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First-Order Logic 

Russell and Norvig Chapter 8 

Propositional logic 

J Propositional logic is declarative 
J Propositional logic is compositional: 

q  meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2 
 
J Meaning in propositional logic is context-independent 

q  unlike natural language, where meaning depends on context 
L Propositional logic has limited expressive power 

q  Unlike natural language 
q  E.g., cannot say "pits cause breezes in adjacent squares“ 

(except by writing one sentence for each square) 
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First Order Logic 

n  Examples of things we can say: 
q  All men are mortal: 
  ∀x Man(x) ⇒ Mortal(x) 

 
q  Everybody loves somebody 
  ∀x ∃y Loves(x, y) 
q  The meaning of the word “above” 

  ∀x ∀y above(x,y) ⇔ (on(x,y) ∨  ∃z (on(x,z) ∧   
     above(z,y)) 
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First Order logic 

n  Whereas propositional logic assumes the world 
contains facts, 

n  first-order logic (like natural language) assumes the 
world contains 
q  Objects: people, houses, numbers, colors, … 

 
q  Relations: red, round, prime, brother of, bigger than, part of, 
… 

q  Functions: father-of, plus, … 
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Logics in General 

n  Ontological Commitment: What exists in the world — 
TRUTH 
q  PL : facts hold or do not hold. 
q  FOL : objects with relations between them that hold or do not 

hold 

n  Epistemoligical Commitment:  state of knowledge 
allowed with respect to a fact 
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Syntax of FOL 

n  User defines these primitives:  
q  Constant symbols (i.e., the "individuals" in the world)  E.g., 

Mary, 3  

q  Function symbols (mapping individuals to individuals)  E.g., 
father-of(Mary) = John, color-of(Sky) = Blue  

q  Predicate/relation symbols (mapping from individuals to 
truth values) E.g., greater(5,3), green(Grass), color(Grass, 
Green) 
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Syntax (cont.) 

n  FOL supplies these primitives:  
q  Variable symbols. E.g., x,y  

q  Connectives. Same as in PL: ¬, ⇒, ∧, ∨, ⇔ 

q  Equality  =  

q  Quantifiers: Universal (∀) and Existential (∃) 
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Atomic sentences 

Atomic sentence =  predicate (term1,...,termn)   
   or term1 = term2 

 
Term             =  function (term1,...,termn)   

   or constant or variable  

Examples: 
Brother(KingJohn,RichardTheLionheart) 
Greater(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) 
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Complex sentences 

 Complex sentences are made from atomic sentences 
using connectives 

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2 
 and by applying quantifiers. 

 
Examples: 

 Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)  
 greater(1,2) ∨ less-or-equal(1,2) 

 
  ∀x,y Sibling(x,y) ⇒ Sibling(y,x) 
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Truth in first-order logic 

n  Need to specify 
constant symbols  →  objects 
predicate symbols  →  relations 
function symbols   →  functional relations 
 

n  An atomic sentence predicate(term1,...,termn) is true 
 iff the objects referred to by term1,...,termn 
 are in the relation referred to by predicate. 
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Models for FOL: Example 
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Models for FOL 

n  We can enumerate the models for a given KB 
vocabulary: 

n  Computing entailment by enumerating the 
models will not be easy !! 
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Quantifiers 

n  Allow us to express properties of collections of objects 
instead of enumerating objects by name 

n  Universal: “for all” ∀ 
n  Existential: “there exists” ∃ 
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Universal quantification 

∀<variables> <sentence> 

Everyone at CSU is smart: 
  ∀x At(x, CSU) ⇒ Smart(x) 

n  ∀x P is true in a model m iff P is true with x being 
each object in the model 

n  Roughly speaking, equivalent to the conjunction of 
instantiations of P 

   At(KingJohn,CSU) ⇒ Smart(KingJohn)  
 ∧ At(Richard,CSU) ⇒  Smart(Richard)  
 ∧ At(CSU,CSU) ⇒ Smart(CSU)  
 ∧ ... 
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Using universal quantifiers 

n  Typically ⇒ is the main connective with ∀ 
 

n  Do not make the following mistake: 
∀x At(x, CSU) ∧ Smart(x) 
means “Everyone is at CSU and everyone is smart” 
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Existential quantification 

∃<variables> <sentence> 

Someone at CSU is smart: 
 ∃x At(x, CSU) ∧ Smart(x) 

n  ∃x P is true in a model m iff P is true with x being 
some object in the model 

n  Roughly speaking, equivalent to the disjunction of 
instantiations of P 

 At(KingJohn,CSU) ∧ Smart(KingJohn)  
∨  At(Richard, CSU) ∧ Smart(Richard)  
∨  At(CSU, CSU) ∧ Smart(CSU)  
∨ ... 
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Existential quantification (cont.) 

n  Typically, ∧ is the main connective with ∃ 

n  Common mistake: using ⇒ with ∃: 
∃x At(x, CSU) ⇒ Smart(x) 

 When is this true? 
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Properties of quantifiers 
∀x ∀y is the same as ∀y ∀x 
∃x ∃y is the same as ∃y ∃x  

∃x ∀y is not the same as ∀y ∃x: 
 

∃x ∀y Loves(x,y) 
q  “There is a person who loves everyone in the world” 

∀y ∃x Loves(x,y) 
q  “Everyone in the world is loved by at least one person” 

n  Quantifier duality: each can be expressed using the other 
 ∀x Likes(x,IceCream)  ¬∃x ¬Likes(x,IceCream) 
 ∃x Likes(x,Broccoli)   ¬∀x ¬Likes(x,Broccoli) 
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Equality 

n  term1 = term2 is true if and only if term1 and term2 refer to 
the same object 

n  E.g., definition of Sibling in terms of Parent: 
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧  ∃m,f ¬(m = f) ∧ 

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧  Parent(f,y)] 
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Interacting with FOL KBs 
n  Suppose a wumpus-world agent is using a FOL KB and perceives a 

smell and a breeze (but no glitter) at position [i,j]: 
 

Tell(KB,Percept([Smell,Breeze,NoGlitter],[i,j])) (= assertion) 
Ask(KB,∃a BestAction(a,[i,j])) 
 (=query) 
 i.e., does the KB entail some best action? 

 
n  Answering yes without the best action is not very helpful so: 

 Answer: Yes, {a/Shoot}  : substitution (binding list) 
 
n  Ask(KB, α) returns some/all s such that KB entails SUBST(s, α). 
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KB for wumpus world 

n  Perception 
q  ∀ t,s,g,m,c Percept([s,Breeze,g,m,c],t) ⇒ 

Breeze(t) 

n  Action 
q  ∀t Glitter(t) ⇒ BestAction(Grab, t) 
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The wumpus world 

Squares are breezy near a pit: 
n  First define the concept of adjacency: 

 ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔  
 (x = a∧(y=b-1∨y=b+1))∨(y=b∧(x=a-1∨x=a+1))  

n  Represent time with additional parameter 
 At(Agent,s,t) means Agent at square s and time t 

n  Infer properties 
∀s,t  At(Agent,s,t)∧Breeze(t) ⇒ Breezy(s) 
  

How would we say that there is a single wumpus? 
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Creating a KB using FOL 
1.  Identify the task (what will the KB be used for) 
2.  Assemble the relevant knowledge 

 Knowledge acquisition. 
3.  Decide on a vocabulary of predicates, functions, and constants 

 Translate domain-level knowledge into logic-level names. 
4.  Encode general knowledge about the domain 
5.  Encode a description of the specific problem instance 
6.  Pose queries to the inference procedure and get answers 
7.  Debug the knowledge base 
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Examples 
The kinship domain 
n  Basic predicates: Female, Parent… 
Other predicates in this domain: 
n  One's mother is one's female parent 

∀m,c (Mother(c) = m) ⇔ (Female(m) ∧ Parent(m,c)) 
n  This means? 

 ∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧  ∃p Parent(p,x) ∧ Parent(p,y)] 
n  These are the axioms of the domain (they are also definitions since 

they use biconditionals). 
n  Some sentences are “theorems” -- they can be derived from the 

axioms: 
q  “Sibling” is symmetric 

∀x,y Sibling(x,y) ⇔ Sibling(y,x) 
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Examples (cont) 

The natural numbers domain 
n  0 is a natural number: 

 NatNum(0) 
n  The successor of a natural number is a natural number: 

 ∀n NatNum(n) ⇒ NatNum(S(n)) 
n  Constraints on the successor function: 

 ∀n ¬(0 = S(n))  
 ∀m,n m ¬(m = n) ⇒ ¬(S(m) = S(n)) 

n  Defining addition: 
 ∀n NatNum(n) ⇒ +(0, n) = n 
 ∀m,n NatNum(m) ∧ NatNum(n) ⇒ +(S(m), n) = S(+(m,n)) 
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