Scenario-based static analysis of UML class models
Lijun Yu, Robert B. France, Indrakshi Ray
Computer Science Department, Colorado State University, USA

{lijun, france, iray}@cs.colostate.edu
Abstract. Static analysis tools, such as OCLE and USE, can be used to analyze structural properties of class models. The USE tool also provides support for analyzing specified operations through interactive simulations in which users provide operation parameters, and manually assign values to state elements to reflect the effect of an operation. In this paper we describe an approach to statically analyzing behavior that does not require a user to manually simulate behavior. The approach involves transforming a class model into a static model of behavior, called a Snapshot Model. A Snapshot Model characterizes sequences of snapshots, where a snapshot describes an application state. A scenario describing a sequence of operation invocations can be verified against a Snapshot Model using tools such as USE and OCLE. We illustrate our approach by verifying a scenario against a Snapshot Model that describes the behavior of some operations in a role-based access control (RBAC) application.

Keywords: UML, Model Analysis, Behavioral Properties, Snapshot
1 Introduction

Tool-supported rigorous analysis of design models can enhance the ability of developers to identify potentially costly design problems earlier. Correcting design problems early also reduces effort spent on implementing faulty designs. Our work on developing lightweight techniques for rigorously analyzing design-level class models focuses on providing answers to the following questions:

· How can we verify that a scenario (a sequence of object interactions) is valid with respect to behavior specified in a class model?
· How can we leverage existing UML static analysis tools when verifying scenarios?
Static analysis tools such as OCLE [Chiorean] and USE [Richters] [Gogolla07] can be used to analyze structural properties expressed in class models. These tools are used to check that object configurations conform to constraints expressed in class models. The USE tool also provides some support for checking operation specifications expressed in the Object Constraint Language (OCL) [OCL]. USE provides a facility that allows a user to interactively simulate the behavior of an operation by entering commands that change the states of objects. The state at the end of a simulation is checked by USE to determine if the operation’s post-condition holds. Interactive simulation of operation behavior is useful, but can be tedious, time-consuming and error-prone when one has to manually simulate a number of operations in a scenario involving many interactions.
In this paper, we show how static analysis tools such as OCLE and USE can be used to support lightweight analysis of operation specifications without the need for manual operation simulations. In the approach, an application design model is transformed to a Snapshot Model that characterizes valid sequences of snapshots. A snapshot is an object configuration that describes a system state. A sequence of object interactions, called a scenario, is then checked against the invariants defined in the Snapshot Model.

In a previous paper we described an early version of the analysis technique that applied only to class models with operation specifications expressed in a highly-restricted form of the OCL [Yu]. In that version, each operation specification is converted to a parameterized invariant that is used to generate an invariant that is specific to a scenario under analysis. The parameters are operation arguments and references to before and after states of the object performing the operation (referred to as the target object). Before checking a scenario against a Snapshot Model, the parameterized invariants are instantiated with the actual arguments and references to target object states defined in the scenario to obtain Snapshot Model invariants. A modeler could then use OCLE or USE to check that the scenario conforms to the invariants expressed in the Snapshot Model.
The technique described in this paper improves upon the early version in the following ways: (1) There are no restrictions on operation specifications other than those imposed by tools such as USE and OCLE; (2) The operation specifications are directly transformed to Snapshot model invariants; there is now no need to instantiate parameterized invariants for each scenario; (3) Descriptions of scenarios, called Scenario Models, are used to generate sequences of snapshots that are checked against Snapshot Models. We also present a model verification process to support the use of the technique.

The rest of the paper is organized as follows. In Section 2 we give an overview of the process supporting systematic use of the lightweight analysis technique. In Section 3 we present the example used to demonstrate the technique. In Section 4 we provide an example application of the technique, and present an algorithm for producing Snapshot Models from design class models, and another for producing snapshot sequences from Scenario Models. In Section 5 we discuss related work, and in Section 6 we summarize our contributions and give pointers to future directions.
2 An overview of the verification process
One way of leveraging static analysis tools in the analysis of scenarios is to build a class model, referred to as a Snapshot Model, which characterizes valid sequences of snapshots. This allows for the treatment of scenarios as instances (sequences of snapshots) that can be checked against a Snapshot Model. Tools such as OCLE and USE can be used without modification to check scenarios against Snapshot Models.

The technique described in this paper takes a design class model and transforms it into a Snapshot Model. Scenario Object Models describes sequences of snapshots and are generated from Scenario Models. A Scenario Model is a UML sequence model annotated with descriptions of operation effects. The operation effects are described using an action language called JAL (Java-like Action Language) [Dinh-Trong].
An overview of the process supporting the use of the technique is shown in Fig. 1. Two major roles are involved in the process: The designer and the verifier. The designer creates an Application Model consisting of a design-level class model with operation specifications written in OCL. Each class has fully defined attributes (that is, each attribute has a defined type, cardinality, and visibility) and each operation is associated with a specification consisting of pre- and post-conditions. The verifier creates Scenario Models describing scenarios that are to be verified against the behavior defined in an Application Model. Scenario Models are like test-cases in that they validate application model behavior.
A Scenario Model reflects the understanding a verifier has of how objects should interact in a scenario. The verifier must have access to the Application Model when creating a Scenario Model in order to determine the classes and the operations that can be called in a class. A scenario described by a Scenario Model is classified by the verifier as either good or bad: A good scenario is one that the verifier claims is valid, and a bad scenario is one that the verifier claims is invalid.

The verification process consists of three major steps, as shown in Fig. 1.

[image: image1.emf]Application Model

JAL-Annotated

Scenario Model

Snapshot

Model

Class diagrams

OCL Operation

specifications and

invariants

Scenario Object

Model

Step 1: Snapshot

Model Generation

Step 2: Scenario

Object Model Generation

Step 3: Analysis

Fig. 1. Overview of the analysis process
In Step 1 a Snapshot Model is produced from an Application Model by introducing (1) a Snapshot class whose instance, called snapshots, represent states and (2) a hierarchy of Transition classes whose instances are pairs of snapshots representing the before and after states of an operation execution (see Fig. 2). An instance of the Snapshot class is called a snapshot object. A snapshot object is a configuration of object states that describes a state of an application. It is important to note that a snapshot object consists of immutable instances of classes representing object states. A Transition class has a before and after association with the Snapshot class. Each specialization (derived class) of a Transition class corresponds to an operation in the Application Model and it defines transitions triggered by the operation. The properties of a specialized Transition class (i.e., its basic attributes and associations) represent (1) the parameters of the corresponding operations, (2) the target object state in the before snapshot (i.e., the before state of the object performing the operation), and (3) the target object state in the after snapshot (i.e., the after state of the object performing the operation). The operation specification is transformed to an invariant defined in the context of the specialization.

An example of a Snapshot Model produced from a simplistic Application Model is shown in Fig. 2. The Snapshot Model shown in Fig. 2(b) shows a Snapshot class that consists of instances representing states of objects defined by classes in the Application Model. For example, the class A in the Snapshot Model represents states of the objects defined by the class A in the Application Model.

[image: image2.jpg](a) (b)
Appllcatlon Model Snapshot Model
A Snapshot
al:int b1:int
Af(b:B, k:int) Bf(k:int)
Astate:A Bstate:B
CBs
CAs
CBs
CAs *
* BC % BC
ACs 1 ACs 1
C
Cstate:C
cl:int
Cf()
before L after
B A
b1:int al:int Transition
O
C
c1:int

Instances of A, B, C in the Snapsho
Model represent states of objects
defined by classes in the Application
Model with the same name

AfTransition

k:int
bPre, bPost: B
aPre, aPost: A *

S~ |

BfTransition

CfTransition

K:int

cPre, cPost :C

o

bPre, bPost: B
A

References to target object

before (pre) and after (post)
states

Fig. 2. Example of a Snapshot Model produced from an Application Model
 The Transition class has three specializations: AfTransition represents transitions caused by the operation Af() in A, BfTransition represents transitions caused by the operation Bf() in B, and CfTransition represents transitions caused by the operation Cf() in C. The properties in each of these transition classes are the parameters and before and after states of the target objects of the corresponding operations. For example, the class AFTransition has (1) an attribute k representing the integer parameter of Af(), (2) two attributes, bPre and bPost representing the before and after states of the B reference parameter in Af(), and (3) two attributes, aPre and aPost, representing the before and after states of the operation’s target object. Operation specifications and their corresponding invariants are not shown in this example. A more detailed example of a Snapshot Model is described in Section 4.

The technique is applicable to models of systems in which operations are executed sequentially, and thus a transition in the Snapshot Model is associated with only one triggering operation.
In Step 2, a Scenario Model developed by a verifier is used to produce a model of a sequence of snapshot transition instances. The Scenario Object Model consists of instances of Snapshot and Transition classes produced from the Scenario Model. An example of a Scenario Model and an algorithm for generating Scenario Object Models from Scenario Models are given in Section 4.

In Step 3, an OCL-based static analysis tool (e.g., USE, OCLE) can be used to verify the validity of the Scenario Object Model. If a good scenario is valid, or if a bad scenario is invalid with respect to a Snapshot model, then the Scenario Model and the Snapshot Model are consistent with each other. If a good scenario is found to be invalid, or a bad scenario is valid with respect to a Snapshot Model, then the Snapshot and Scenario Models have inconsistent descriptions of behavior.
3 A Role-Based Access Control example
Role-based access control (RBAC) is the de facto access control model used in commercial organizations. In RBAC, users are assigned to roles, and roles are associated with permissions that determine what operations and data a user playing the role can access. The users initiate sessions in which they activate a subset of roles assigned to them. The operations that a user can perform in a session depend on the permissions associated with the activated roles. To simplify role management, roles are organized in the form of a hierarchy that reflects the organizational structure. The ordering relation is known as the dominance relation. The dominance relation is reflexive, transitive and anti-symmetric. A dominating role can have two types of hierarchy – permission inheritance hierarchy and role activation hierarchy. In permission inheritance hierarchy, a dominating role inherits the permission assigned to a dominated role. In role activation hierarchy, a dominating role can activate a dominated role. Constraints can be specified on the RBAC model to prevent conflict of interests occurring in an organization. Specifically, there are two types of constraints – Static Separation of Duties (SSD) and Dynamic Separation of Duties (DSD). These are defined as relationships between roles. SSD requires that conflicting roles should not be assigned to the same user. DSD imposes a more relaxed requirement – it allows conflicting roles to be assigned to the same user, but does not allow conflicting roles to be activated in the same session.

We use the RBAC example to illustrate our approach. Although we verified both the SSD and DSD properties, we show the analysis of SSD property only in this paper. Note that, the DSD property is more complex and is not shown in this paper for lack of space. The part of the RBAC model used in this paper is shown in Fig. 3. This partial RBAC model shows only the relationships admin, roles and users. The figure also does not show all the operations belonging to these classes, such as unassign roles. Missing from the model are the classes corresponding to sessions and permissions and their associated operations, such as, check access, activate and deactivate roles. We do not show these elements because they are not used in the scenario we analyze.

[image: image3.jpg]children

User Role parent
userRoles 0.1
name: String N name: String
Assign(r:Role) .
Admin 1

CreateUser(): User
CreatRole(): Role

Fig. 3. Partial RBAC class model

The operation specifications of the RBAC model used later to demonstrate the generation of invariants on Transition classes in a Snapshot Model are given below:

//pre- and post- conditions of the Assign method

context User::Assign(role:Role)

pre: self.assignedRoles->forAll(r | r.name <> role.name)

post: self.assignedRoles->exists(r | r.name = role.name)
and self.assignedRoles@pre->forAll(r1 | self.assignedRoles->exists(r2 | r1.name = r2.name))

and (self.assignedRoles->size() = self. assignedRoles@pre->size() + 1)

//Query method to check the role hierarchy relationship

context Role::isDominating(roleName:String):Boolean

pre:true

post:

if self.name = roleName then

 result = true

else

 if self.dominating->size() = 0 then

 result = false

 else result =

 (self.dominating.isDominating(roleName))

 endif

endif

The static separation of duty (SSD) property of RBAC restricts the assignment of conflicting roles to one user. This property is expressed as an invariant on the User class. The SSD property is one of the properties that we verify an example scenario against.

To illustrate the approach we will analyze a scenario involving two users, Alice and Bob, and the following roles: Cashier, Accountant, Senior Accountant, Senior Cashier and Teller. The Senior Accountant role dominates the role of Accountant. The SSD property in this application is the following: The role Accountant and Cashier cannot be assigned to the same user, and any role dominating the Accountant role and any role dominating the Cashier role cannot be assigned to the same user. The specification of this SSD property is given below:
context User

//Static separation of duty constraint

inv SSD: not (self.assignedRoles->exists(r | r.name = "Accountant")
and self.assignedRoles->exists(r| r.name = "Cashier"))

//Static separation of duty with role hierarchies

inv SSD_RH: not (self.assignedRoles->exists(r | r.isDominating(“Accountant”))
and self.assignedRoles->exists(r | r.isDominating("Cashier")))

The scenario that will be analyzed is described by the following sequence of interactions (space does not allow us to show the sequence diagram but its form can be inferred from what follows): (1) user Bob is assigned Accountant role through a call to the Assign() operation, (2) Bob is then assigned SeniorCashier role through a call to the Assign() operation. This scenario is classified as a bad scenario, that is, it is a scenario that the verifier expects will violate a property in the Application Model (specifically, the SSD property).
4 Applying the analysis technique

In this section we describe, through an example, the verification process (see Fig. 1). We use the RBAC example described in the previous section to illustrate each step of the process.

Step 1: Snapshot Model generation

The Snapshot Model is formed by (1) creating a Snapshot class, (2) creating a hierarchy of Transition classes, and (3) converting operation specifications to invariants on instances of the Transition classes. In the following we outline the algorithm for creating a Snapshot Model. The RBAC application class model is used to illustrate the tasks outlined in the algorithm.

1.1. Create a Snapshot class:
The Snapshot class is a structured class that consists of a configuration of UML parts representing object states. Each part represents a set of object states and is thus associated with a class in the design class model. The configuration of parts is the same as the configuration of objects defined in the design class model. For example, the Snapshot class for the partial RBAC design model in Fig. 4 consist of a configuration of parts, where the admin part represents a state of the Admin object (Admin is a singleton class), the users part represents states of User objects and the roles part represents states of Role objects. The states are defined by classes in the Snapshot Model that have the same name as the corresponding classes in the design class model.

1.2. Create a Transition class hierarchy with before and after associations to the Snapshot class: A Transition class is created for each operation in the design class model. A superclass called Transition that has before and after associations to the Snapshot class is also created (see the Transition class in Fig. 4). Given an operation, a Transition class with the name ClassName_operationName_Transition, where className is the name of the target object’s class in the design class model and operationName is the operation’s name, is created as follows:

· Create a Transition class property that references the before state of the operation’s target object and another that references the after state of the target object. The property referencing the before state is named classNamePre, and the other property is named classNamePost. For example, in Fig. 4, the Admin_CreateUser_Transition class has attributes adminPre and adminPost, which are references to before and after states for the target Admin object of the CreateUser() operation.

· For each value (i.e., non-object) parameter in the operation, create a class property (attribute) with the same name and type in the Transition class. For each parameter that is an object reference, create two class properties with the same type as the object reference. One of the properties represents the before state of the object and is thus named parameterNamePre, and the other represents the after state of the object and is named parameterNamePost. For example, the operation Assign() in the User class has a reference to a role as a parameter, and this parameter is transformed to the attributes rPre and rPost in the User_Assign_Transition class shown in Fig. 4. The parameters that represent before and after object states are collectively referred to as preState and postState attributes.

· If there is a return parameter, create a property ret with the same type as the return parameter. For example, the CreateRole() operator in the Admin class returns a reference to a role object, and this return value is represented by the attribute ret in Admin_CreateRole_Transition class shown in Fig. 4.

1.3. Generate Transition invariants from operation specifications: This critical task is also the most involved. We use the Assign() operator defined in the User class to illustrate the major aspects of the task. For each operation specification in the design class model, produce an invariant as follows:.

· Replace all references to self in the pre-condition by the name of the Transition class attribute representing the target object before state (all references to self must be explicit in the operation specification for this to work). Also, replace all references to an object parameter in the pre-condition by the name of the attribute representing the before state of the object, and replace all references to the object in the post-condition by the name of the attribute representing the object’s after state.
EXAMPLE: The precondition of the Assign() operation,
self.assignedRoles->
forAll(r|r.name<>role.name)
is transformed to (changes are in bold print)
userPre.assignedRoles->
forAll(r | r.name <> rPre.name)
· Replace all references to self in an expression involving @pre by the name of the attribute representing the before state of the object.
EXAMPLE: The Assign() post-condition clause
self.assignedRoles@pre-> …
is transformed to
userPre.assignedRoles-> …
· Replace all references to self in the post-condition that are not part of a @pre expression by the name of the attribute representing the after state of the target object.
EXAMPLE: The Assign() post-condition clause
self.assignedRoles->exists(…
is transformed to
userPost.assignedRoles->exists(…
· Add constraints that assert the existence of the object states referenced by preState attributes in the before states. The constrain has the form before.partName -> includes(namePre). Similarly, add constraints that assert the existence of the object states referenced by postState attributes.
EXAMPLE: The following clauses assert the existence of the target user states in the before and after states of the snapshot respectively:
before.users:User->includes(userPre)
after.users:User->includes(userPost)
· Add constraints stating that objects which have not had their state changed in an operation have the same before and after state. These constraints can take two forms as illustrated in the examples given below:
EXAMPLE: The constraint stating that the set of session objects is unchanged by the Assign() operation is stated below:
after.sessions:Session = before.sessions:Session
The constraint stating that the user objects not affected by the operation have the same before and after states is stated below:
after.users:User->excluding(userPost)=
before.users:User->excluding(userPre)

[image: image4.jpg]Snapshot
children
t
Admin users:User " usechiles roles:Role 0.1 skl
Role :
. Qtpi 1
name: String 1 admin:Admin
User
name: String before 1 atter
Transition

User_Assign_Transition

Admin_CreateUser_Transition

Admin_CreateRole_Transition

userPre, userPost: User
rPre, rPost: Role

adminPre, adminPost: Admin
ret: User

adminPre, adminPost: Admin
ret: Role

Fig. 4. RBAC snapshot model

The invariant for the User_Assign_Transition class is given below (the parts in bold are fragments added by the transformation process as discussed above):

context User_Assign_Transition

//From Assign() pre-condition

before.users:User->includes(userPre) and

before.roles:Role->includes(rPre) and

userPre.assignedRoles->

forAll(r | r.name <> rPre.name) and

//From Assign() post-condition

after.users:User->includes(userPost) and

after.roles->includes(rPost) and

userPost.assignedRoles->

exists(r | r.name = rPost.name) and
userPre.assignedRoles->

forAll(r1|userPre.assignedRoles->

exists(r2 | r1.name = r2.name)) and

 userPost.assignedRoles->size() =

userPre.assignedRoles->size() + 1 and

after.users -> excluding(userPost) =

before.users:User->excluding(userPre) and

after.roles:Role = before.roles:Role and

after.sessions:Session = before.sessions:Session and

after.admin:Admin = before.admin:Admin

In this RBAC model a system state is a configuration of user and role states that are linked as specified in the RBAC class model.
Fig. 4 shows the result of applying the process to the RBAC model. One subclass of Transition is populated for Assign(), CreateUser(), and CreateRole() operations and related parameters are created.
Step 2: Scenario Object Model generation

A Scenario Object Model describes a sequence of snapshot transitions, that is, it describes how a system state transits to a next system state as a consequence of an operation invocation. Sequences of snapshot transitions are generated from scenarios described using JAL-annotated sequence models called Scenario Models.
An example of a Scenario Model is shown in Fig. 5. The RBAC scenario described in Fig. 5 involves the activities performed in the order presented: Creation of a session, the creation of two roles (accountant and cashier), and then the assignment of the roles to a user identified by Bob. Each operation invocation in the scenario determines a pair of snapshot object: the before and after snapshots. The pair for one of the Assign() operation invocations is shown in Fig. 6.

Each operation call is associated with a JAL statement that describes the effect of the operation. For example, the JAL description of the CreateUser() operation states that the object user is created and added to the set of users linked to the admin object. Descriptions of JAL language elements can be found in our previously published papers [Dinh-Trong].
In a scenario, operation invocations may spawn calls to other operations. For example, a Transfer operation in a Bank class may call an operation Withdraw to take out money from the source account and then call an operation Deposit to add the money to the destination account, before returning a result to the caller. In our approach we do not generate state transitions for each operation that is spawned from an encompassing operation. The operation specifications in OCL specify only the states before and after, and thus there is no need to build up the effect of an operation using the effects of the spawned operations. For this reason, spawned operations are treated as internal operation details that are hidden for analysis purposes and thus are not shown in Scenario Models.

A Scenario Object Model is obtained by executing the scenario and retaining the execution trace as a sequence of snapshot transitions. Animation tools such as UMLAnT [Dinh-Trong] can be used for this purpose.

[image: image5.emf]Bob:User

JAL_AssignRole

JAL_CreateRole

JAL_CreateUser

admin:Admin

CreateUser

Bob

CreateRole

accountant

CreateRole

cashier

CreateRole

seniorCashier

Assign(accountant)

Assign(seniorCashier)

JAL_CreateRole

Role role = Role._createRole();

this.roles._add(role);

return role;

JAL_CreateUser

User user = User._createUser();

this.users._add(user);

return user;

JAL_AssignRole

if (!this.userRoles._exists(role))

{

this.userRoles._add(role);

}

Fig. 5 A Scenario Model

[image: image6.emf]snapshot6 : Snapshot snapshot7 : Snapshot

userPre = Bob

userPost = Bob

rPre = Accountant

rPost = Accountant

transition6 : User_Assign_Transition

cashier : Role accountant : Role seniorCashier : Role

Bob : User

cashier : Role accountant : Role seniorCashier : Role

admin : Admin admin : Admin

Bob : User

Fig. 6. Assign Accountant role snapshot transition
Step 3: Check Scenario Object Model against the Snapshot Model
In this step the Scenario Object Model and the Snapshot Model are fed into a tool such as USE to determine if the sequence of transitions conforms to the invariants specified in the Snapshot model. For the RBAC example we analyzed scenario described in Fig. 5 against the Snapshot model shown in Fig. 4. We used the OCLE tool. The OCLE reported an error arising from the assignment of two conflicting roles to the same user: The SeniorCashier dominates Cashier and Cashier conflicts with Accountant. We also performed a second analysis involving a dynamic separation of duty (DSD) property which prohibits some roles assigned to a user to be activated at the same time in a session. As we expected OCLE reported an error arising from the activation of two conflicting roles in the same session created by Bob.
5 Related work
Existing UML modeling tools like OCLE [Chiorean] and USE [Richters] provide support for validating syntactic and structural properties. OCLE [Chiorean] for example can detect syntactic errors in models and syntax errors in OCL specifications. OCLE also checks the consistency of OCL invariants on objects or object diagrams. A limitation of OCLE is that it currently does not support analysis of scenarios against operation specifications in class models. The latest version of USE tool [Gogolla07] validates pre- and post- conditions in interactive command mode. The way we validate operation constraints differs from how it is done in USE in that we transform the operation specifications to invariants of a Snapshot Model and thus a user does not have to manually simulate behavior to analyze a scenario.

The Alloy Analyzer [Jackson] developed by the Software Design Group of MIT generates examples or counter-examples of certain properties by exploring a search space given by limiting the number of entities in the model. Alloy models systems in a structural modeling language based on first-order logic. Alloy has been used to check abstract system designs and specification consistencies. The checking of UML models with Alloy requires the transformation of UML models to Alloy models. Such transformations must be validated if they are to be trusted and one must be able to trace errors in Alloys to errors in UML models. These are currently challenging problems.
Model checking has been applied to automate the verification of the safety and correctness of finite state-based systems [Clark]. There are research work that applies model checking techniques to the analysis of UML behavioral models. vUML [Lilius] is a tool to automatically convert UML statecharts to PROMELA specifications and invoke SPIN to verify the desired properties and inconsistencies. Eshuis [Eshuis] applied symbolic model checking to UML activity models. The activity models are formalized and transformed to the input language of NuSMV. The translations are used to check the data integrity constraints of UML activity diagram and class diagrams in the workflow represented in the activity models. As with Alloy, a translation process is needed to convert the UML specifications into a model that can be verified by the model checker. The limitation of model checking techniques is that they suffer from state explosion problem. Compared with our approach that analyzes UML class models and constraints, model checking techniques are typically applied on state-based models such as UML statecharts and activity models.
Static model analysis is useful in verifying design models. Ray et. al. [Ray] model RBAC and MAC access control policies with parameterized UML and compose the models. The static analysis on the composed models can find undesirable violations to the access control policies. However, the proposed approach is manual. The work on this technique was motivated by the problems we encountered with analyzing these types of models using existing techniques

Testing techniques are applied to UML models to check design faults. Dinh-Trong [Dinh-Trong] proposed a systematic approach to testing UML designs. In the approach test cases are generated from a set of test adequacy criteria on the UML design model. Java is used to formally define execution semantics of UML. The design model is then transformed to executable models that exercise the test cases and evaluate the test results.
Model execution is another way to check dynamic model behaviors. Harel et. al. [Harel] propose a model execution framework Rhapsody that can translate class diagram and state charts into executable code and execute it. Our technique provides a lightweight alternative to checking scenarios against operation specifications.

6 Conclusions and future work
In this paper, we proposed a lightweight verification technique for checking scenarios against operational specifications. The approach consists of transforming a class model into a Snapshot Model that represents the static model of behavior. The Snapshot Model characterizes sequences of snapshots, where a snapshot represents an application state. We show how a scenario can be verified against this Snapshot Model using static analysis tools, such as OCLE and USE. The approach, applied on an example RBAC application, is able to detect inconsistencies between a given scenario and operation specifications.
We are implementing the algorithms in this paper in an Eclipse plugin which transforms the UML class models created with EMF (Eclipse Modeling Framework) plugin. The input scenario models are coded in JAL which is translated into executable Java code. The constraints are checked by USE plugin.
A lot of work remains to be done. The behavioral properties are analyzed with respect to given scenarios. We cannot claim that the property holds even when the results of analysis are positive with respect to the given scenarios. One future work aims at how to provide effective coverage of scenarios, to get higher assurance that the properties do indeed hold. The current work also assumes that the operations are executed sequentially. However, in complex real world applications, operations are often executed concurrently. In future, we plan to investigate how to extend our approach to handle concurrent execution of operations.

Acknowledgement
This work was partially supported by a grant from the AFOSR under Contract No. FA9550-04-1-0102.
References
[Chiorean] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, S. Moldovan, “Ensuring UML Models Consistency Using the OCL Environment”, Electronic Notes in Theoretical Computer Science, Volume 102, Nov. 2004, pages 99-110.
[Clark] E. Clark, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
[Dinh-Trong] T. T. Dinh-Trong, “A Systematic Approach to Testing UML Design Models”, Doctoral Symposium, 7th International Conference on the Unified Modeling Language (UML), Lisbon, Portugal, 2004.
[Eshuis] Eshuis, R. 2006. Symbolic model checking of UML activity diagrams. ACM Trans. Softw. Eng. Methodol. 15, 1 (Jan. 2006), 1-38.

[Ferraiolo] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. “Proposed NIST Standard for Role-Based Access Control”. ACM Transactions on Information and Systems Security, 4(3), Aug. 2001.
[Gogolla05] M. Gogolla, J. Bohling, and M. Richters. “Validating UML and OCL Models in USE by Automatic Snapshot Generation”. Journal on Software and System Modeling, 4(4):386-398, 2005.
[Gogolla07] Gogolla, M., Büttner, F., and Richters, M. 2007. USE: A UML-based specification environment for validating UML and OCL. Sci. Comput. Program. 69, 1-3 (Dec. 2007)
[Harel] D. Harel and E. Gery, “Executable Object Modelling with Statecharts”, IEEE Computer, 30(7): 31-42, 1997.
[Jackson] D. Jackson, “Alloy: a lightweight object modeling notation”, ACM Transactions on Software Engineering and Methodology, Volume 11, Issue 2, April 2002, pages 256-290.
[Lilius] Lilius, J.; Paltor, I.P., vUML: a tool for verifying UML models, Automated Software Engineering, 1999. 14th IEEE International Conference on, Oct 1999 Page(s):255 – 258.
 [OCL] Object Management Group, Object Constraint Language Specification, Version 2.0.
[Ray] I. Ray, N. Li, D-K. Kim, R. France, “Using Parameterized UML to Specify and Compose Access Control Models”, Proceedings of the 6th IFIP WG 11.5 Working Conference on Integrity and Internal Control in Information Systems, Lausanne, Switzerland, Nov. 2003.
[Richters] M. Richters, M. Gogolla, “Validating UML Models and OCL Constraints”, Proceedings of the 3rd International Conference on the Unified Modeling Language (UML 2000), Oct. 2000.
[UML2] Object Management Group, Unified Modeling Language: Superstructure, vers 2.0 Final Adopted Standard.
[Yu] Yu, L., France, R. B., Ray, I., and Lano, K. “A light-weight static approach to analyzing UML behavioral properties”. In Proceedings of the 12th IEEE international Conference on Engineering Complex Computer Systems, July 2007, pages 56-63.

_1272988517.vsd
snapshot6 : Snapshot

snapshot7 : Snapshot

userPre = Bob
userPost = Bob
rPre = Accountant
rPost = Accountant

transition6 : User_Assign_Transition

Bob : User

cashier : Role

accountant : Role

seniorCashier : Role

Bob : User

cashier : Role

accountant : Role

seniorCashier : Role

admin : Admin

admin : Admin

_1273056712.vsd
Bob:User

JAL_CreateRole

Role role = Role._createRole();

this.roles._add(role);

return role;

JAL_CreateUser

User user = User._createUser();

this.users._add(user);

return user;

JAL_AssignRole

if (!this.userRoles._exists(role))

{

 this.userRoles._add(role);

}

JAL_AssignRole

accountant

CreateRole

cashier

CreateRole

seniorCashier

JAL_CreateRole

CreateUser

Bob

CreateRole

Assign(accountant)

Assign(seniorCashier)

JAL_CreateUser

admin:Admin

_1272305406.vsd
Application Model

JAL-Annotated Scenario Model

Step 2: Scenario
Object Model Generation

Snapshot Model

Class diagrams

OCL Operation specifications and invariants

Step 3: Analysis

Scenario Object Model

Step 1: Snapshot Model Generation

