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Abstract 
 

Accurate binning of ICs using analog characteristics 
such as IDDQ requires using data from a number of 
vectors. From this data, information needs to be 
extracted using a method that will yield sufficiently 
high resolution. Using a large volume of data can 
require significant computation time. If n analog 
measurements are made for each chip, the data has n 
dimensions. However the measured IDDQ values for a 
chip can be highly correlated. We examine an 
approach based on Principal Component Analysis 
(PCA) for reducing the data size while preserving 
almost all of the information. PCA transforms the 
data by extracting statistically independent 
components and arranging them in the order of 
relative significance.  Using industrial IDDQ data we 
found that often n-dimensional data can be reduced 
to a single dimension with no substantial change in 
the clusters identified.  

 
Keywords: Clustering-Based Binning, Principal 
Component Analysis, Single Dimensionality. 
    
1. Introduction 
 
 The ICs coming off a production line can 
vary significantly in terms of performance and 
reliability related parameters, due to process variance 
and defects. They may need to be binned into several 
bins depending on suitability for an application 
environment and some rejected.  IDDQ has been a very 
useful parameter, and is considered to provide a 
unique combination of high fault coverage and small 
vector set [7]. IDDQ not only impacts power 
consumption but also indicates reliability problems if 
it is abnormally high [1,8,17]. However shrinking of 
device geometries has made IDDQ based testing 
increasingly difficult [15,23]. Even normal devices 
can have very high IDDQ. It has also been shown that 
there is a correlation between maximum operating 
frequency fmax and IDDQ, thus a high IDDQ may 
represent a faster device [14] and not necessarily a 

low reliability device. That makes accurate binning 
an important economic consideration.  

 
      Achieving higher resolution in the presence of a 
large background current requires using multiple 
measurements and careful extraction of abnormal 
variation that may signal presence of a defect. 
Methods like current signature [5,6,16] and ∆IDDQ 
testing [18,21] compare the quiescent current values 
to a set threshold limit or look for significant 
variation in quiescent current pattern of a device to 
identify it as defective. Another method recently 
proposed is the use of statistical clustering of the ICs 
based on their IDDQ values [10,11]. Clustering is a 
powerful statistical method that has been successfully 
applied to different problems. However since 
clustering is an iterative process, it can require 
significant computation time when the number of 
devices involved is large. This problem can be 
significantly alleviated using a two-step approach 
[22]. The first phase involves separating an initial set 
of ICs into clusters using a suitable clustering 
algorithm. The second phase involves simply 
assigning the new devices to the closest possible 
cluster formed in the initial phase. The approach was 
optimized in [20] for maximum defect identification 
by determining the number of clusters that would 
give the best clustering solution. 

In this paper, we examine an approach to 
further reduce the computation time needed. In this 
approach we reduce the dimensionality of the raw 
data using principal component analysis (PCA). PCA 
generates components such that the components are 
statistically independent and the first few components 
contain most of the information about the device. 
Applications of PCA in other fields have shown that 
the first few Principal Components (PCs) are able to 
provide a satisfactory clustering solution [3]. Various 
heuristics have been proposed to determine number 
of PCs to be used [9,12]. The selected components 
can be used to perform clustering. We find that the 
first principal component alone is enough to guide 
clustering, in which case, cluster assignment problem 



reduces to a simple one-dimensional thresholding 
operation.  

The data reduction using PCA can 
significantly speed up the computations needed at the 
production line, however this may result in loss of 
some resolution. An objective of this study is to 
assess the potential impact of this loss.  

In the next section, we provide a brief 
overview of principal component analysis technique. 
We then discuss the use of PCA for the two-phase 
binning approach. The results presented in section 4 
compare the clusters obtained using PCA with those 
obtained using the complete data set.  
 
2. Principal Component Analysis: A Brief 
Review 
  

When many of the variables of a multi-
dimensional dataset have a significant correlation, 
PCA successfully captures nearly all the information 
of the original dataset in the first few PCs. PCA 
mainly has three effects:  

1. It transforms the data by defining new 
variables termed principal components, 
which are statistically uncorrelated. The new 
variables are linear combinations of the 
original variables. 

2. It orders the resulting principal components 
in such a way that those possessing larger 
variance are arranged first. 

3. In many problems, the first few components 
capture most of the discrimination 
capability. In such cases, only the first few 
components need to be considered. 

PCA is applicable to data analysis problems in 
several domains where the data elements are 
significantly correlated.  It is available as a standard 
technique in mathematical and statistical analysis 
packages. While a detailed discussion of the 
approach is beyond the scope of this paper, we 
briefly discuss the steps involved. 
  

Let X be the (mxn) matrix of IDDQ 
measurements, where m is the number of ICs and n is 
the number of IDDQ measurements per device. Thus 
each row corresponds to one device and each column 
to one IDDQ test vector. The IDDQ data matrix X can be 
written as, 

X = USVT 

where U is an (mxn) matrix, S an (nxn) diagonal 
matrix, and VT is an (nxn) matrix.  The above result 
from Matrix Theory is called Singular Value 
Decomposition (SVD), which is relevant to PCA in 
several respects. One way to carry out SVD and 

satisfy the equation given above is to first calculate 
VT and S by diagonalizing XTX: 

XTX = VS2VT 

and then calculate U as follows : 
U = XVS-1 

 SVD provides a computationally efficient 
method of finding PCs. The matrices V and S will 
give us the eigenvectors and the square roots of the 
eigen values of XTX. The diagonal values of matrix S 
makes up the singular value spectrum from which 
variances possessed by each PC is calculated. The 
height of any one singular value is indicative of its 
importance in explaining the data [12].  

 Matrix U yields scaled versions of PC scores. 
The PC scores or z-scores are also given in matrix 
form, Z=US=XV. Therefore, the scores given by U 
are simply those given by Z but scaled to have 
variance 1/(n-1). Z-scores are the coordinates of the 
IDDQ values of a device in the space of principal 
components. The transformed variables are principal 
components and the individual transformed 
observations are termed the z-scores. We have used 
these scores as input to the clustering algorithms as 
opposed to IDDQ values.  

One can condition the data matrix X by centering 
each column and then XTX is proportional to the 
covariance matrix of the columns (test vectors in this 
case). We can center each column of X before 
applying SVD by subtracting the column means of a 
matrix from the corresponding columns.  
 
3. Implementation of PCA Based 
Clustering 

 
The test data used here to evaluate the use of PCA for 
testing and binning of ICs was collected at Texas 
Instrument for a high volume 650K-gate device 
manufactured in deep sub-micron process [10]. The 
device has extensive DFT features including full 
scan. Thirty vectors yielding fault coverage of 95% 
were used for IDDQ measurements on four lots 
containing 627, 724, 716 and 798 devices. The same 
dataset was used to obtain the results in [22]. We 
have used lot 1 for the cluster pre-forming (phase 1) 
and the remaining lots to evaluate the second phase 
of binning. Due to the proprietary nature of the data, 
it has been presented in a normalized form.  PCA 
capability of MATLAB was used for performing our 
analysis. 
 
3.1 Extraction of PCs 
 

We compute principal components using the 
raw data (without standardization). This is generally 
appropriate when all variables are in the same units 



as in this case. Standardizing the data is needed when 
the variables are in different units or when variance 
among different columns is substantial. In case of 
commensurate variables, it was observed that 
standardization often reduces the quality of the 
clustering [19].  

 
 

 Table 1. Variance possessed by the first five PCs for 
lots 1, 2, 3, and 4. 

 
With many types of data sets, it is common for the 
first few principal components to possess most of the 
variance of the original data. We have applied PCA 
to lots 1, 2, 3 and 4 individually. Table 1 shows the 
variance associated with the first five PCs. We notice 
that the first PC itself covers over 98% of variance in 
lot 1. When using PCA to approximate a data matrix, 
the fraction of the total variance in the leading PCs is 
used as a criterion for choosing the number of PCs 
for further analysis. Heuristics for selecting the 
significant components and for discarding variables 
that have a large component in low variance 
directions have been proposed [9,12]. One approach 
is to pick PCs such that the cumulative relative 
variance becomes larger than a certain pre-specified 
threshold. The best value for this cutoff will generally 
become smaller as n, the number of original variables 
increases. The first PC possesses at least 75% or 
more variance for all the four lots of our dataset. 
Thus, the number of PCs required to cover almost the 
entire variability of the dataset would be very small, 
reducing the dimensionality significantly.  

Analysis with various numbers of PCs used 
reveals that the two-phase binning process is carried 
out successfully with a single PC and with negligible 
loss in resolution as compared to case where more 
PCs are used.  The z-scores are calculated for all the 
devices in lot 1 from the PCs considered being 
significant and they are then fed to the clustering 
algorithms. The z-score of a device is thus 
represented by  

   Zix = ∑ Xij.Vjx  
where, index i denotes the device number, and x (= 1) 
the  number of principal components used. Variable j 
corresponds to the number of test vectors in the 
dataset (j=1,…30). Matrix X is our original IDDQ 
dataset and matrix V is a column matrix since we 
consider only one PC as significant. Thus, Zix is also 
a column matrix and is a linear combination of all the 

IDDQ values of a device. The coefficients in matrix 
V are based on the data matrix and are not arbitrary.  
 
 
 
3.2. The Two-phase Binning Approach Using    
PCA 
 
 This technique, which has two phases, is 
described in [22]. The first phase identifies the 
clusters and the second phase does the real-time 
binning. In our analysis, we have used the first lot for 
cluster pre-forming (phase 1) and lots 2, 3, 4 to 
evaluate the binning process. This paper only 
addresses utilizing PCA to go about this approach 
and get a satisfactory clustering solution. The paper 
also gives an insight to the advantages of using PCA 
in this analysis and suggests an optimum approach 
for going about this method. 
 
Clustering Phase: In this phase, the data is pre-
processed using PCA as explained earlier before 
feeding it to the clustering algorithm. After this, a 
rigorous analysis is carried out to determine the best 
clustering of the devices. These clusters can then be 
characterized as defective, non-defective, low power, 
high-speed, etc.  These preformed clusters would be 
based on an initial lot of devices produced or a set of 
samples. It is also possible to modify these clusters 
by conditioning them further based on their analog 
and digital characteristics.  During this phase, we 
have to take note of certain specific values (like the 
column means) that would be further useful while 
binning of every device and condition the device 
properties.  It is important to condition the device 
characteristics in exactly the same manner during 
both the phases so that bin characteristics found for 
initial devices can be used in the binning phase. In 
this study we have used the z-scores as the input to 
the clustering algorithm. 
 
Binning Phase: In binning phase, as each IC comes 
off the production line the measured IDDQ values 
associated with it have to be conditioned the same 
way as during clustering. The dimensionality of the 
z-score used here will depend on the number of PCs 
considered to be significant for clustering in the first 
phase. In this paper we use a single dimensional z-
score value for every device in this phase because we 
consider only the first PC significant for our analysis. 
 Binning phase requires comparing the z-
score of the device with the centroids of different 
clusters. A device is assigned to the cluster that 
represents the closest match. Since this 
implementation uses just one column of z-scores it is 
much faster than the conventional method and thus 

    PCs 
Lots  

1st 
 

2nd 3rd 4th 5th 

Lot 1 98.79% 0.21% 0.19% 0.13% 0.11% 
Lot 2 87.29% 2.63% 2.09% 1.58% 1.07% 
Lot 3 85.4% 2.71% 2.12% 1.72% 1.48% 
Lot 4 77.83% 7.99% 2.98% 2.08% 1.69% 



the process efficiency is significantly increased with 
much reduced computing. The binning steps for 
Hierarchical and K-means algorithms are the same 
once the dataset is preprocessed [22]. The only 
difference here is that we feed z-scores to the 
clustering algorithms and not the actual IDDQ values 
from the dataset as in [22]. 
 
4. Evaluation of Results of PCA Based 
Clustering 
 

We use the silhouette plots to determine the 
quality of the clusters formed. The silhouette value 
for each device is a good indication of how similar 
the device is to the other devices in the same cluster 
as compared to the devices in other clusters.  It is 
computed using 
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where, a(i) is the average distance from the ith point 
to all the other points in its cluster, and b(i) is the 
average distance from the ith point to all the points in 
the nearest neighbor cluster. The value of s(i) is 
between –1 and 1. The closer the value is to unity, 
better is the classification of the device.  

We can define a quality index for the 
clustering of the devices by the overall average 
silhouette plot, defined as the average of  s(i) over all 
the  objects i in the dataset. In general, we select the 
number of clusters, which yields the highest average 
silhouette width, which we call the silhouette 
coefficient. If the silhouette coefficient (SC) is higher 
than 0.71, the partitioning structure is regarded to be 
strong [13]. However if SC is less than 0.50, the 
partitioning structure is regarded to be weak or 
artificial. In this study we have used MATLAB as the 
computational tool.  
 
4.1 Hierarchical Clustering-based Binning 
Using PCA 

  
Figure 1 shows that using a single column of z-

score accomplished a very stable clustering solution, 
similar to that given in [22] which uses all the thirty 
IDDQ values of every device. The initial clustering is 
carried out with the first lot containing 627 devices. 
Given enough information about design parameters, 
observations based on parameters of interest can be 
associated with these clusters. 

In analyzing figure 1, we see that there is only 
one weak member in cluster 4, and rest of the weak 
members belong to cluster 5. There are 35 weak 
members as compared to 31 by the previous method 
in which all thirty IDDQ values were used compared to 

only one PC used here. Note that the silhouette 
values have been calculated using the entire set of 
IDDQ vectors. Thus the results of first phase are nearly 
as good as those from previous method [22] even 
though we have carried out the first phase with only 
one column of z-scores, which has reduced the 
computing time drastically. 

 
Figure 1. Silhouette plot for clusters obtained 
from lot 1 using Hierarchical clustering. 

 
In comparing the individual devices we find 

out that only 19 devices are such that they belong to 
different clusters in the two methods. The 35 weak 
members are of special interest to the test engineer 
who may want to examine them further. For figure 1, 
the silhouette coefficient of 0.79 suggests that a 
strong clustering structure   has been found. In figure 
2 one interesting observation is that all the weak 
members belong to cluster 5. There was a weak 
member with very low negative silhouette value in 
cluster 4 as seen in figure 1. But after binning, the 
characteristics of cluster 4 are modified such that the 
weak device no longer shows a negative silhouette 
value, indicating that it is grouped appropriately. In 
the previous method, there are 3 groups showing 
weak devices as compared to only 1 group showing 
weak devices here.  

    
 

 
Figure 2. Silhouette plot after binning lots 2, 3, 4 
using Hierarchical clustering. 

 
        The number of weak members in the binning 
phase is 5, which is slightly higher compared to that 
with previous method.  But this technique offers 
much faster speed and better overall cluster 



characteristics as we have seen from figure 2. The 
silhouette coefficient increases significantly to 0.92 
after the second phase, which means that the 
grouping is very stable.  After the second phase 2196 
devices are assigned to cluster 5, and 42 devices are 
assigned to other clusters. 
 

 
Figure 3. Silhouette plot for clusters obtained 
from clustering all the lots together using 
Hierarchical clustering. 
 
 
 Figure 3 gives the silhouette plot if all the 
lots are clustered together using Hierarchical 
clustering method using only 1 column of z-scores.  
It turns out that devices are grouped in 5 clusters, 
each cluster showing non-zero number of devices in 
them. The previous method could only form 3 
clusters with at least one device when all the lots 
were clustered at once. An examination of Figure 3 
gives us an insight as to how well this two-phase 
approach approximates clustering of all the devices 
together. For Hierarchical clustering algorithm, only 
61 out of 2865 devices were grouped differently in 
the two approaches giving us a discrepancy factor of 
2.21%. This suggests that this two-phase approach 
yields results very similar to the case if all the 
devices are clustered together.  
The total weak members when all lots are clustered at 
once is 47 which is comparable to a total of 40 weak 
are members obtained by the two-phase binning, 
again indicating that it gives nearly the same results 
as if all the lots were clustered. 

  
4.2  K-means Clustering-based Binning Using 
PCA 

The procedure was repeated for K-means 
clustering. When all the devices in each cluster 
formed by the PCA approach were compared with 
the devices in the appropriate clusters formed using 
all thirty IDDQ measurements, it was found that only 
one device was assigned to different clusters by the 
two methods. Thus the characterization of the 
clusters in [22] applies to the results obtained here for 
K-means algorithm.  The number of weak members 
for the first phase is same in both the methods. A 
silhouette coefficient of 0.8 for phase 1 indicates that 
a good initial set of clusters is established. Lots 2, 3, 
4 were binned using one column of z-scores, and we 
found that only two clusters showed weak members.  

The results are the same as in [22] with the 
only difference being in  2 devices that were assigned 
to different clusters. The total number of weak 
members is 42. A silhouette coefficient of 0.96 
indicated that the devices have been grouped 
extremely well for K-means algorithm.  The 
computation time for this approach is much less than 
for using the entire set of IDDQ values for clustering. 
The results based on PCA are also found to be the 
same as that based on all IDDQ vectors given in [22], 
when all four lots are clustered together. For K-
means, 82 devices were grouped differently with a 
discrepancy factor of 2.86%.  

 
 
 
 
 
 
4.3 Discussion 
 The results for the proposed and the prior 
method are summarized in Table 2. The italicized and 
underlined numbers represent the results obtained 
using PCA. Table 2 gives the number of devices in 
each cluster along with the number of weak 
members. The uncertainty factor [22] is the fraction 

CLUSTER Method Phases # of 
devices 1 2 3 4 5 

# of weak 
members 

Uncertainty 
(%) 

Time 
(sec) 

529 37 46 14 1 31 4.90 26 Pre-forming 
Lot 1 

 
627 539 28 36 19 5 35 5.58 6.54 

2193 7 35 3 0 1 0.04 4 

 
Hierarchical 

Method Binning Lots 2, 
3, 4 

 
2238 2196 7 31 4 0 5 0.22 1.16 

390 123 32 20 62 23 3.60 0.69 Pre-forming 
Lot 1 

 
627 391 123 32 20 61 23 3.60 0.32 

2133 68 8 4 25 22 0.98 4 

 
K-means 
Method Binning Lots 2, 

3, 4 
 

2238 2133 69 8 3 25 19 0.84 1.16 

Table 2. Enhancement due to clustering-based binning using PCA.



of weak members in the lot.  For lot 1, in phase 1 this 
approach results in 35 weak members with 
Hierarchical clustering, compared to 31 with the 
previous approach. PCA based method produces 5 
weak members in phase 2, as compared to the 
previous method.  We observe that the uncertainty 
factor for Hierarchical clustering is slightly higher in 
both the phases using PCA, but for the K-means the 
uncertainly factors are almost the same for both 
phases. We have studied the results of applying 
different number of significant PCs to both the 
clustering algorithms. In the table 3, we compare the 
results using PCs to that obtained in [22]. Analysis 
shows that adding any further PCs after the first one 
do not result in any significant advantage [2]. 

 

 
 
 
 The results indicate that removing features 

with low variance acts like a filter, which provides a 
more stable and robust clustering. This is also 
observed in [3]. Using just a single PC does not result 
in a significant loss of resolution. A significant 
advantage of converting the problem to single 
dimension is that the clustering solution is easily 
visualized and can be adjusted using expert 
judgment. 

 
Figure 4. Density of devices over different z-score 
values also showing clusters using Hierarchical 
clustering. 
 
Figure 4 shows the clusters formed when the first 
column of z-score values is fed to the Hierarchical 
clustering algorithm and the number of devices 
having a particular z-score.  

After the first phase, the test engineer can study the 
characteristics of the weak members and simply 
adjust the centroid values of the clusters on the x-axis 
so that all the weak members are binned accurately 
after that.  From figure 3 we know that 35 weak 
members belong to cluster 5 so we easily envision 
that the devices, which lie on the left side of the 
dividing line separating clusters 5 and 3, in figure 4 
are the weak members. They are shown with an 
arrow in figure 4. Figure 4 gives the width of every 
cluster, which can be used for future reference. This 
assignment has been highlighted using the oval 
shaped structures on the x-axis. Note that from 
computation point of view, the binning phase of the 
clustering and IDDQ test problems have been reduced 
to a simple thresholding problem with this method. 
However, the first phase (clustering) provides a set of 
threshold values based on initial lot overcoming the 
need for setting thresholds in an arbitrary manner. 

Another parameter of interest is the 
computation time needed for the two methods. As 
expected this method is much faster for both the 
phases.  Since the first phase is offline its 
computation time may not be a significant 
consideration. But the binning process, which is 
implemented on the production line, is of particular 
interest to us. It is seen that using this approach, it 
takes only 29% of time as compared to the previous 
method.. The computation time was measured on 
UltraSPARC processor with clock speed of 400 MHz 
as in [22].  

The ease of visualizing and strong control 
over clustering is only possible because the problem 
has been converted to single dimension. Also, the 
first phase (clustering) provides a set of threshold 
values based on initial lot overcoming the need for 
setting the thresholds in an arbitrary manner. 

 
5.     Conclusion 

 
With increasing difficulty in separating good 

and bad devices due to device integration, scaling in 
device geometries, and increased quiescent current 
levels, it has become important to inspect the IDDQ 
current distribution over a set of devices rather than 
comparing with a static threshold value. PCA is used 
to simplify the IDDQ testing and binning process by 
capturing the information in multiple IDDQ test 
vectors (30 in this case) to a smaller set of z-scores 
(one in this case) thus making the process easy to 
control and computationally efficient. In case of 
clustering, it is seen that using very few z-score 
values for a device instead of all the test vectors, 
provides us with negligible loss in resolution with 
much lower computation time.  

 



Results using industrial test data show that with just 
the leading principal component a good stable 
clustering solution can be found without any 
significant compromise on quality of clusters, 
compared to prior approaches that use the complete 
raw data set. This approach offers a potential 
practical technique of addressing the problem of 
binning and testing of ICs with a large number of test 
and measurement values.  Reducing the data to a 
single dimension also facilitates easy visualization 
and permits use of expert judgment.  

The proposed technique is also applicable 
when the data includes other analog measurements 
beyond just IDDQ values. There exist other PCA based 
approaches for data discrimination. Some of them 
employ the last few principal components. Further 
research is needed to evaluate the applicability of 
such methods for binning of IC chips using analog 
attributes. 
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