 28, 2015

2

CSP example: map coloring

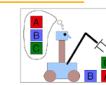


- Solutions are assignments satisfying all constraints, e.g.:
 $\{WA=\text{red}, NT=\text{green}, Q=\text{red}, NSW=\text{green}, V=\text{red}, SA=\text{blue}, T=\text{green}\}$

September 28, 2015

3

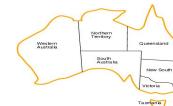
Constraint satisfaction problems



- A CSP is composed of:
 - A set of variables X_1, X_2, \dots, X_n with domains (possible values) D_1, D_2, \dots, D_n
 - A set of constraints C_1, C_2, \dots, C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$

In our example:

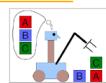
- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D_i = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors.
 - $WA \neq NT$ (if the language allows this)
 - $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}$



September 28, 2015

4

Constraint satisfaction problems



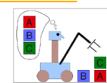
- A **state** is defined by an assignment of values to some or all variables.
- **Consistent (or legal) assignment**: assignment that does not violate the constraints.
- **Complete assignment**: every variable is mentioned.
- Goal: a complete, consistent assignment.

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

9/28/15

5

Constraint satisfaction problems

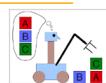


- Simple example of a **factored representation**: splits each state into a fixed set of variables, each of which has a value
- CSP benefits
 - Standard representation language
 - Generic goal and successor functions
 - Useful **general-purpose** algorithms with more power than standard search algorithms, including generic heuristics
- Applications:
 - Time table problems (exam/teaching schedules)
 - Assignment problems (who teaches what)

September 28, 2015

6

Varieties of CSPs

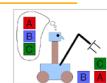


- Discrete variables
 - Finite domains of size $d \Rightarrow O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP
 - $(AvBvC) \wedge (\neg BvCvD) \wedge (\neg AvBvD) \dots$
 - Infinite domains (integers, strings, etc.)
 - e.g., job scheduling where variables are start/end times for each job.
 - Need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_2$.
- Continuous variables
 - e.g., start/end times for Hubble Telescope observations.
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).

September 28, 2015

7

Varieties of constraints

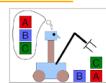


- Unary constraints involve a single variable.
 - e.g., $SA \neq green$
- Binary constraints involve pairs of variables.
 - e.g., $SA \neq WA$
- Global constraints involve an arbitrary number of variables.
- Preference (soft constraints), e.g., *red* is better than *green*; often representable by a cost for each variable assignment; not considered here.

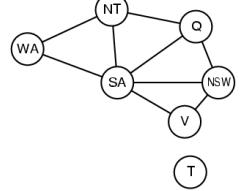
September 28, 2015

8

Constraint graph



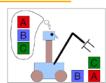
- **Binary CSP:** each constraint relates two variables
- **Constraint graph:** nodes are variables, edges are constraints



September 28, 2015

9

Example: cryptarithmetic puzzles



Hypergraph

$$\begin{array}{r} T \ W \ O \\ + \ T \ W \ O \\ \hline F \ O \ U \ R \end{array}$$

Variables: $F, T, U, W, R, O, C_{10}, C_{100}, C_{1000}$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

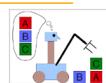
$$\text{alldiff}(F, T, U, W, R, O)$$

$$O + O = R + 10 * C_{10}$$

September 28, 2015

10

CSP as a standard search problem

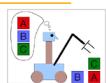
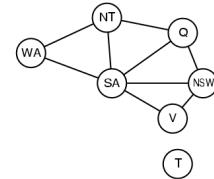


- Incremental formulation
 - *Initial State:* the empty assignment $\{\}$.
 - *Successor function:* Assign value to unassigned variable provided that there is not conflict.
 - *Goal test:* the current assignment is complete.
- Same formulation for all CSPs !!!
- Solution is found at depth n (n variables).
 - What search method would you choose?

September 28, 2015

11

Constraint propagation

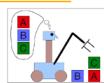


- Is a type of inference
 - Enforce local consistency
 - Propagate the implications of each constraint

September 28, 2015

12

Arc consistency

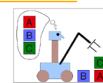


- $X \rightarrow Y$ is **arc-consistent** iff
for every value x of X there is some allowed y
- Constraint: $Y=X^2$ or $((X, Y), \{(0,0), (1,1), (2,4), (3,9)\})$
 - $X \rightarrow Y$ reduce X 's domain to $\{0,1,2,3\}$
 - $Y \rightarrow X$ reduce Y 's domain to $\{0,1,4,9\}$

September 28, 2015

13

Arc Consistency Algorithm



```

function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary csp with components { $X$ ,  $D$ ,  $C$ }
  local variables: queue, a queue of arcs initially the arcs in csp
  while queue is not empty do
     $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ 
    if REVISE(csp,  $X_i, X_j$ ) then
      if size of  $D=0$  then return false
      for each  $X_k$  in  $X_i, \text{NEIGHBORS} - \{X_j\}$  do
        add  $(X_k, X_i)$  to queue
  return true

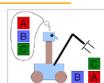
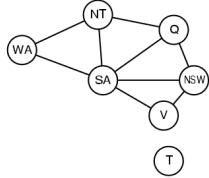
function REVISE(csp,  $X_i, X_j$ ) returns true iff we revise the domain of  $X_i$ 
  revised  $\leftarrow$  false
  for each  $x$  in  $D_i$  do
    if no value  $y$  in  $D_j$  allows  $(x,y)$  to satisfy the constraints between  $X_i$  and  $X_j$ 
    then delete  $x$  from  $D_i$ 
    revised  $\leftarrow$  true
  return revised

```

September 28, 2015

14

Arc consistency limitations

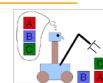


- $X \rightarrow Y$ is **arc-consistent** iff
for every value x of X there is some allowed y
- Yet $SA \rightarrow WA$ is consistent under all of the following:
 - $\{(red, green), (red, blue), (green, red), (green, blue), (blue, red)\}$
- So it doesn't help

September 28, 2015

15

Path Consistency

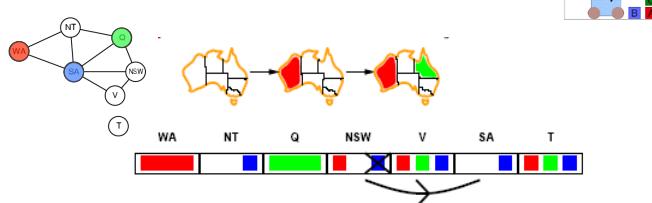


- Looks at triples of variables
- The set $\{X_i, X_j\}$ is **path-consistent** with respect to X_m if for every assignment consistent with the constraints of X_i, X_j , there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$

9/28/15

16

Path consistency

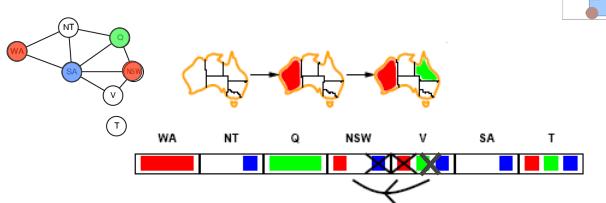


- If $SA=blue$ and $NSW=red$ is a consistent assignment wrt Q , then $SA \rightarrow Q \rightarrow NSW$ is consistent.
- Arc can be made consistent by removing *blue* from NSW

September 28, 2015

17

Path consistency

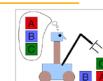


- But need to RECHECK neighbors !!
 - Remove red and blue from V to ensure path-consistency for $SA \rightarrow V \rightarrow NSW$

September 28, 2015

18

K-consistency

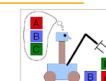


- Stronger forms of propagation can be defined using the notion of k -consistency.
- A CSP is k -consistent if for any set of $k-1$ variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k th variable.
- Not practical!

September 28, 2015

19

Backtracking search

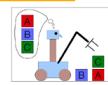


- Observation: the order of assignment doesn't matter
 - ⇒ can consider assignment of a single variable at a time.
 - Results in d^n leaves.
- Backtracking search: DFS for CSPs with single-variable assignments (backtracks when a variable has no value that can be assigned)
- The basic uninformed algorithm for CSP

September 28, 2015

20

Backtracking search



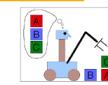
```
function BACKTRACKING-SEARCH(csp) returns a solution or failure
  return BACKTRACK({} , csp)

function BACKTRACK(assignment, csp) returns a solution or failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment then
      add {var=value} to assignment
      inferences ← INFERENCE(csp, var, value)
      if inferences ≠ failure then
        add inferences to assignment
        result ← BACKTRACK(assignment, csp)
        if result ≠ failure then return result
      remove {var=value} and inferences from assignment
  return failure
```

September 28, 2015

21

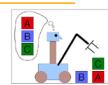
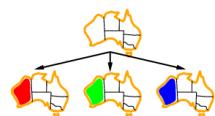
Backtracking example



September 28, 2015

22

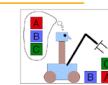
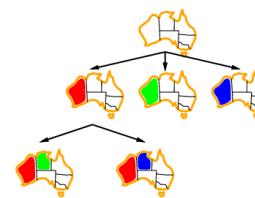
Backtracking example



September 28, 2015

23

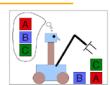
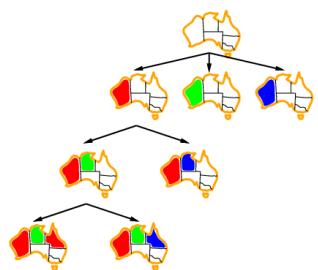
Backtracking example



September 28, 2015

24

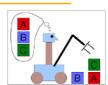
Backtracking example



September 28, 2015

25

Improving backtracking efficiency

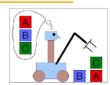
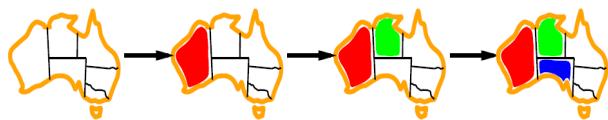


- **General-purpose** methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

September 28, 2015

26

Most constrained variable



`var ← SELECT-UNASSIGNED-VARIABLE(csp)`

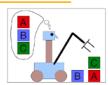
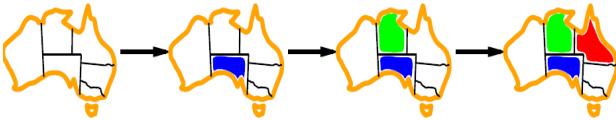
Choose the variable with the fewest legal values
(most constrained variable)
a.k.a. minimum remaining values (MRV) or “fail first” heuristic

- What is the intuition behind this choice?

September 28, 2015

27

Degree heuristic

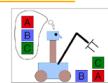


- Select the variable that is involved in the largest number of constraints on other unassigned variables.
- Often used as a tie breaker, e.g., in conjunction with MRV.

September 28, 2015

28

Least constraining value heuristic

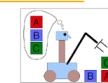


- Guides the choice of which value to assign next.
- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables
 - why?

September 28, 2015

29

Forward checking

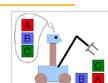
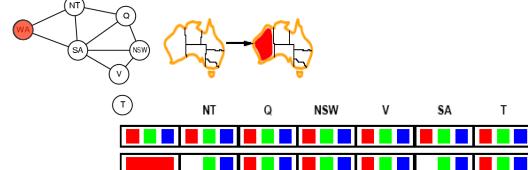


- Can we detect inevitable failure early?
 - And avoid it later?
- Forward checking*: keep track of remaining legal values for unassigned variables.
- Terminate search direction when a variable has no legal values.

September 28, 2015

30

Forward checking

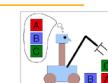


- Assign {WA=red}
- Effects on other variables connected by constraints with WA
 - NT can no longer be red
 - SA can no longer be red

September 28, 2015

31

Forward checking

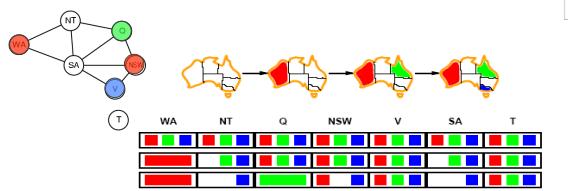


- Assign {Q=green}
- Effects on other variables connected by constraints with WA
 - NT can no longer be green
 - NSW can no longer be green
 - SA can no longer be green

September 28, 2015

32

Forward checking

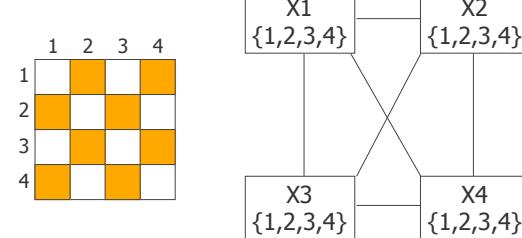


- If V is assigned blue
- Effects on other variables connected by constraints with WA
 - SA is empty
 - NSW can no longer be blue
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.

September 28, 2015

33

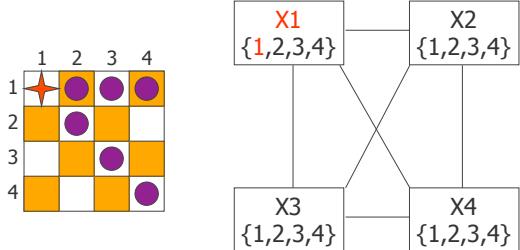
Example: 4-Queens Problem



September 28, 2015

34

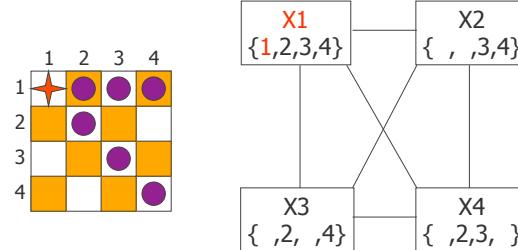
Example: 4-Queens Problem



September 28, 2015

35

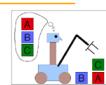
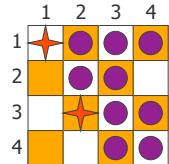
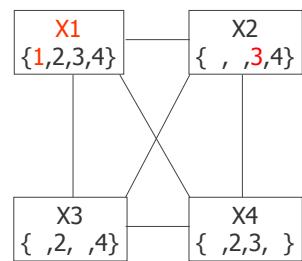
Example: 4-Queens Problem



September 28, 2015

36

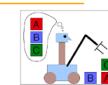
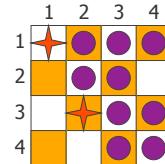
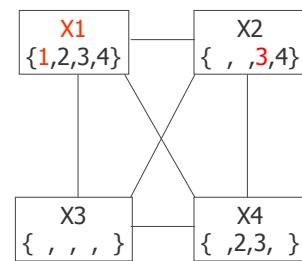
Example: 4-Queens Problem



September 28, 2015

37

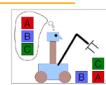
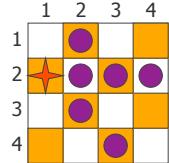
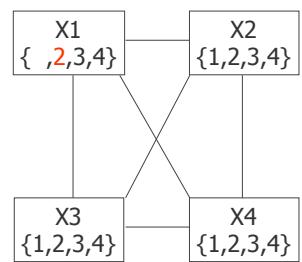
Example: 4-Queens Problem



September 28, 2015

38

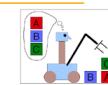
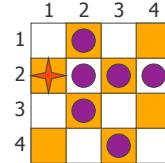
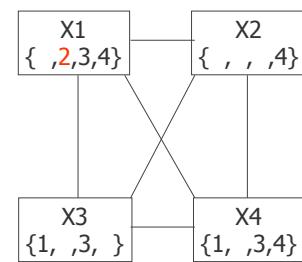
Example: 4-Queens Problem



September 28, 2015

39

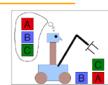
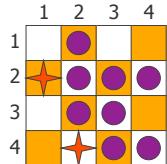
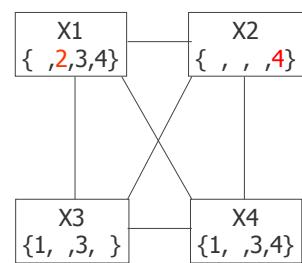
Example: 4-Queens Problem



September 28, 2015

40

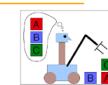
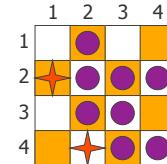
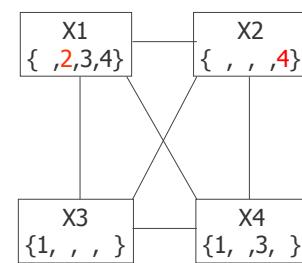
Example: 4-Queens Problem



September 28, 2015

41

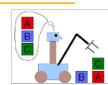
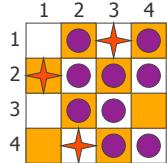
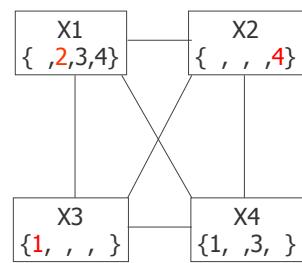
Example: 4-Queens Problem



September 28, 2015

42

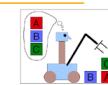
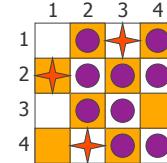
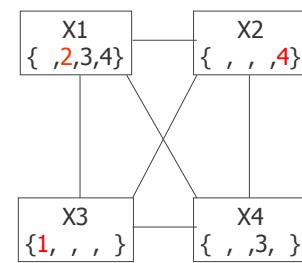
Example: 4-Queens Problem



September 28, 2015

43

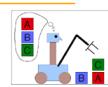
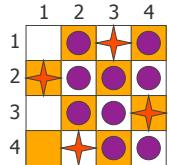
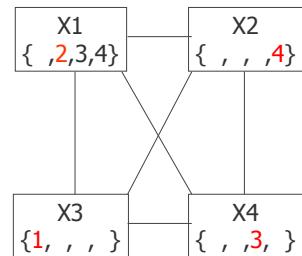
Example: 4-Queens Problem



September 28, 2015

44

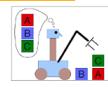
Example: 4-Queens Problem



September 28, 2015

45

Min-Conflicts

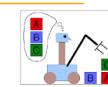


```
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
  inputs: csp, a constraint satisfaction problem
          max_steps, the number of steps allowed before giving up
  current  $\leftarrow$  an initial complete assignment for csp
  for l = 1 to max_steps do
    if current is a solution for csp then return current
    var  $\leftarrow$  a randomly chosen conflicted variable from csp.VARIABLES
    value  $\leftarrow$  the value v for var that minimizes CONFLICTS(var, v, current, csp)
    set var = value in current
  return failure
```

September 28, 2015

47

Local search for CSP

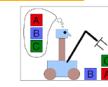
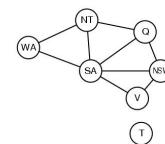


- Local search methods use a “complete” state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - operators **reassign** variable values
- Select a variable: random conflicted variable
- Select a value: *min-conflicts heuristic*
 - Value that violates the fewest constraints
 - Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problem like n-Queens

September 28, 2015

46

Problem structure

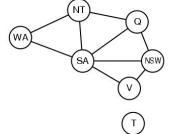
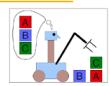


- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.
- Improves performance

September 28, 2015

48

Problem structure

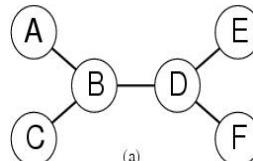


- Suppose each problem has c variables out of a total of n .
- Worst case solution cost is $O(n/c d^c)$ instead of $O(d^n)$
- Suppose $n=80$, $c=20$, $d=2$
 - $2^{80} = 4$ billion years at 1 million nodes/sec.
 - $4 * 2^{20} = .4$ second at 1 million nodes/sec

September 28, 2015

49

Tree-structured CSPs



(a)

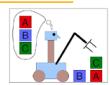
(b)

- Perform a topological sort of the variables
- Theorem: if the constraint graph has no loops then CSP can be solved in $O(nd^2)$ time
- Compare with general CSP, where worst case is $O(d^n)$

September 28, 2015

50

Tree-structured CSPs



Any tree-structured CSP can be solved in time linear in the number of variables.

Function TREE-CSP-SOLVER(*csp*) returns a solution or failure

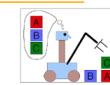
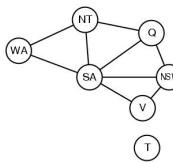
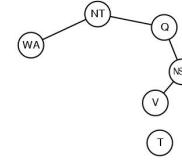
```

inputs: csp, a CSP with components X, D, C
n ← number of variables in X
assignment ← an empty assignment
root ← any variable in X
X ← TOPOLOGICALSORT(X, root)
for j = n down to 2 do
    MAKE-ARC-CONSISTENT(PARENT(Xj), Xj)
    if it cannot be made consistent then return failure
for i = 1 to n do
    assignment[Xi] ← any consistent value from Di
    if there is no consistent value then return failure
return assignment
```

September 28, 2015

51

Nearly tree-structured CSPs

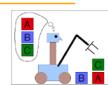
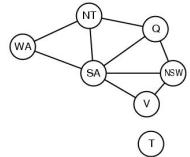
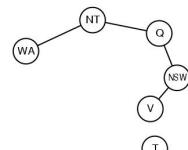


- Can more general constraint graphs be reduced to trees?
- Two approaches:
 - Remove certain nodes
 - Collapse certain nodes

September 28, 2015

52

Nearly tree-structured CSPs

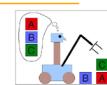
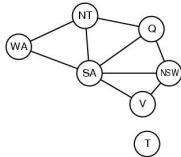
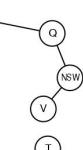


- Idea: assign values to some variables so that the remaining variables form a tree.
- Assign $\{SA=x\} \leftarrow \text{cycle cutset}$
 - Remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong: have to try all of them

September 28, 2015

53

Nearly tree-structured CSPs



- This approach is effective if cycle cutset is small.
- Finding the smallest cycle cutset is NP-hard
 - Approximation algorithms exist
- This approach is called *cutset conditioning*.

September 28, 2015

54