
Ensemble-Roller: Planning with Ensemble of Relational Decision Trees

Tomás de la Rosa and Raquel Fuentetaja
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
rfuentet@inf.uc3m.es, trosa@inf.uc3m.es

Abstract
In this paper we describe the ENSEMBLE-ROLLER planner
submitted to the Learning Track of the International Planning
Competition (IPC). The planner uses ensembles of relational
classifiers to generate robust planning policies. As in other
applications of machine learning, the idea of the ensembles
of classifiers consists of providing accuracy for particular sce-
narios and diversity to cover a wide range of situations. In par-
ticular, ENSEMBLE-ROLLER is a bagging approach to learn
ensembles of relational decision trees. The control knowledge
from different sets of trees is aggregated as a single prediction
which is used to sort candidates in a depth-first search.

Introduction
ENSEMBLE-ROLLER is learning-based planner that learns
for each domain a generalized action policy in a similar way
as previously done by (Khardon 1999; Martin and Geffner
2000; Yoon, Fern, and Givan 2008; De la Rosa et al. 2011).
A generalized policy is a mapping of planning contexts into
the preferred actions to apply. The learning of this mapping
can be modeled as a relational classification task and solved
by inductive learning algorithms and tools.

Given a planning task, we say that an action policy is ac-
curate if it is able to reach goals by repeatedly applying the
selected action without reconsidering its decision. Finding
an accurate action policy for a domain is a hard task since
there can be a wide range of problem distributions and it is
difficult to encode all conceivable action selection strategies
in a single policy.

In the machine learning community it is well-known that
ensemble methods improve the accuracy of single mod-
els (Dietterich 2000). The idea of ensemble-based classifiers
is to build predictive models by integrating multiple single
classifiers. The key to the success of a classifier ensemble
is that the base components should be accurate and diverse.
Two classifiers can be considered diverse if they perform dif-
ferent on the same data or if they they make different errors
when classifying new instances. Regarding action policies
for planning, we consider that two policies are diverse if they
achieve different plans for the same problem.

ENSEMBLE-ROLLER is an upgrade of the ROLLER plan-
ner, for learning ensembles of relational classifiers in order

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to generate accurate action policies for a wide range of prob-
lems in a planning domain. Specifically, we have developed
a bagging approach for learning ensembles of relational de-
cision trees. We propose two ways of exploiting the search
control knowledge provided by the ensemble of trees. In the
first one, individual predictions are aggregated in a single
prediction, therefore the resulting action policy is a combi-
nation of individual ones. In the second one, individual pre-
dictions are considered separately in a multiple-queue search
algorithm. However, only the aggregated approach was sub-
mitted to the competition.

Decision Tree Learning in Planning
ROLLER (De la Rosa et al. 2011) is a inductive learning sys-
tem that learns relational decision trees for planning. These
decision trees contain control knowledge useful to sort the
successors of a given node for state space search planners.

Roller receives as inputs a domain, expressed in PDDL
(STRIPS) (Fox and Long 2003) and a set of training prob-
lems. Then, it extracts training instances from the search
trees generated to solve the training problems. These train-
ing instances are used to train TILDE (Blockeel and De
Raedt 1998), an off-the-shelf relational classification tool.

Decision trees are binary trees in which each node repre-
sents a query about a feature expressed as a positive predi-
cate logic literal. The features considered by ROLLER, that
define the helpful context of a given search state, are:

• helpful actions: whether a particular action is helpful or
not at the current state. The notion of helpful actions was
first introduced in the FF planner (Hoffmann and Nebel
2001).

• target and achieved goals: whether a goal is pending or
has been achieved in the current state.

• static facts, whether a fact is static, i.e. it is defined at the
initial state and any action changes it.

ROLLER generates two types of decision trees: operator
trees and binding trees. There is one operator tree per do-
main. The leaves of operator trees provide an order to sort
applicable operators at a given state, depending on the fea-
tures indicated by the path from the root node to the leaf.
This order is given by the number of times each operator
was selected successfully in training problems for helpful



contexts with the same features. Binding trees are used to
sort the instantiations of each operator. There is one binding
tree for each operator of the domain. Leaves of binding trees
recommend to select or reject an instantiation, considering
how many times that binding was chosen when solving pre-
vious problems.

Given a search node, ROLLER assigns a priority to each
successor, calculated considering the operator tree and the
corresponding binding tree. This priority is used to sort suc-
cessors.1 Successors with a priority of zero can be consid-
ered as non-recommended.

Bagging for Planning
Bagging is a machine learning technique for building en-
sembles of classifiers through the manipulation of the train-
ing set (Breiman 1996). The base learning algorithm is
trained k times to obtain k different models. The training set
of each of these models consists of m training instances ran-
domly sampled with replacement from the original training
set of m examples. Thus, the training set of each iteration
contains on average 63.2% of the instances in the original
training set, with some of them repeated several times. The
standard way of aggregating the prediction of the resulting
ensemble of classifiers is by simple voting.

A ROLLER model consists of several decision trees ob-
tained after training on a set of training problems. Bag-
ging can be applied almost directly to obtain an ensemble
of ROLLER models. However, there are two decision points
that should be solved: how to select training instances and
how to combine recommendations.

Regarding the selection of training instances, ROLLER re-
ceives as input a set training problems rather than a set of
training instances. Thus, there are several alternatives for
building the bootstrap replicates (i.e., training sets gener-
ated for each individual classifier). One possibility is to solve
all training problems and to take as the “original training
set” the set of all training instances derived from the solved
problems. In this case, examples will be randomly drawn
with replacement from the original training set, regardless
the problem they come from. A second alternative is to con-
sider all instances generated from each training problem as
a whole, so the random selection is done at problem level.
Instead of selecting instances, the bootstrap problems are
built by selecting problems randomly with replacement from
the original set of problems. Then, the training instances to
learn each individual model are generated from the solu-
tions of the boostrap problems assigned to it. In this work
we selected the second alternative. Intuitively, it seems in-
teresting to maintain the notion of problem to generate dif-
ferent ROLLER models more specialized in particular types
of problems.

A training phase that applies bagging to ROLLER will end
with an ensemble of generalized policies or ROLLER mod-
els, each composed by one operator tree and several binding
trees, one per operator. To combine these policies in a single
planning process that exploits this multiple control knowl-

1Ties are broken arbitrarily.

DT-Filter-Sort-Aggregation (A,H,B): action list

A: applicable actions,H: Helpful context, B:ensemble

HA = helpful-actions of A
NON-HA = A \ HA
selected-actions = ∅
for each a in HA do

if opPriorityB(a,H) > 0 then
priorityB(a,H) = opPriorityB(a,H) + selRatioB(a,H)
selected-actions = selected-actions ∪{a}

max-HA-priority = maxa∈selected-actions priorityB(a,H)
for each a in NON-HA do

if opPriorityB(a,H) > max-HA-priority then
priorityB(a,H) = opPriorityB(a,H) + selRatioB(a,H)
selected-actions = selected-actions ∪{a}

return sort (selected-actions, priority)

Figure 1: Algorithm for sorting actions for ABP.

edge we have developed the Aggregated Bagging Policy, ex-
plained in detail in the following section.

Aggregated Bagging Policy
The Aggregated Bagging Policy (ABP) algorithm combines
the domain control knowledge (DCK) from an ensemble
of decision trees by aggregating their policies into a single
generalized policy. ABP uses exactly the same search algo-
rithm as single ROLLER, the H-context Policy algorithm, but
now the computation of action priority considers all avail-
able ROLLER models (ROLLER bags). H-context Policy per-
forms depth-first search sorting successors by their priority,
assigned from ROLLER decision trees.

For a single ROLLER model and a given search node,
the priority of each successor is computed in the following
way. The current helpful context determines a path to a leaf
node in the operator tree. This leaf node associates to each
(lifted) action an operator priority (opPriority) representing
the number of covered examples for which this action was
the best option in training instances. Given an instantiation
of an operator, the current helpful context also determines a
path to a leaf node in the corresponding binding tree. This
leaf node provides the selection ratio (selRatio), i.e. the ratio
of successful bindings covered by that leaf. The priority of a
successor is computed as the sum of its operator priority and
selection ratio.

We have adapted the scheme for computing priority of
single ROLLER to deal with multiple models. A simple vot-
ing could not be a good option since voters are few compared
with the number of alternatives. Also, we wanted to maintain
the idea of the ROLLER scheme that prioritizes the recom-
mendation of the operator tree over those of binding trees.
Thus, for multiple models, the operator priority is computed
as the sum of operator priorities for all models. The selec-
tion ratio is the overall ratio of successful bindings consid-
ering all models, i.e. it is the sum of the number of selected
bindings for all models, divided by total number of exam-
ples matching the corresponding leaf of the corresponding
binding tree. Formally, given an ensemble B of b ROLLER



bags, and for an applicable action a in a helpful context H,
we define:

opPriorityB(a,H) =
∑
b∈B

opPriorityb(a,H)

selRatioB(a,H) =
∑

b∈B selectedb(a,H)∑
b∈B selectedb(a,H) + rejectedb(a,H)

The complete algorithm for selecting and sorting succes-
sors is shown in Figure 1. It receives the set of applicable ac-
tions, the current helpful context and the ROLLER ensemble.
Then, it returns a sorted list of applicable actions. Priorities
are computed using the described equations.

Competition Details
In this section we describe specific details for the
ENSEMBLE-ROLLER submitted to the IPC. Planners com-
peting in the learning track are supposed to have a base per-
formance without learning. To have a fair comparison with
the acquired domain-knowledge we have set the base algo-
rithm to be depth-first search over the helpful actions sorting
successors arbitrarily. Even though this is enough for solv-
ing problems in many domains, we expect this configuration
will show very bad performance given the large size of the
test distributions.

As in ROLLER, training problems for generating DCK
should be small enough, so a BFS+Branch and Bound al-
gorithm can explore the search space completely. Thus, we
have used the random problem generators provided by the
organizers to generate appropriate training sets for our sys-
tem.

The number of bags is a parameter of the planner. Intu-
itively, a domain will require many bags when problems in
this domain present a wide diversity. However, this fact can
be only evaluated empirically. Therefore, to select the final
number of bags, we have trained ENSEMBLE-ROLLER sev-
eral times and evaluated its performance in a set of problems
of the expected size for the test phase.

The ENSEMBLE-ROLLER search algorithm do not stop at
first solution, but continues searching until the time bound,
trying to improve the best solution found so far. The search
prunes any branch that exceeds the current best cost found.
This branch and bound strategy tries to optimize costs, but
ENSEMBLE-ROLLER is a system designed to discover the
domain and problem structure in terms of predicate logic.
Thus, the first solution may present hopeless quality. We ex-
pect this to be an important issue in domains where the best
decision for a policy depends on the cost structure of prob-
lems (e.g., a graph with random arc costs for the navigation
in a city).

References
Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285–297.
Breiman, L. 1996. Bagging predictors. Machine Learning
24:123–140.

De la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational decision
trees. JAIR 40:767–813.
Dietterich, T. 2000. Ensemble methods in machine learn-
ing. In 1st. International Workshop in Multiple Classifier
Systems.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113:125–148.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, AIPS00.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. J. Mach. Learn.
Res. 9:683–718.


