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Analysis of an Important Class of Non-Markov Systems

Yashwant K. Malaiya, Member IEEE They can also be used to design proper test experiments for
State University of New York, Binghamton digital systems with transient faults. Because of their

Stephen Y.H. Su, Senior Member IEEE generality, these methods can also be used for other
State University of New York, Binghamton systems which exhibit similar non-Markov behaviour.

To examine a system in which transition-probability-
rate depends on the duration the system has been in that

Key Words-Transient failures, Reliability analysis, Non-Markov state, requires considering the history of each state. We
processes. shall first consider, in section II, discrete-time systems to

Reader Aids- develop the necessary concepts; continuous-time systems
Purpose: Develop methods for analysis are then examined in section III. The results for the
Special math needed for explanation: Probability continuous-time systems are next extended for non-steady-
Special math needed to use results: Same state and then finally for multi-state cases.
Results useful to: Fault-tolerant computing, Reliability theoreticians

Summary & Conclusions-Probabilistic modeling of many types of
systems generally assumes Markov behavior. However, some important ?(n)
practical systems exhibit memory. For example, in digital computer
systems, the probability of occurrence of a transient failure is related to V
the time period the system has been operating correctly. Analytic methods n)t t2.t t ... time
do not yet exist that allow accurate modeling of such systems for the pur- -1 0 1 2 j-1
pose of reliability analysis and fault-tolerant design.

Methods are presented here to analyze an important class of non-
Markov systems. In this class, the transition-probability-rate of an out-
ward transition from a state is related to the duration the system has con- Fig. 1. Discrete time system with two states.
tinuously been in that state. To analyze such systems, concept of memory
profile has been introduced. Methods are first presented which enable
computation of steady-state probabilities for both discrete-time and
continuous-time processes with two states. These are then extended for
general non-steady-state cases and also for systems with more than two
states. Consider a discrete-time system portrayed in figure 1.

Assumptions

1. It is a discrete-time 2-state system.
I. INTRODUCTION 2. The parameter governing the transition out from a

state depends on the time the system has spent in that state.
A wide range of systems has been modeled by Markov 3. The system is in steady-state.

processes. For discrete-state continuous-time Markov pro- The steady-state probability of the system being in either
cess, the transition-probability-rate outwards from a state' ~~~~~~~~~~~~~statewill be found here.is governed by a constant parameter. This implies that the
continuous-time duration spent in a state is exponentially Notation
distributed [1]. The advantage of assuming a process to be
Markov is that the mathematical analysis is tractable [2-5]. Ts time-step
The arrival of transient (intermittent) faults in digital cir- A(n) Pr{ system is in state 1 at instant tj (it was in state
cuits has so far been analyzed assuming a Markov process. 0 at instant tj-l) n (system was in state 0 for a
However, in a study of multiple-processor systems [6], the period nTs)}
Weibull distribution is found to have a better match with ,(n) Pr{ system is in state 0 at instant tj (it was in state
experimental data. This implies that in such systems, the 1 at instant tjri) n (system was in state 1 for a
transition-probability rate from a state depends on the period nTs)}
time the system has spent in that state. The methods Px(&) Pr{system is in state x at instant bj}; x = 0 or 1
presented here allow analysis of this important class of rrx(i, f) Pr{(system is in state x at instant bj) fl (it entered
non-Markov systems. state x i.-r. time ago)}; x = 0 or 1

The motivation in developing the methods was to
analyze transient failures in digital systems more accurately. The function rrX(i, I), i = 1 to oois called memory-
The methods are very general, and are not restricted to profile, and describes the probabilistic history of state x, x
Weibull (which is more general than exponential) distribu- = 0 or 1, at instant tj. The first index i refers to the history
tion. They can be used to compute the reliability and the (with the dimensions of time) and the second index]j refers
availability of digital systems with (or without) redundancy. to the instant in time, when the memory profile is defined.
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co ~~~~k-I

It was necessary to define (i,j) so that the effect of Tr(l, j) = tZ 4k) n,(l,J) 1 (1 -
memory could be represented.

The sum of all the values of the memory-profile 7T(i, j), + /41) 7Tt(l, J)
i = I to 00 is PQ(tj).* k-I

= 1T(1 J) [ 1.4k) [n1 (1 - (k')) + i411)
Proof: By definition we have-

= n1(1,J). (5)
p(1) = Pr{ system in the state x at instant tj}

Pa The last step follows from the fact that the term within
= Pr{system in state x at instant tj Iit entered=i=I the brackets is equal to one as shown in the following
state x i-r, time ago}. Pr{it entered state x i-r, time proof.
ago}

P i Proof: Pr{there will be a transition to state 0 in infinite
= Ps1 timeIsystem was in state I at time O with history T,}

tered state x i-Tr time ago) }

= = n(i,J)IQED (1) - 1.(l) + j1(2)(1 - IA.(l)) + IA(3)(1 - jA(I))(l - 1X(2)) +
i=I oo k-I

In order to obtain expressions for p,(j), x = 0 or I, all k=2 k =)

x.(i, j) have to be evaluated. We first obtain an expression However the l.h.s. is equal to one. Hence, the r.h.s is equal
for n.(i, j), i > 2 in terms of n(l, j). Then we evaluate n(l t o QED
j) itself.

Consider for i >- 2: Since p0(j) + Pi(J) = 1, using (1), (3), (5),

n,(i, f) = Pr{system is in state 0 with history i-Tr at time n0(l, J)[A + A] = 1 (6)
tj+1l i-l

= Pr{system is in state 0 with history (i - I)r- at tj} A= 1 + - n (1 - A(k)) (7a)
- Pr{a transition to state 1 at time tj history is 00 k=I

(i - 1)TS5} M li+ E n(1n-,I(k)) (7b)
= TO(i - 1, j) -A(i - 1) T0(i - 1,J) i=2 k=

= [1 -A(i - 1)] no(i - 1,J) (2) From (6) and (5)

The solution to (2) is: ro(1,j) = TT1(1, J) = 1/(A+A)
i-I

7To(i, J) = To(i, j) n (1 -A(k)), i > 2 (3a) and hence
k=1

Similarly po(j) = A/(A + Mg),p() = M/(A+M) (8)
i-,

rr1(i, j = n1(1, j) n (1 - A(k)), i > 2 (3b) Once A(k) and p(k) are given as functions of k, the
k=1 steady-state probabilities po(j) and p1(j) can be calculated

Now an expression will be obtained for 7Tx(1, j), x = 0 or 1. using (8).
Consider,

7To(t,y= Pr{system is in state 0 with history T, at time tj}
= 2 Pr{a transition to state 0 at time tj (sys-

k=I

tem in state 1 at tj-,) n (it entered state 1 at kT,
time ago)} * Pr{(system in state 1 at tj-l) n (it
entered state 1 at kT, time ago) }

00

- 2 8(k)rr,(k, j - 1). u )

As in the steady-state case n1(k, j - 1) = rr,(k, j), Fig. 2. Continuous time system with two states.

imo(l,iy) = k2 fUk) n,(k, J), (4a)

(l)= 2 A(k) iro-(k, I). (4b) III. CONTINUOUS-TIME SYSTEMS

We will next show that im(l, j) = n1,(l, j). Using (3b) Continuous-time systems, represented in figure 2, can
and (4a), we have, be similarly analyzed.
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Assumptions po(t) = A/(A+M),p (t) = M/(A +M). (15)

1. It is a continuous-time two-state system.
2. The parameter governing the transition out from a When A(T) and ,u(r) are given as a function of T, (15) can be

state depends on the time the system has spent in that state used to compute the steady-state probabilities. In the
3. The system is in steady-state. derivation above, A(T) and ,U(T) are any general functions of

T. Two important special cases are examined below.
The steady-state probability of the system being in either When the duration of staying in a state has an exponen-
state will be found here. tial distribution, then both A and p are constant with

respect to history T, and the system is described by a
Notation Markov process. In this case
A(T)dt Pr{system is in state 1 at time t (it was in state 0 at

time t - dt) fn (system was in state 0 for a period po(t) = I/(A + ,u) and P,(t) = A/(A + ,) (16)
T) }

,A(T)dt Pr{ system is in state 0 at time t (it was in state I at which are well known results. For the Weibull distribution
time t - dt) nl (system was in state 1 for a period assume that:
T) }

pN(t) Pr{system is in state x at time t}; x = 0 or 1 A(T) = A'(A'T)a-'
TTx(T, t)dt Pr{system is in state x at time t) n (it entered

state x between T to T + dT time ago}I(T) = 1A tl(H T)' l

The memory profile TEX(T, t), T = 0 to oo, is now con-
tinuous. For continuous cases, the A(T), 8(T), no(T, t) all where a, (, A', A' are constant parameters. In this case;
have dimensions of (time)-'. Corresponding to (1), we now
have- po(t) = r'F(l + a)/ [p'F( 1 + a) + A'F( 1 + 3)] (17a)

a a (3p
pN(t) = fO" Trx(T, t)dT, X = 0, 1 (9) pI(t) = 1 -p0(t) (17b)

which means that px(t) is the area under the memory- These can be easily verified by considering the average
profile curve for time t. time spent in each state. Only for 2-state system is the

For the steady-state case, we can get, corresponding to average time spent in each state directly related to the
(2) and (3a) steady-state probabilities.

a no(T, t) A(T)oT, t), T >0 (10) Equations (16) or (17) are very useful for analyzing
fault-tolerance with transient (intermittent) failures.aT

no(T, t) = no(O, t) exp[-fo A(T')dT'] (1 la) IV. EXTENSION TO NON-STEADY-STATE CASE

Similarly, Assumptions

'aI (T, t) = r,(0, t) exp[-f, A(T')dT'] (1 ib) 1. It is a 2-state continuous time system.
2. The parameter governing the transition out from a

Define- state depends on the time the system has spent in that state.
3. The system need not be in steady-state.

A fO exp[-fO A(T')dT']dT (12a)

M-rfO exp[-fOJ .(T')dr]dT. (12b) memory profile
ir (t',r') at t'=t

Using (9) and (11), 0 memory profile
at t'=t+dt

po(t) = Tro(O, t)A (13a) =

Pi(t) = MA,(0, t)M (13b)
dt

Corresponding to (4), we now have- T-dt T T' (history)

nlo(0, t) = f"rr,n(-r, t)H(r')dr' (14a) Fig. 3. Continuous memory profile for general case.

nr,(0, () = f"' ro(-r', t)A(Tr')dT'. (14b) Consider the memory profiles at times t and t + dt, as0 ~~~~~~~~~~shownin figure 3, these memory profiles might not be
The memory-profiles can be eliminated as in the identical in general, as steady state is no longer assumed.

previous section. The steady-state probabilities, correspon- Both Ar and dt are infinitesimal, though not necessarily
ding to (8) are: equal.-Consider a small band of probability around history
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T-dt of width AT at a time t. The area enclosed in this band TTI(T, t) = 7T i(T, t) -rrr t)i E X1j(T), for T > 0
is equal to the probability that the system is in state 0 at at ST (19
time t, and it entered state 0 between (t - dt)-(AT)/2 and (T ( )
- dt)+ (AT)/2 time ago. If an outgoing transition from ( for =0 (19b)
state 0 were not allowed, then at time t + dt, a band of j*i
width AT around T would represent the same probability. For the steady-state case,
However, since transitions from state 0 are allowed, the
band at T, bounded by the memory profile at t + dt, would a i(j(T, t) - (T t) z A1(r) for T > 0
be shorter than the one at T-dt bounded by the memory a T
profile at t. The difference would be related to the prob- ( )= Oi e Tf 7 Aj(T')dT'], for all i (20a)
ability rate of outgoing transitions from state 0. T1f(T, t) (0, t) exp[- J E

[7TO(T, t + dt)-iTo(T- dt, t)]AT = -7TJ - dt, t)ATA(T - dt), Using this in (19b) yields

fTi(O, t) = E: 7j(O, t) fo Aj1(T)for T > 0 j*i

[rTo(T, t + dt)-To((T, t) + Tro(T, t)-lo(T - dt, t)] exp[-f0 XAk(T)dTldr, for all i (20b)

--O(T -dt, t)A(T - dt), for > 0 Equation (20b) is a simple system of linear algebraic- nTo(- - cit, T)A(-r - cit), for T > 0 equations in Tnj(0, t), for all i. Once all rTj(0, t) are obtained,

rrO(O, t)dt = dt fO p(T)nt((T, t)dT, for T = 0. 7Ti(T, t) can be obtained by (20a).
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