

## First-Order Logic

Russell and Norvig Chapter 8

## First Order Logic

- Examples of things we can say:
- All men are mortal:
$\forall x \operatorname{Man}(x) \Rightarrow \operatorname{Mortal}(\mathrm{x})$
- Everybody loves somebody
$\forall x \exists y \operatorname{Loves}(x, y)$
- The meaning of the word "above"
$\forall x \forall y$ above $(x, y) \Leftrightarrow(o n(x, y) \vee \exists z(o n(x, z) \wedge$
above(z,y))

CS440 Fall 2015

## Propositional logic <br> 产

(-) Propositional logic is declarative
(-) Propositional logic is compositional:

- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
() Meaning in propositional logic is context-independent
- unlike natural language, where meaning depends on context
© Propositional logic has limited expressive power
- Unlike natural language
- E.g., cannot say "pits cause breezes in adjacent squares" (except by writing one sentence for each square)

CS440 Fall 2015

## First Order logic <br> (

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, ...
- Relations: red, round, prime, brother of, bigger than, part of,
- Functions: father-of, plus, ...


## Logics in General

- Ontological Commitment: What exists in the world TRUTH
PL : facts hold or do not hold
- FOL : objects with relations between them that hold or do not hold
- Epistemoligical Commitment: state of knowledge allowed with respect to a fact

| Langlage | Ontological Commitment | Epistemological Commitment |
| :---: | :---: | :---: |
| Propositional logic | facts | true/false/unknown |
| First-order logic | facts, objects, relations | true/false/unknown |
| Temporal logic | facts, objects, relations, times | true/false/unkn |
| Probability theory | facts | degree of belief $\in[0,1]$ |
| Fuzzy logic | degree of truth $\in[0,1]$ | known interval value |

CS440 Fall 2015

## 

- User defines these primitives:
a Constant symbols (i.e., the "individuals" in the world) E.g., Mary, 3
- Function symbols (mapping individuals to individuals) E.g., father-of(Mary) $=$ John, color-of(Sky) $=$ Blue
- Predicate/relation symbols (mapping from individuals to truth values) E.g., greater(5,3), green(Grass), color(Grass, Green)

CS440 Fall 2015

## Atomic sentences

Atomic sentence $=\quad$ predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term ${ }_{1}=$ term $_{2}$

Term $=\quad$ function $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or constant or variable

## Examples:

Brother(KingJohn,RichardTheLionheart)
Greater(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))


## Truth in first-order logic

- Need to specify constant symbols
$\rightarrow \quad$ objects
predicate symbols function symbols
$\rightarrow \quad$ relations
$\rightarrow \quad$ functional relations
- An atomic sentence predicate(term ${ }_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $1_{1}, \ldots$, term $_{n}$
are in the relation referred to by predicate.

CS440 Fall 2015

## Models for FOL <br> 

- We can enumerate the models for a given KB vocabulary:

For each number of domain elements $n$ from 1 to $\infty$
For each $k$-ary predicate $P_{k}$ in the vocabulary
For each possible $k$-ary relation on $n$ objects
For each constant symbol $C$ in the vocabulary
For each choice of referent for $C$ from $n$ objects .

- Computing entailment by enumerating the models will not be easy !!

CS40 Fall 2015

| Quantifiers |
| :--- |
| - Allow us to express properties of collections of objects |
| instead of enumerating objects by name |
| - Universal: "for all" $\forall$ |
| - Existential: "there exists" $\exists$ |
|  |

## Universal quantification <br> B/

$\forall$ <variables> <sentence>
Everyone at CSU is smart:
$\forall x \operatorname{At}(x, C S U) \Rightarrow \operatorname{Smart}(x)$

- $\forall x P$ is true in a model $m$ iff $P$ is true with $x$ being each object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of $P$

At(KingJohn,CSU) $\Rightarrow$ Smart(KingJohn)
$\wedge$ At(Richard,CSU) $\Rightarrow$ Smart(Richard)
$\wedge$ At(CSU,CSU) $\Rightarrow$ Smart(CSU)
CS440 Fall 2015

## Using universal quantifiers

- Typically $\Rightarrow$ is the main connective with $\forall$
- Do not make the following mistake:
$\forall x \operatorname{At}(x, C S U) \wedge$ Smart(x)
means "Everyone is at CSU and everyone is smart"


## Existential quantification



ヨ<variables> <sentence>
Someone at CSU is smart:
$\exists x \operatorname{At}(x, \operatorname{CSU}) \wedge$ Smart $(x)$

- $\exists x P$ is true in a model $m$ iff $P$ is true with $x$ being some object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,CSU) ^ Smart(KingJohn)
$\vee$ At(Richard, CSU) ^ Smart(Richard)
$\vee \operatorname{At}(C S U, C S U) \wedge$ Smart(CSU)
CS440 Fall 2015

## Existential quantification (cont.)

- Typically, $\wedge$ is the main connective with $\exists$
- Common mistake: using $\Rightarrow$ with $\exists$ :

$$
\exists x \operatorname{At}(x, \text { CSU }) \Rightarrow \text { Smart }(x)
$$

When is this true?

## Equality

- term $_{1}=$ term $_{2}$ is true if and only if term ${ }_{1}$ and term 2 refer to the same object
- E.g., definition of Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$


## Properties of quantifiers

## B/

$\forall x \forall y$ is the same as $\forall y \forall x$
$\exists x \exists y$ is the same as $\exists y \exists x$
$\exists x \forall y$ is not the same as $\forall y \exists x$ :
$\exists x \forall y$ Loves $(x, y)$
ㅁ "There is a person who loves everyone in the world" $\forall y \exists x$ Loves $(x, y)$
a "Everyone in the world is loved by at least one person"

- Quantifier duality: each can be expressed using the other $\forall x$ Likes $(x$, IceCream $) \quad \neg \exists x \neg$ Likes (x,IceCream $)$ $\exists x$ Likes( $x$, Broccoli) $\quad \neg \forall x \neg$ Likes $(x$, Broccoli)

CS440 Fall 2015

## Interacting with FOL KBs <br> - Suppose a wumpus-world agent is using a FOL KB and perceives a

 smell and a breeze (but no glitter) at position [i,j]Tell(KB,Percept([Smell,Breeze,NoGlitter],[i,j])) (= assertion) Ask(KB, ヨa BestAction(a,[i,j]))
(=query)
i.e., does the KB entail some best action?

- Answering yes without the best action is not very helpful so: Answer: Yes, $\{a /$ Shoot $\}$ : substitution (binding list)
- Ask(KB, $\alpha$ ) returns some/all s such that KB entails SUBST(s, $\alpha$ ).

| KB for wumpus world |  |
| :---: | :---: |
| ```- Perception - }\forall\textrm{t},\textrm{s},\textrm{g},\textrm{m},\textrm{c}\mathrm{ Percept([s,Breeze,g,m,c],t) } Breeze(t)``` |  |
| ```- Action - \forallt Glitter(t) => BestAction(Grab, t)``` |  |
| CS440 Fall 2015 | ${ }^{21}$ |

## The wumpus world

Squares are breezy near a pit:

- First define the concept of adjacency:
$\forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \operatorname{Adjacent}([\mathrm{x}, \mathrm{y}],[\mathrm{a}, \mathrm{b}]) \Leftrightarrow$
$(\mathrm{x}=\mathrm{a} \wedge(y=b-1 \vee y=b+1)) \vee(y=b \wedge(x=a-1 \vee x=a+1))$
- Represent time with additional parameter

At(Agent,s,t) means Agent at square s and time t

- Infer properties
$\forall \mathrm{s}, \mathrm{t} \operatorname{At}($ Agent,s,t) $\wedge$ Breeze $(t) \Rightarrow \operatorname{Breezy}(s)$
How would we say that there is a single wumpus?

CS440 Fall 2015

## Creating a KB using FOL

Identify the task (what will the KB be used for)
Assemble the relevant knowledge
Knowledge acquisition.
Decide on a vocabulary of predicates, functions, and constants
Translate domain-level knowledge into logic-level names.
Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers

Debug the knowledge base

## Examples



The kinship domain

- Basic predicates: Female, Parent.

Other predicates in this domain:

- One's mother is one's female parent
$\forall m, c(\operatorname{Mother}(c)=m) \Leftrightarrow(\operatorname{Female}(m) \wedge \operatorname{Parent}(m, c))$
- This means?
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists p \operatorname{Parent}(p, x) \wedge \operatorname{Parent}(p, y)]$
- These are the axioms of the domain (they are also definitions since they use biconditionals).
- Some sentences are "theorems" -- they can be derived from the axioms:
- "Sibling" is symmetric
$\forall x, y$ Sibling $(x, y) \Leftrightarrow$ Sibling $(y, x)$

| Examples (cont) |  |
| :---: | :---: |
| The natural numbers domain <br> - 0 is a natural number: <br> NatNum(0) <br> - The successor of a natural number is a natural number: <br> $\forall n \operatorname{NatNum}(n) \Rightarrow \operatorname{NatNum}(S(n))$ <br> - Constraints on the successor function: $\begin{aligned} & \forall n \neg(0=S(n)) \\ & \forall m, n m \neg(m=n) \Rightarrow \neg(S(m)=S(n)) \end{aligned}$ <br> - Defining addition: $\forall n \operatorname{NatNum}(n) \Rightarrow+(0, n)=n$ <br> $\forall m, n \operatorname{NatNum}(m) \wedge \operatorname{NatNum}(n) \Rightarrow+(S(m), n)=S(+(m, n))$ |  |
| CS440 Fall 2015 | 25 |

