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Abstract

Access control policies are security policies that govern access to resources. The need for real-time
update of such policies while they are in effect and enforcing the changes immediately, arise in many
scenarios. Consider, for example, a military environment responding to an international crisis, such as a
war. In such situations, countries change strategies necessitating a change of policies. Moreover, the
changes to policies must take place in real-time while the policies are in effect. In this paper we address the
problem of real-time update of access control policies in the context of a database system. Access control
policies, governing access to the data objects, are specified in the form of policy objects. The data objects
and policy objects are accessed and modified through transactions. We consider an environment in which
different kinds of transactions execute concurrently some of which may be policy update transactions. We
propose algorithms for the concurrent and real-time update of security policies. The algorithms differ on
the basis of the concurrency provided and the semantic knowledge used.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Like any other software artifacts in an enterprise, a security policy is subject to adaptive,
preventive, and corrective maintenance. Since such policies are extremely critical for an enterprise,
it is important to control the manner in which policies are updated. Updating policy in an adhoc
manner may result in inconsistencies and problems with the policy specification; this, in turn, may
create other problems, such as, security breaches, unavailability of resources, etc. In other words,
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policy update should not be effected through adhoc operations but performed through well-
defined transactions that have been previously analyzed.

An important issue that must be kept in mind when designing policy update transactions is that
some policies may require real-time update. We use the term real-time update of a policy to mean
that a policy is changed while it is in effect and this change needs to be enforced immediately. An
example will help motivate the need for real-time update of policies. Suppose user John, by virtue
of some policy P, has the privilege to execute a long-duration transaction that prints a large
volume of sensitive financial information of a company kept in file /. While Jo/hn is executing this
transaction, an insider threat is suspected and the policy P, is changed such that Jo/in no longer
has the privilege of executing this transaction. Since existing access control mechanisms check
John’s privileges before John initiates the transaction and never during the execution of the
transaction, the updated policy P will not be correctly enforced causing financial loss to the
company. In this case, the policy was updated correctly but not enforced immediately resulting in
a security breach. Such real-time update of policies is also important for environments that are
responding to international crisis, such as relief or war efforts. Often times in such scenarios,
system resources need reconfiguration or operational modes require change; this, in turn,
necessitates update of policies.

In this paper we consider real-time policy updates in the context of a database system. We limit
ourselves to access control policies. In our model a database consists of a set of objects. These
objects are accessed and modified through transactions. Access control policies determine who has
access to which objects. Access control policies are specified in the form of policy objects. The
update of policy objects is done through well-defined transactions. The environment that we
address is one in which different kinds of transactions execute concurrently some of which are
policy update transactions. In other words, a policy object may be updated while transactions are
executing by virtue of this policy. We propose different algorithms that allow for concurrent, real-
time update of access control policies. The algorithms differ with respect to the level of semantic-
knowledge that is used and the degree of concurrency achieved.

The rest of the paper is organized as follows. Section 2 describes our model. Section 3 describes
a simple concurrency control algorithm for policy update. Section 4 shows how the semantics of
the policy update operation can be used to increase concurrency. Section 5 illustrates how
semantics of the transactions can be exploited to get even more concurrency. Section 6 highlights
the related work. Section 7 concludes our paper with some pointers to future directions.

2. Our model

A database is specified as a collection of objects, along with some integrity constraints on these
objects. At any given time, the stzate of the database is determined by the values of the objects in
the database. A change in the value of a database object changes the state. Integrity constraints
are predicates defined over the state. A database state is said to be consistent if the values of the
objects satisfy the given integrity constraints.

A transaction is an operation that transforms the database from one consistent state to another.
To prevent the database from becoming inconsistent, transactions are the only means by which
data objects are accessed and modified. A transaction can be initiated by a user, a group, a role or
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another process. A transaction inherits the access rights of the entity initiating it. A transaction
can access a database object only if it has the privilege to access it.

Before a transaction can access or modify an object, there must exist a policy that will allow the
transaction to access the object. In this paper, we focus our attention to systems that support
positive authorization policies only and consider simple kinds of authorization policies that are
specified by subject, target, and rights. A subject can perform only those operations on the target
that are specified by the rights. A subject can be a user, a group, a role or a process [17]. A target,
in our model, is a data object, a group of data objects, or an object class. Next, we introduce the
notion of a policy object.

Definition 1 (Policy object). A policy object is a triple (SS;, TS;, RS;) where SS;, TS;, RS; denote the
subject set, the target set, and the set of access rights of the policy respectively. Elements in the
subject set SS; can perform only those operations on elements of the target set 7S; that are specified
in RS;.

Example 1. Let P, = ({John,Joe}, {FileF, FileG}, {r,w,x}) be a policy object. This policy object
gives subject John and Joe the privilege to Read, Write, and Execute FileF' and FileG.

A policy object is one that stores information about a policy; we use the term policy object to
distinguish them from the other data objects. Policy objects, like data objects, can be read and
written. However, unlike ordinary data objects, policy objects can also be deployed.

Definition 2 (Deploy). A policy object P; is said to be deployed if there exists a subject which is
currently accessing a target by virtue of the privileges given by policy object P;.

Example 2. The policy object P allows subject S; to Read object O,. Subject S; initiates a
transaction 7; that Reads O,. While the transaction 7; Reads O,, we say that the policy object P, is
deployed.

The environment we consider is one in which multiple subjects access and modify data and
policy objects, while the policy objects are in effect. To deal with this scenario, we need some
concurrency control mechanism. The objectives of our concurrency control mechanism are the
following:

o Allow concurrent access to data objects and policy objects.
e Prevent security violations arising due to policy updates.

3. A simple algorithm for policy update

In this section we present a simple solution to the problem of policy updates. We assume that
each data object is associated with two operations: Read and Write. A policy object is associated
with three operations: Read, Write and Deploy. We begin by giving some definitions.
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Definition 3 (Conflicting operations). Two operations are said to conflict if both operate on the
same object and one of them is a Write operation.

The Write operation conflicts with a Read, Write, or a Deploy operation on the same object.
Definition 4 (Transaction). A transaction T; is a partial order with ordering relation <; where

. T; C {rifx],w:[x]|x is a data or policy object} U {d;[x]|x is a policy object} U {a;,c;};
ca, €Tiiff ¢, & T

. if t is ¢; or a;, for any other operation p € T}, p; <; t; and

. Af 7[x], wilx] € T;, then either r;[x] <; wi[x] or wi[x] <; ri[x].

. if difx], wi[x] € T}, then either d;[x] <; wi[x] or w;[x] <; di[x].

[V~ VS I S

Condition 1 defines the different kinds of operations in the transactions (r;[x], w;[x], d[x], a;, ¢;
denote Read operation on object x, Write operation on x, Deploy operation on x, Abort or
Commit operation respectively). Condition 2 states that this set contains an Abort or a Commit
operation but not both. Condition 3 states that Abort or Commit operation must follow every
other operation of the transaction. Condition 4 requires that the partial order <; specify the order
of execution of Read and Write operations on a common data or policy object. Condition 5
requires that the partial order <; specify the order of execution of Deploy and Write operations on
a common policy object.

The algorithm that we propose is an extension of the strict two-phase locking protocol [5]. Each
data object O; in our model is associated with two locks: read lock (denoted by RL(0O;)) and write
lock (denoted by WL(O;)). The locking rules for data objects are the same as the standard two-
phase locking protocol [5]. A policy object P; is associated with three locks: read lock (denoted by
RL(P))), write lock (denoted by WL(P;)) and deploy lock (denoted by DL(P;)).

The locking rules for the policy objects are given in Table 1. Yes entry in the lock table indicates
that the lock request is granted. No entry indicates that the lock request is denied. Signal entry in
the lock table indicates that the lock request is granted, but only after the transaction currently
holding the lock is aborted and the lock is released. The first row corresponds to the case where
some transaction has a read lock on a policy object. The first column in the first row is a Yes—
another transaction requesting a read lock on the same object is given the lock. The second
column in the first row is a No—another transaction requesting a write lock on the same object is
not given the lock. The entry in the first row third column is a Yes—this means, that if a

Table 1
Locking rules for policy objects
Has Wants
RL WL DL
RL Yes No Yes
WL No No No

DL Yes Signal Yes
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transaction has a read lock on a policy object, and another transaction requests a deploy lock on
the same object, then this lock request is granted. The second row corresponds to the case where a
transaction has a write lock on a policy object. This row has all No entries; this means that no
other transaction will be given any other locks to the object. Now consider the third row; this row
corresponds to a transaction holding a deploy lock on a policy object. The entry in the first
and third columns of the third row is a Yes signifying that if another transaction wants a read lock
or a deploy lock on the object, it is granted. The entry in the second column of the third row is
Signal. Signal means that the lock request is granted after the transaction currently holding the
lock is aborted. For example, suppose some transaction 7; holds a deploy lock DL on a policy
object, and another transaction 7; wishes to get the write lock WL and update the policy object. In
such a case a signal is generated to abort 7;, after which 7; releases the DL lock and T; is granted
the WL lock. Note that, a transaction updating a policy (7;) has a higher priority than a trans-
action (7;) that deploys this policy; hence, we generate a Signal to abort the transaction deploying
the policy (T;).
Next we define what it means for a transaction in our model to be well-formed.

Definition 5 (Well-formed transaction). A transaction is well-formed if it satisfies the following
conditions.

1. A transaction before reading or writing a data or policy object must deploy the policy object
that authorizes the transaction to perform the operation.

2. A transaction before deploying, reading, or writing a policy object must acquire the appropri-

ate lock.

A transaction before reading or writing a data object must acquire the appropriate lock.

4. A transaction cannot acquire a lock on a policy or data object if another transaction has locked
the object in a conflicting mode.

5. All locks acquired by the transaction are eventually released.

(98

Definition 6 (Well-formed two-phase transaction). A well-formed transaction T; is two-phase if all
its lock operations precede any of its unlock operations.

Example 3. Consider a transaction 7; that reads object O, (denoted by 7;(O;)) and then writes
object Oy (denoted by w;(Oy)). Policies P,, and P, authorize the subject initiating transaction 7; the
privilege to read object O; and the privilege to write object Oy respectively. An example well-
formed and two-phase execution of 7; consists of the following sequence of operations: (DL;(P,,),
RL(0;),d;(P,),r:(0;),DL;(P,), WL;(Ox), d;(P,), w:(Ox), UL:(P,), UL;(P,), UL;(O;), UL;(Oy)), where
DL;, RL;, WL;, d;, r;, w;, UL; denote the operations of acquiring deploy lock, acquiring read lock,
acquiring write lock, deploy, read, write, lock release, respectively, performed by transaction 7;.

Definition 7 (Policy-secure transaction). A transaction is policy-secure if for every read or write
operation that a transaction performs, there exists a policy that authorizes the transaction to
perform the operation for the entire duration of the operation.



292 I Ray | Data & Knowledge Engineering 49 (2004) 287-309

Note that, all transactions may not be policy-secure. For instance, suppose entity 4 can execute
a long-duration transaction 7; by virtue of policy P.. While 4 is executing 7;, P, changes and no
longer allows A to execute 7;. In such a case, if transaction 7; is allowed to continue after P, has
changed, then 7; will not be a policy-secure transaction.

We adopt the definitions of history, conflict equivalence, committed projection of a history, serial
history and conflict serializable history from Bernstein et al. [5]. For the sake of completeness, we
state them below.

Definition 8 (History). A history H defined over a set of transactions T = {7, ..., T,,}, is a partial
order of operations with ordering relation < where:

LLH=U.T;
2. <y>2<;; and
3. for any two conflicting operations p, ¢ € H, either p <y q or g <y p.

Condition 1 says that the execution represented by H involves precisely the operations of T.
Condition 2 says that H preserves the order of operations in each transaction. Condition 3 says
that every pair of conflicting operations are ordered in H.

Definition 9 (Conflict equivalent). Two histories are conflict equivalent if (i) they are defined over
the same set of transactions and have the same operations and (ii) they order conflicting opera-

tions of nonaborted transactions in the same way.

Definition 10 (Serial history). A history is serial if, for every pair of transactions, all of the
operations of one transaction execute before any of the operations of the other.

Definition 11 (Committed projection of a history). The committed projection of a history is the
history obtained by considering all operations of transactions that are committed in the history.

Definition 12 (Conflict serializable history). A history is conflict serializable if it’s committed
projection is conflict equivalent to some serial history.

Definition 13 (Serialization graph of a history). The serialization graph of a history H is a directed
graph whose nodes are the transactions that are committed in // and whose edges are all 7; — T;
(i # j) such that one of 7’s operations precedes and conflicts with T}’s operations in H.
Theorem 1. A history is serializable iff its serialization graph is acyclic.

Proof. This proof is identical to the proof of the same theorem that is given in Bernstein et al. [5].

Next we define what we mean by a policy-secure history.

Definition 14 (Policy-secure history). A history is policy-secure if all the transactions in its com-
mitted projection are policy-secure transactions.
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Theorem 2. A history H consisting of a set of well-formed and two-phase transactions is serializable.

Proof. We prove this by contradiction. Assume that the history H, produced by transactions
{I, T,...,T,}, is not serializable. Then the graph produced from this history contains a cycle.
Without loss of generality, assume that this cycle is 7y — 7, — T3 --- T, — T;. The presence of the
arrow T) — Th, signifies that there is an operation in 7} that conflicts with and precedes another
operation in 75. The unlock operation in 77 must precede the lock operation in 7; (this is because the
data object involved in a conflicting operation can be locked by only one transaction at any time).
That is, U;(0,) < L,(0,). Using similar arguments, we can argue that for the edge 7, — T3, there is
an unlock operation in 75 that precedes a lock operation in 75. That is, U,(0,) < L3(Op). Since
transaction 75 is two-phase, L,(0,) < U,(Oy). Therefore, we can conclude that U,(0,) < L;(Op).
This argument can be extended and we can arrive at the conclusion that U,(0,) < L;(Oy). This is
not possible because 77 is two-phase. Thus, we arrive at a contradiction. Hence, our initial
assumption that the history is not serializable is wrong. Therefore, the history H is serializable. [

Theorem 3. A history H consisting of a set of well-formed and two-phase transactions is policy-
secure.

Proof. Assume that the history H is not policy-secure. This means that one or more transactions in
the history H are not policy-secure. Suppose 7; is one such transaction. Without loss of generality,
assume that the transaction 7; does not have write access to an object O, but nevertheless updates
object O,. We show that this cannot happen. Since 7; is well-formed, it will deploy the appropriate
policy object before it performs the update. Moreover, before the deploy operation can take place,
T; has to obtain the deploy lock for the policy object. In other words, before T; can access O,, it has
to obtain the deploy lock for a policy P, that authorizes 7; to update O,. Thus, when T; initially
accessed O,, there was a policy P, that allowed 7; to update O,. So, the only possibility is that
while 7; was updating O,, the policy P, got deleted or modified. But according to well-formed rules
this is not possible. Any transaction 7; modifying the policy P, has to obtain a write lock (/L) on
P,.. Before the write lock on P, can be granted, the transaction 7; holding the deploy lock (DL) has
to be aborted and the deploy lock released (Table 1). Thus, the above scenario of 7; updating O,
without any policy authorizing 7; to do so, does not arise in our case. Therefore, 7; is policy-
secure. Our assumption, that the history H is not policy-secure, is wrong. [J

Although the lock based concurrency control approach provides policy-secure and serializable
schedule, it is overly restrictive. A change of policy may not change the specific subject’s access
rights or may result in increased access rights; in such cases terminating valid access will result in
poor performance. For this reason, we look at alternate semantic-based approach to policy
modifications.

4. Towards a semantic-based approach for policy update

In this section we show how we can use semantics of the policy update operation to increase
concurrency. The basic idea is to classify a policy update operation either as a policy relaxation or
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as a policy restriction operation. Policy relaxation does not decrease the access rights of any subject;
transactions executing by virtue of a policy need not be aborted when the policy is being relaxed.
Policy restriction may decrease the access rights of one or more subjects; transactions executing by
virtue of the privileges given by the original policy must be aborted. Before going into the details,
we first give definitions of policy update operation, policy relaxation and policy restriction.

Definition 15 (Policy update operation). A policy update operation modifies a policy object
P, = (SS;, TS;, RS;) to P/ where P! is obtained by transforming either one or more of the following:
SS; to SS!, TS; to TS, or RS; to RS!. SS, TS!, RS! denote the modified subject set, target set and
access rights set respectively.

Definition 16 (Policy relaxation operation). A policy relaxation operation is a policy update
operation that does not decrease the access rights of any subject.

Example 4. The policy object P, = ({John,Joe},{FileF,FileG},{r,w,x}) is changed to P' =
({John,Joe}, {FileF, FileG, FileH}, {r,w,x}). This is an example of policy relaxation because the
access rights of subjects John and Joe have not decreased.

Definition 17 (Policy restriction operation). A policy restriction operation is a policy update
operation that is not a policy relaxation operation.

Example 5. The policy object P, = ({John,Joe}, {FileF,FileG},{r,w,x}) is changed to P/ =
({John},{FileF ,FileG},{r,w,x}). This is not a policy relaxation because access rights of Joe are
being curtailed. Therefore we treat this as policy restriction. A second example of policy
restriction is P; being changed to P/ where P’ = ({John}, {FileF,FileG, FileH},{r,w,x}). In this
case John’s access rights are increased and Joe’s rights are decreased. This is not a policy relax-
ation because Joe’s access rights are being curtailed. Hence, this is classified as a policy restriction

operation.

We now show how to classify a policy update operation as policy restriction or policy relax-
ation. Recall from Definition 1 that a policy 7 is expressed as a tuple P, = (SS;, 7S, RS;) where SS;,
TS;, and RS; denote the set of subjects, the set of targets, and the set of access rights of the policies.
The policy P, can be changed by modifying one or more of the following: SS;, 7S;, RS;. Note that,
classifying a complex policy change operation as policy relaxation or restriction is not trivial. For
this reason, we first consider only atomic changes to the policy, and later show how our approach
scales up to composite changes.

Definition 18 (Atomic change). The transformation of policy object P, = (SS;, IS;, RS;) to P/ is an
atomic change A; if only one of the following conditions is satisfied:

1. P/ = (SS],TS;,RS;) and 4; is the transformation from SS; to SS; by the application of a single
operation on S§;.

2. P/ = (SS;,TS;,RS;) and 4; is the transformation from 7S; to 7S, by the application of a single
operation on T8;.
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3. P/ = (SS,,TS;,RS]) and 4; is the transformation from RS; to RS; by the application of a single
operation on RS;.

In other words, an atomic change of policy P, is a policy update in which only one of SS;, T,,
RS; is changed by the application of one operation.

The different operations that can be applied depend on the specific policy language being used.
For our case, the following is the set of operations.

Change of subject: The set of subjects can be changed by either the operation of (1) set union: a
new set can be added to the existing set, or (2) set difference: a new set can be subtracted from the
existing set.

Change of target: The set can be changed by cither the operation of (1) set union: a new set can
be added to the existing set, or (2) set difference: a new set can be subtracted from the existing set.

Change of rights: The set of access rights can be changed either by (1) set union: a new set of
access rights can be added to the existing set or (2) set difference: a set of access rights can be
removed from the existing set of rights.

Example 6. The policy object P, = ({John,Joe},{FileF,FileG},{r,w,x}) is changed to P/ =
({John},{FileF,FileG},{r,w,x}). The transformation of P, to P/ involved only one operation: the
application of set difference operation on the subject set; hence, this is an atomic change. Suppose
the above policy object P, is changed to P/ where P = ({John}, {FileF, FileG, FileH}, {r,w,x}).
This is not an atomic change because two operations are applied on P, to change it to P": (1) set
difference operation is applied on the subject set and (ii) set union is applied on the target set.

Changing the subject set: Let P, = (SS;, TS;, RS;) be the original and P/ = (SS, TS;, RS;) be the
modified policy object. The modification is caused by the subject set being changed from SS; to
SS!. The subject set can be changed by any of the operations given below.

Set union (SS! = SS; U Add). In this case the set of subjects in Add gets added to the existing set
SS;. Since the access rights of subjects in the set Add increase, this is classified as a policy relaxation
operation.

Example 7. The policy object P, = ({John,Joe},{FileF, FileG},{r,w,x}) is changed to P =
({John,Joe, Denny, George}, {FileF, FileG}, {r,w,x}). This update operation occurred as a result
of performing a set union operation on the subject set. The access rights of the new subjects Denny
and George increased and the access rights of no other subjects decreased. Hence, this is a policy
relaxation operation.

Set difference (SS; = SS; — Remove). In this case the set Remove gets removed from the subject
set SS;. Since the access rights of the subjects in the set Remove diminishes, this operation is
classified as a policy restriction operation.

Example 8. The policy object P, = ({John,Joe},{FileF,FileG},{r,w,x}) is changed to P =
({John},{FileF,FileG},{r,w,x}). The policy update was caused by performing a set difference
operation on the subject set.
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Changing the target (rights) set: Similar arguments can be made for changes in the target (rights)
set. If the target (rights) set is increased by set union operation, then it is a policy relaxation
operation. If the target (rights) set is decreased by set difference operation, then it is a policy
restriction.

In short, if the atomic change 4; involved a set union, then it is a policy relaxation operation;
otherwise, it is a policy restriction operation.

Example 9. The policy object P, = ({John,Joe},{FileF,FileG},{r,w,x}) is changed to P' =
({John},{FileF,FileG},{r,w,x}). In this case the atomic change 4; applied the set difference
operation on the subject set {John,Joe} to transform it {John}. Thus, this is a policy restriction
operation.

Having discussed about atomic changes, we are now in a position to discuss composite change.

Definition 19 (Composite change). The transformation of policy object P, to P’ is a composite
change if it involves one or more atomic changes. A composite change C; can be represented as a
sequence of atomic changes 4, 4,,...,4,; thatis, C, = (41,4,,...,4,).

Example 10. The policy object P, = ({John,Joe},{FileF,FileG},{r,w}) is changed to P/ =
({John}, {FileF ,FileG,FileH},{r,w}). This is a composite change because two atomic changes A4,
4, are applied to P, to change it to P": (i) 4,—set difference operation applied on the subject set
{John,Joe} to transform it to {John}, and (ii) 4,—the set union operation applied on the target set

{FileF,FileG} to transform it to {FileF, FileG,FileH }.

Example 11. Another example of composite change will be the policy object P; = ({John,Joe},
{FileF,FileG},{r,w}) changed to P/ = ({John,Joe}, {FileF, FileG, FileH},{r,w,x}). The follow-
ing two atomic changes 4; and A, were applied in this case: (i) 4;—set union operation on the
target set {FileF, FileG} to transform it to {FileF, FileG, FileH }, and (ii) A,—set union operation
on the access rights set {r,w} to transform it to {r, w,x}.

Consider the composite change C, = (4,,4,,...,4,). We classify whether this composite
change C, is a policy relaxation or a policy restriction in the following way: If all the atomic
changes (4, 4,,...,4,) making up the composite change are policy relaxation operations, then
the composite change C; is a policy relaxation operation; otherwise, C; is a policy restriction
operation.

Example 12. The composite change given in Example 10 classifies it as a policy restriction
operation whereas the composite change in Example 11 classifies it as a policy relaxation oper-
ation.

4.1. Concurrency control based on knowledge of policy change

We now give a concurrency control algorithm that uses the knowledge of the kind of policy
change. The operations specified on data objects are Read and Write. A policy object is now
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associated with four operations: Read, Deploy, WriteRelax, WriteRestrict. The Read and Deploy
operations are similar to those specified in Section 3. The Write operations on policy object are
classified as WriteRelax or WriteRestrict. A WriteRelax operation is one in which the policy gets
relaxed. All other write operations on the policy object are treated as WriteRestrict. Since the
operations are different than those discussed in Section 3, we modify the definition of transaction
given in Definition 4 to the following:

Definition 20 (Transaction). A transaction T; is a partial order with ordering relation <; where

. T; C {rifx], wi[x]|x is a data object} U {d;[x], r;[x], ws;[x], wx;[x]|x is a policy object} U {a;,c;};
ca, €Tiiff ¢, & T

. if ¢t is ¢; or a;, for any other operation p € T;, p; <; t; and

. if r;[x], wix] € T;, then either r;[x] <; w;[x] or w;[x] <; r;[x].

. if difx], ws;[x] € T;, then either d;[x] <; ws;[x] or ws;[x] <; di[x].

. if di[x], wx;[x] € T}, then either d;[x] <; wx;[x] or wx;[x] <; d;[x].

AN DN B W=

Condition 1 is changed from that in Definition 4 to reflect that the operations allowed on data
objects are Read and Write and the operations allowed on policy objects are Read, Deploy,
WriteRelax (denoted by wx), and WriteRestrict (denoted by ws). Conditions 2-4 are the same as
given in Definition 4. Condition 5 given in Definition 4 is no longer applicable as there is no
simple Write operation on policy objects; this condition is replaced by two conditions (Conditions
5 and 6 in Definition 20). Condition 5 specifies that if there is a Deploy operation on a policy
object and a WriteRestrict operation on the same object, then the ordering relation <; must
specify the order of the operations. Condition 6 specifies a similar condition for Deploy and
WriteRelax operation.

Now we give the details of the locking rules. Each data object O; is associated with two locks:
read lock (denoted by RL(O;)) and write lock (denoted by WL(O;)). The locking rules for data
objects are the same as the strict two-phase locking protocol [5]. Corresponding to the four
operations on the policy object, we have four kinds of locks associated with policy objects: read
locks (RL), deploy locks (DL), relax locks (WXL) and restrict locks (WSL). The locking rules are
given in the Table 2.

The column with heading Has specifies the locks currently held by some transaction; the row
with heading Wants specifies the locks requested by some transaction. The first row corresponds
to the case where some transaction has a read lock on a policy object. The first column in the first
row is a Yes—another transaction requesting a read lock on the same object is given the lock. The

Table 2
Locking rules for policy objects
Has Wants
RL WXL WSL DL
RL Yes No No Yes
WL No No No No

DL Yes Yes Signal Yes
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second and third column in the first row is a No—another transaction requesting a relax or restrict
lock on the same object is not given the lock. The entry in the first row fourth column is a
Yes—this means, that if a transaction has a read lock on a policy object, and another transaction
requests a deploy lock on the same object, then this lock request is granted. The second row
corresponds to the case where a transaction has a relax lock on a policy object. This row has all
No entries; this means that no other transaction will be given any lock to the object. The third row
corresponds to the case where a transaction has a restrict lock on a policy object. This row has all
No entries; this means that no other transaction will be given any lock to the object. Now consider
the fourth row; this row corresponds to a transaction holding a deploy lock on a policy object.
The entry in the first and fourth columns of the fourth row is a Yes signifying that if another
transaction wants a read lock or a deploy lock on the object, it is granted. The entry in the second
column of the fourth row is a Yes—if a transaction has a deploy lock on a policy object and
another transaction wants a relax lock on the same object, then the lock request is granted. The
entry in the third column of the fourth row is Signal. This is the case of some transaction 7;
holding a deploy lock DL on a policy object, and another transaction 7; wanting to perform an
update causing policy restriction. In this scenario, a signal is generated to abort 7;, after which 7;
releases the DL lock and 7; is granted the WSL lock.
The definition of well-formed transaction is changed as follows:

Definition 21 (Well-formed transaction). A transaction is well-formed if it satisfies the following
conditions.

1. A transaction before reading or writing a data object must deploy the policy object that autho-
rizes the transaction to perform the operation.

2. A transaction before reading, write relaxing or write restricting a policy object must deploy the

policy object that authorizes the transaction to perform the operation.

. A transaction before reading or writing a data object must acquire the appropriate lock.

4. A transaction before deploying, reading, write relaxing, or write restricting a policy object must
acquire the appropriate lock.

5. A transaction cannot acquire a lock on a policy or data object if another transaction has locked
the object in a conflicting mode.

6. All locks acquired by the transaction are eventually released.

98]

To ensure serializable and policy-secure histories, we require each transaction to be well-formed
(Definition 21) and two-phase (Definition 6).

Theorem 4. The locking rules provided in Table 2 provide more concurrency than those given in
Table 1.

Proof. Let H1 and H2 be the set of all possible histories generated by the locking rules given in
Tables 1 and 2 respectively. We need to prove that H1 is a proper subset of H2, that is, H1 C H2.
The proof will proceed in two parts: (i) First, we will prove that for any history H,, if H; € H1,
then H; € H2. (ii) Next, we will prove that for some history H, where H, € H2, H, ¢ H1. In the
following paragraphs we outline the two proofs.
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Proof of (i): Let H € H1. We need to prove that H; € H2. Assume that H; ¢ H2. This is
possible only if there is some operation in H; that cannot be scheduled by locking rules of Table 2.
In other words, the locking rules of Table 2 prohibit obtaining locks necessary for this operation.
For ordinary data objects, the locking rules are the same for both the approaches. So the only
possibility is that this operation is a Read, Write or Deploy operation on a policy object. Suppose
this is a Read operation. The locking rule prevents read locks only when some other prior
transaction has already acquired some kind of write lock on the object. But in this case the locking
rule of Table 1 would have also disallowed the read lock and hence the Read operation in H;.
Thus, the operation is not a Read operation. Similar arguments can be made for Deploy or Write
operations. Hence any operation in H; will also be permitted by the locking rules of Table 2. In
other words H; € H2.

Proof of (ii): We need to show that for some H, € H2, H, ¢ H1. Let H, = (d,(P,),r:(0,),d;(P,),
wx;(P,), wi(Oy), ¢, c;). Hy is a history generated by interleaving the operations of two transactions
T; and T;, where T; = (d;(P,),r:(O,), w;(O,),c;) and T; = (d;(P,),wx;(P),c;). T; Reads and Writes
the data objects O, and O, respectively. 7; executes by virtue of policy P.. T; updates policy P, by
relaxing it. It performs a policy relaxation operation (indicated by wx). 7; executes due to the
privileges given by policy P,. Since the history H, can be generated by the locking rules given in
Table 2, H, € H2. However, H, cannot be generated by the locking rules given in Table 1. This
is because before the operation wx; can take place, the locking protocol must obtain the WL on
P.. This will necessitate generating a Signal lock that will abort transaction 7;. Therefore,
H, ¢ Hl. O

5. Semantics-based concurrency control algorithm

Most cases of policy update will not be policy relaxations. Hence, to get improved concurrency
it is essential to analyze the policy update transaction in greater details and study the interactions
of this policy update with the other transactions. Note that, what impact a specific policy update
will have on a transaction cannot be determined without analyzing the transaction and the policy
change.

An example will help motivate the need for analyzing the interaction of policy update trans-
actions with the regular transactions. To illustrate our point, we use the example of the hotel
database. The hotel database has a set of objects, an integrity constraint on these objects, and
different types of transactions, which we identify and explain below. The hotel database has
different types of transactions, such as, Reserve, Cancel and Report. The Reserve transaction re-
serves a room for a guest. The Reserve transaction executes by virtue of the privileges given by a
policy P.. The policy P; gives Supervisors and Clerks permission to Read and Write the objects
associated with the Reserve Transaction. Another transaction RemoveClerk Rights updates policy
P; it eliminates the Clerks access rights to some objects. Now, if the Reserve and the Remove-
ClerkRights are executed concurrently, the Reserve transaction will be aborted because the rights
in the policy P are being curtailed. ! However, we can perform a detailed analysis to study

! Note that, RemoveClerkRights is a policy restriction operation as per Definition 17.
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whether the interactions are problematic or not. Such analysis should not be adhoc but done in a
formal manner.

We adopt the Z specification language [18] for performing our analysis. Z is based on set theory,
predicate calculus, and a schema calculus to organize large specifications. Z is a model-oriented
specification language and is suitable for modeling database transactions, database objects and
integrity constraints [1,3,20]. The symbols used to explain the example are given in Table 3.

The partial specification of the hotel database appears in Fig. 1. For lack of space we do not
show the specification of the Cancel and Report transactions in Fig. 1. Our specification assumes
some given types, Room and Guest, which enumerate all possible rooms and all possible guests
respectively.

States, as well as operations, are described in Z with a two-dimensional notation called a
schema. The declarations for the objects appear in the top part of the schema and constraints on
the objects appear in the bottom part. The schema Hotel, which defines the state of the database,
lists the objects in the hotel. The partial injection RM relates guests to rooms. Our particular
example does not allow guests to register multiple times, which is reflected by the fact that RM is
an injective function. The example could be modified easily with different constraints. The partial
function ST records the status of each room. Additional integrity constraints on the objects in the
hotel database appear in the bottom part of Hotel. There is one such constraint: dom(S7 >

Table 3

Relevant Z notation
PA Powerset of set 4
\ Set difference (also schema ‘hiding’)
AoB Forward composition of 4 with B
A+B Partial function from 4 to B
A~B Partial injective function from 4 to B
A>B Relation 4 with range restricted to set B
dom4 Domain of relation 4
ran4 Range of relation 4
ADB Function 4 overridden with function B
x? Variable x7 is an input
x! Variable x! is an output
X State variable x before an operation
X State variable x’ after an operation
AA Before and after state of schema A

[Guest, Room) _ Reserve
Status ::= Available | Taken AHotel; g?7: Guest; r7: Room
_Hotel 97 ¢ dom RM

ST : Room —+ Status ST (r?) = Available

RM : Guest >+ Room ST = ST @& {r?+— Taken}
dom(ST t>{Taken}) =ran RM RM'=RMU{g?— 17}

Fig. 1. Partial specification of the hotel database.
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{Taken}) = ranRM. The set of rooms that are taken (dom(S7 > {Taken})) is exactly the set of
rooms reserved by guests (ranRM).

The transactions are specified by preconditions and postconditions. A transaction can execute
only when its preconditions are satisfied. After the execution of the transaction, the postcondi-
tions are satisfied. Consider the Reserve transaction that reserves a room r? for a guest g? The
Reserve transaction has preconditions (i) checks that the room asked for is available (indicated by
ST (r?) = Available), and (i) the guest must not be an existing guest (indicated by g7 ¢ domRM in
the specification). The postcondition of Reserve is that the chosen room’s status is made
unavailable (indicated by ST’ = ST @ {r?+— Taken}), and the room is assigned to the guest (indi-
cated by RM' = RM U {g?—r7}).

We assume that the hotel database has a role-based access control policy. To specify the policy,
we have to extend the specification given in Fig. 1. In addition to the given types Guest and Room
shown in Fig. 1, we introduce new given types User, Target and Rights. The given type User
enumerates all possible users. Targets and Rights give all the possible objects that must be pro-
tected and all the possible rights that can be associated with these targets. There is also an enu-
merated type called Role that enumerates all possible roles.

The schema Hotel, which defines the state of the database, must now be changed to include
information about access control policies. The new schema, which we call RBACHotel, has an
additional object called AL that stores the the set of access control rights associated with the hotel
database.

A transaction can be executed, provided that the user initiating the transaction has the privilege
to perform the operations specified in the transaction. For example, the Reserve transaction can
be executed by users assigned the role of Supervisors. Moreover, Supervisors should have the
privilege to read and write the objects ST and RM.

Checking whether a user has the privilege to execute some transaction 7; and executing
transaction 7; should take place atomically. Otherwise a policy update transaction 7; can execute
in between and change the privilege that enables the user to execute the transaction 7j; this will
result in 7; not being policy-secure. Thus, we can model the checking of a privilege as a part of the
transaction. We change the specification of Reserve transaction to include extra preconditions that
check for the satisfaction of privileges. We call this new specification RBACReserve. As shown in
Fig. 2 the following preconditions are added: (i) i? € Supervisor—checks if i? is a Supervisor, (ii)
(Supervisor, ST, w) € AL—checks if Supervisor can write ST (iii) (Supervisor, RM ,w) € AL—checks
if Supervisor can write RM). *

In addition, the hotel database has transactions that change the policy. RemoveClerkRights is
one such transaction that removes the access right »? of clerks on some specified target /? The
precondition for this transaction is that the clerk must be a subject of the policy that is being
changed (indicated by (Clerk,t?,r?) € AL). Additional preconditions check that the user has the
privilege of executing this transaction (these are indicated by u? € Manager and (Manager,
AL,w) € AL). The postcondition is that the clerks are removed from the policy (indicated by
AL = AL\ {(Clerk,t?,r?)}). The other objects remain unchanged (indicated by ST’ = ST and
RM' = RM).

2 For lack of space we have not shown the checking of Supervisor’s Read privileges.
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[Guest, Room, Users, Target, Rights]
Roles ::= Manager | Supervisor | Clerk

Status ::= Available | Taken

_RBACReserve
ARBACHotel
g7 : Guest
r7: Room
1?7 : User

1? € Supervisor
(Supervisor, ST, w) € AL
(Supervisor, RM ,w) € AL
9?7 & domRM
ST(r?) = Available
ST' = ST @ {r?+ Taken}
RM'=RM U{g?+ 17}

AL' = AL

_RBACHotel
ST : Room -+ Status
RM : Guest = Room
AL :P(Roles x Target x Rights)

dom(ST 1> {Taken}) = ran RM

_ RemoveClerkRights
ARBACHotel; t?: Target
77 Rights; u?: User

u? € Manager

(Manager, AL,w) € AL
(Clerk,t?,77) € AL

AL = AL\ {(Clerk,t?,77)}

ST'=8T
RM'=RM

Fig. 2. Partial specification of the RBAC hotel database.

Formally specifying the transactions will allow us to evaluate whether two transactions com-
mute. Note that this semantic notion of commutativity is more general than the syntactic notion
of commutativity [5].

Definition 22 (Commutativity of transactions). Two transactions 7; and 7; commute if the fol-
lowing holds: the final state and the output produced by the executing transaction 7; followed by
T; on some state S is the same as that obtained by executing 7; followed by 7;. Stated formally,

transactions 7; and 7; commute if they satisfy the following property:
ToT) <= T;oT,

T; o T; formally defines the state resulting from the execution of 7; followed by T;.

Before we proceed further, we make a distinction between types of transactions and instances of
transactions. Reserve, RemoveClerkRights represent the different types of transactions in the hotel
database. Histories, on the other hand, refer to instances of transactions. We denote instances of
transactions using the notation 7;, 7;. We denote the type of an instance of a transaction 7; as
ty(T;). The total number of types of transactions in any given application are finite. However,
infinite number of instances can be generated from the finite number of transaction types. Next we
define the commute sets of types of transactions.

Definition 23 (Commute set of ty(T;)). The set of types of transactions that commute with
transactions of type #y(T;).
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For our specific example, we can prove that Reserve is in the commute set of RemoveClerk-
Rights (the proof is shown in the Appendix A). Formal languages thus allow us to specify and
automatically check (in some cases) the existence of properties such as the one stated above.

5.1. Concurrency control mechanism

The concurrency control mechanism requires that for each type of policy update transaction we
evaluate the commute set of that type of transaction. Note that this task is performed only once
for every application. However, if the application changes, we need to re-evaluate the commute
sets of the policy update transactions.

The operations allowed on the data objects are Read and Write. Data objects are associated
with two kinds of locks: read locks and write locks. The data objects follow the rules of the strict
two-phase locking protocol [5]. The operations allowed on the policy objects are Read, Write and
Deploy. Consequently, policy objects are associated with three kinds of locks: read, write and
deploy locks. The algorithms for Read, Deploy, and Write operations for the policy objects are
given below. These algorithms are executed atomically. Note that, the mechanisms for obtaining
read locks and deploy locks are similar to the locking rules given in Table 1. The mechanism for
obtaining write locks is, however, different.

Algorithm 1 (Algorithm for Read).

Procedure Process-Read (R;(x))

begin
if a transaction 7; holds a write lock on x

exit; /* Lock unavailable—7; can retry later */

give read lock to x
accept (R;(x))

end

Algorithm 2 (Algorithm for Deploy).

Procedure Process-deploy (D;(x))

begin
if a transaction 7; holds a write lock on x

exit; /* Lock unavailable—T7; can retry later */

give deploy lock to x
accept (D;(x))

end

Algorithm 3 (Algorithm for Write).
Procedure Process-write (W (x))
begin
if a transaction 7; holds a write lock on x
exit; /* Lock unavailable—7; can retry later */
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if a transaction 7} holds a read lock on x

exit; /* Lock unavailable—17; can retry later */
for each T; holding a deploy lock on x

if ty(T, ) ¢ Commute-set(#y(T;))

abort T;
give write lock to x
accept (Vi (x))
end

The algorithm for the Write operation on a policy object x initiated by transaction 7; is as
follows. If another transaction 7; has a read or write lock on this policy object, then the request
to obtain the write lock is demed However, if another transaction 7; holds a deploy lock on
x, then a check is made to ascertain whether #y(7;) is in the commute set of #y(7;). If #ty(T}) is
not in the commute set of #y(7;), then 7; is aborted and the write lock is given to T;. On the
other hand if #y(7;) is in the commute set of ty(T;), then T; need not be aborted to give 7; the write
lock.

Theorem 5. The locking rules of the semantics-based approach presented in Section 5 provides more
concurrency than the locking rules presented in Section 4 (given in Table 2).

Proof. To prove this we must show that (i) any history produced by the locking rules of Table 2
can also be produced by the semantic approach and (ii) some history produced by the semantics-
based approach of Section 5 cannot be produced by the locking rules of Table 2.

Proof of (i): The locking rules for data objects are the same in both the approaches. The rules
for obtaining read locks and deploy locks on policy objects are the same. The two approaches
differ with respect to the transactions that must be aborted when a transaction obtains a write lock
on a policy object. In the locking rules given in Table 2 a policy relaxation operation does not
abort transactions executing by virtue of the policy. Note that, these transactions are not aborted
in the semantics-based approach of Section 5 either. This is because the commute set of a policy
relaxation operation will include all transactions. Thus, any history produced by the locking rules
given in Table 2 can also be produced by the semantics-based approach.

Proof of (ii). Consider the case where a RBACReserve transaction executes by virtue of the
policy object AL. The transaction RemoveClerk Rights modifies the policy object AL by removing
the privileges of Clerk. Clearly, this is a policy restriction operation. The locking rules given in
Table 2 would cause the abort of the RBACReserve transaction. However, the semantics-based
approach allows RBACReserve to continue because it is in the commute set of RemoveClerk-
Rights. U

6. Related work

Although a lot of work appears in the area of security policies (please refer to Damianou’s
thesis [8] for a survey), policy update has received relatively little attention. Some work has been
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done in identifying interesting adaptive policies and formalization of these policies [9,23]. A
separate work [22] illustrates the feasibility of implementing adaptive security policies. The above
works pertain to multilevel security policies encountered in military environments; the focus is in
protecting confidentiality of data and preventing covert channels. We consider a more general
problem and our results will be useful to both the commercial and military sector.

Automated management of security policies for large scale enterprise has been proposed
by Damianou [7]. This work uses the PONDER specification language to specify policies. The
simplest kinds of access control policies in PONDER are specified using a subject-domain, target-
domain and access-list. The subject-domain specifies the set of subjects that can perform
the operations specified in the access-list on the objects in the target-domain. This work describes
the implementation of a basic toolkit. The toolkit has a high-level language editor for specify-
ing policies, a compiler for translating policies into enforcement components targeted to differ-
ent platforms, a browser to view and manipulate the domains of subjects and objects to which
policies apply. Thus, new subjects can be added to the subject-domain or subjects can be removed
from the subject-domain. The object-domain can also be changed in a similar manner. But
this work does not allow the policy specification itself to change. An example will help illus-
trate this point. Suppose we have a policy in PONDER that is implementing Role-Based Access
Control: subject-domain = Manager, target-domain = lusrllocal, access-list=read, write. This
policy allows all Managers to read/write all the files stored in the directory /usr/local. Now
the toolkit will allow adding/removing users from the domain Manager, adding/deleting files
in the domain /usr/local. However, it will not allow the policy specification to be changed.
For example, the subject-domain cannot be changed to Supervisors. Our work, focuses on
the problem of updating the policy specification itself and complements the above mentioned
work.

Concurrency control in database systems is a well researched topic. Some of the important
pioneering works have been described by Bernstein et al. [5]. Thomasian [25] provides a more
recent survey of concurrency control methods and their performance. The use of semantics for
increasing concurrency has also been proposed by various researchers [4,10-16,24,26-28]. The use
of semantic knowledge for solving other problems, such as, ensuring atomicity of secure multilevel
transactions [2,20], and ensuring autonomy of local databases [19,21], have also been investigated
by researchers.

7. Conclusion and future work

Real-time update of policy is an important problem for both the commercial and the military
sector. Towards this end, we propose different kinds of concurrency control algorithms that will
allow secure, real-time, concurrent policy update. The algorithms differ on the basis of the
semantic knowledge that is used and in the degree of concurrency achieved.

A lot of work still remains to be done. In this work we considered very simple kinds of
authorization policies. For example, we assume there exists exactly one policy by virtue of which
any transaction has access privilege to some object. In a real world scenario, there may be multiple
policies P,, P, P., giving transaction 7; Read access to the object O,,. Suppose policy P, is modified
removing Read privilege from subject 7;. In such cases we would want transaction 7; to continue
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to have access to the object O,,. Our algorithms should take into account these possibilities. In
some cases precedence relationship may exist among these multiple policies. Policy update must
take into account these precedence relationships. In future we plan to extend our approach to
handle more complex kinds of authorization policies, such as, support for negative authorization
policies, incorporating conditions in authorization policies, and support for specifying priorities in
policies. Specifically, we plan to investigate how policies specified in the PONDER specification
language [6] can be updated.

In this work we have shown how formal methods can be used in semantics-based concurrency
control. Using formal methods has additional benefits. In future, we plan to investigate how
formal methods can be used to detect inconsistencies arising due to policy update. Examples of
inconsistencies include conflicts in the policy specification and loss of functionality due to errors in
the policy specification.
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Appendix A

Theorem 6. RBACReserve o RemoveClerkRights <= RemoveClerkRights o RBACReserve

Proof. LHS on simplification yields the following schema

__ RBACReserveCompRemoveClerk
AHotel; g?: Guest; r?: Room
17: User; t?: Target; v7: Rights; u?: User

17 € Supervisor
(Supervisor, ST, w) € AL
(Supervisor, RM ,w) € AL
u? € Manager
(Manager,AL,w) € AL
(Clerk,t?,7?) € AL

9? ¢ dom RM

ST(r?) = Available

ST = ST & {r?— Taken}
RM' = RM U{g?+ 17}
AL = AL\ {Clerk,t?,r7}
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The RHS on simplification yields the following schema:

__RBACRemoveClerkCompReserve
AHotel; g?: Guest; r?: Room
1?7 User; t?: Target; v?: Rights; u?: User

1?7 € Supervisor

(Supervisor,ST,w) € AL\ {(Clerk,t?,r?)}
(Supervisor, RM ,w) € AL\ {(Clerk,t?,7?)}
u? € Manager

(Manager, AL,w) € AL

(Clerk,t?,r?) € AL

9? ¢dom RM

ST(r?) = Available

ST'= ST @®{r?+— Taken}

RM =RMU{g?— r?}

AL = AL\ {(Clerk,t?,r?)}

Note that the two schemas have identical state change. The only way that the schemas differ is
in two of their preconditions. If we can show that these two sets of preconditions are equivalent,
then we can conclude that the schemas are also equivalent. In other words, to show the equi-
valence of two schemas we need to prove the following:

(1) (Supervisor,ST,w) € AL\ {(Clerk,t?,r?)} <= (Supervisor,ST,w) € AL.
(i) (Supervisor,RM,w) € AL\ {(Clerk,t?,r?)} <= (Supervisor,RM,w) € AL.

We prove (i) only. (ii) can be proved using similar arguments.
(1) (Supervisor,ST,w) € AL\ {(Clerk,t?,r?)} <= (Supervisor,ST,w) € AL.
To prove (i) we must prove the following implications:

(a) (Supervisor,ST,w) € AL\ {(Clerk,t?,r?)} = (Supervisor,ST,w) € AL,
(b) (Supervisor,ST,w) € AL = (Supervisor,ST,w) € AL\ {(Clerk,t?,r?)}.

Note that, implication (a) is always true. This is because an element x present in a set 4 is also
present in a superset of 4. Implication (b) is also true because (Supervisor,ST,w) & {(Clerk,
2, r)}. O
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