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Abstract  

In this paper we propose an approach for linking the 
isolated research results together and describe a tool 
supporting the incorporation of the various existing 
modeling techniques. The new tool named ROBUST 
is based on recent research results validated using ac- 
tual data. It employs knowledge of static software 
complexity metrics, dynamic failure data and test cov- 
erages for software reliability estimation and predic- 
tion at different software development phases. 

1 Introduction 

Software reliability modeling includes static and dy- 
namic approaches. In the static approach, software de- 
velopment process, software categories, software com- 
plexity metrics, software engineer’s experience, etc. 
are related to the initial program quality in terms of 
defect density or error rate. A variety of static models 
have been proposed by researchers [3, 61. The static 
approach has limited accuracy but it can give an early 
estimate of the software quality and supply valuable 
information for the project managers. 

Software reliability growth models (SRGMs) are 
used in dynamic approach. Dozens of SRGMs have 
been proposed [4]. Tools are available to  assist re- 
liability engineers in using the SRGMs and to select 
among different models based on models’ goodness of 
fit [17]. SRGMs can be used only after some test- 
ing has been done and some failure data are available. 
It can give better accuracy than the static approach 
in reliability estimation and projection. Several tech- 
niques has been suggested to improve the predictive 
quality of SRGMs. Brochlehurst et al have proposed 
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using recalibration to reduce the bias commonly ob- 
served when SRGMs are used to make projection [a] .  
Lyu and Nikora have suggested combining pessimistic 
and optimistic models for software reliability predic- 
tion so that some bias can be cancelled out [ll]. Li and 
Malaiya have studied the effectiveness of techniques 
for enhaincing the predictive quality of SRGMs using 
a large number of data sets [SI. 

During early testing phase, failure data is dom- 
inated by noise which makes prediction based on 
SRGMs quite unstable. Static software reliability 
models can play a role here. Software defect den- 
sity or error rate can be estimated from static soft- 
ware cornplexity and process metrics such as average 
programmers’ skill, frequency of specification change 
and amount of design documentation [lS]. The ini- 
tial number of defects present in a program can be 
estimated using defect density and program size. The 
initial number of defects thus estimated may be used 
as an estimate of one parameter of the finite software 
reliability growth models. The initial defect density 
can be used for estimating the initial fault exposure 
ratio, which can be used to  estimate the other param- 
eter of tlhe Exponential model [9]. 

Traditional SRGMs treats all testing effort equally 
with no discrimination against differences in test input 
selection. But in practice] it is observed that the ef- 
fectiveness of test inputs in revealing defects (failures) 
can differ significantly. To account for the varying ef- 
fectiveness of testing effort, coverage based modeling 
is becoming an active topic recently [13]. 

Existing software reliability tools are designed only 
to  aid the use of SRGMs [17]. To the best of our 
knowledge, no tools exist yet that include most re- 
cent development of software reliability engineering 
methods. With increasing availability of data, from 
both the field and experimental studies, we can now 
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attempt to  develop engineering methods with sound 
and validated analytical characterization. ROBUST 
is a new tool being designed from the beginning to 
have the following features. 

It uses the familiar Windows/Excel interface, thus 
allows easy learning. as well as customization 
of the tool. ROBUST is designed as a system 
containing well defined modules. These modules 
can be independently upgraded or replaced. This 
makes ROBUST an open system. 

It provides a technique to estimate initial defect 
density based on static metrics. 

In the early test phase, the failure data is domi- 
nated by noise which can cause unstable projec- 
tions. ROBUST provides a choice of stabilization 
techniques. 

It supports techniques to improve the predictive 
quality of SRGMs that were validated using ex- 
tensive actual data. 

It can estimate reliability using either time-based 
SRGMs or coverage based models. 

The rest of this paper is organized as follows. Sec- 
tion 2 presents the technical bases for this tool. The 
overall structure of ROBUST is described in Section 
3. The user interface of ROBUST is illustrated in the 
next section. Section 5 concludes the paper with a 
summary of ROBUST. 

2 Technical Foundations 

As we mentioned in the introduction, the key fea- 
ture of this paper is to integrate recent research results 
that were validated and presented separately. A num- 
ber of recent studies form the basis for this paper. We 
have attempted to  combine them in a careful and sys- 
tematic way to  obtain the specifications for this tool. 

2.1 A New Static Model 

It is well known that many factors contribute to 
defects in a program. For instance, it is related to hu- 
man behavior, professional experience, design method- 
ology, quality control, tool support, interaction with 
target users and programmers’ understanding of both 
software development and target field. Maturity of 
software technology (languages, tools, reuse, etc.) may 
also have a general effect on defect density. Expe- 
rience in developing similar systems may reduce the 
defect density. Inherent target system complexity also 

effects on the final defect density. In the past, re- 
searchers have examined this problem from different 
perspectives. 

Takahashi and Kamayachi [18] noticed that pro- 
grammer’s skill, frequency of program specification 
change, and volume of program design document are 
significant factors with respect to  error rate in a pro- 
gram. A model was proposed taking those factors 
into consideration for predicting the error rate in a 
program. Examination of the model and actual pa- 
rameter values would reveal that programmer’s skill is 
the most significant factor and the other factors only 
slightly affect the error rate. 

Software complexity also affects the software relia- 
bility. Many complexity measures have been proposed 
in the past. Crawford, et a1 found that no other single 
complexity metric performs significantly better than 
the number of lines of code (LOG) in predicting the 
number of faults in a C program [3]. Most of the ex- 
isting complexity measures are highly correlated and 
some are simply linear combinations of others. Mun- 
son and Khoshgoftaar used factor analysis to  reduce 16 
complexity metrics into 5 relatively independent com- 
plexity domains and map those domains into a single 
relative complexity metric [15]. 

Gaffney and Pietrolewicz proposed a process phase 
based model for early error prediction in the software 
development process [5]. They suggested that the er- 
ror detection profile with respect to phases can be de- 
scribed by the Rayleigh model. Although the phase 
based model is not quite accurate, it allows projec- 
tions of errors found in later phases and operational 
uses even before the code is executed. Motivated by 
their work, phase dependency is taken into considera- 
tion in our implementation. 

The RADC model [l] estimates defect density us- 
ing multiplicative factors including application type, 
development and software characteristics. Our static 
model takes a similar format, i.e. the total number of 
defects is estimated by multiplying several factors. It 
is observed that 5040% of variation in the number of 
faults is accounted for by software size alone [16]. We 
choose software size (KLOC) as one of the multipliers. 
Other factors affect the defect density which is mea- 
sured in terms of the number of defects per thousand 
lines of code. Equation 1 describes the defect density 
model: 

where C is a constant. It can be viewed as the defect 
density for the “average case” which occurs when the 
values of F,, F p ,  Fe, and F,,, are equal to  the default 
value of 1. Based on existent data, C is chosen to be 
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20 [lS, 181. F, depends on the overall software com- 
plexity, which can be a measure similar to  Munson 
and Khoshgoftaar's relative complexity metric. The 
value of Fp reflects the phase at which the estimate is 
made. Fe measures the average of the programmers' 
experience. It is noticed that the maturity of software 
development process including technology, program- 
ming language, tool support, amount of reuse, process 
maturity, quality control and so on, has a significant 
effect on defect density 171. The term F, is used to  
characterize the maturity level of the software devel- 
opment process. A preliminary version of the model 
is implemented in the ROBUST tool. Modeling the 
factors Fe,  Fp, Fe,  and F, as a function of related 
measures is discussed in [IO]. 

2.2 Early estimation and prediction 

Static models can be used to  estimate the initial 
defect density or initial total number of defects in a 
program. They do not tell about reliability growth 
during testing. The parameters of SRGMs, such as 
the exponential model, have specific meaning associ- 
ated with them. Their value may be estimated from 
static measures. For example, the exponential model 
as described by the equation below, 

has two parameters PO and P I .  Po is the expected total 
number of defects initially present in a program. As 
we mentioned above, it can be estimated using static 
models. P1 is the per fault hazard rate which can be 
estimated using the following equation: 

Ii' K x r P''g=ISQ (3) 

where TL is the linear execution time of the program. 
I ,  is the number of source lines of code; Qp is the aver- 
age object instructions per source statement; r is the 
testing CPU instruction rate. I< is the fault exposure 
ratio [le] and reflects the average effectiveness of test- 
ing effort. Li and Malaiya modelled the relationship 
between defect density and fault exposure ratio [9]. 
Their model, as given below, was validated using em- 
pirical data. 

bo b l D  Ii' = -e 
D (4) 

Since the defect density can be estimated statically, 
and we know that K varies only in a small range as 
described by the above model, we can plug the values 
of bo and bl from earlier projects into the model to es- 
timate the value of K .  ,f?1 can then be estimated using 

static parameters and Equation 3. Thus, we obtain a 
software reliability growth model from static metrics. 
Such empirical estimation can be used to make early 
projections about software reliability growth. 

In eairly software testing phase when only a few 
data points are available, noise can dominate informa- 
tion and the failure data might not show the reliability 
growth. SRGM parameters evaluated using such data 
can be unstable and quite inaccurate. The above tech- 
nique for obtaining dynamic model from static metrics 
provides a way to  stabilize the initial parameter values. 
Suppose and Pf are evaluated from static metrics, 
p," and P," are estimated from early software failure 
data, then the final parameters can be computed us- 
ing: 

where IC is a weighing factor, which can be adjusted at 
user's discrimination and/or based on the noise level 
in the data. 

Stabilizing techniques are model dependent in gen- 
eral. The above shows the method for the exponential 
model. For the logarithmic model, the two parame- 
ters can be approximated using the parameters from 
exponential model and Equations 7 and 8 [14]. This 
may offset the optimism typically associated with fi- 
nite SRGMs. 

( 7 )  

where the value of a is in the vicinity of 5 .  
Another possible way to  stabilizing logarithmic 

model parameters is given by Malaiya [12]: A, = 
Po x is the maximum failure intensity which may be 
assumed constant for the initial short period of test- 
ing and can be estimated simply by taking the average 
failure intensity value from the initial failure data. ,!?I 
is estimated by: 

Am aA, 
p l = p n = -  DS (9) 

where 13 is initial defect density; S is the size of the 
code; the value of a is in the vicinity of 5 .  

2.3 Enhancing predictive accuracy 

Despite the existence of many SRGMs, accurate 
prediction of software reliability using failure data is 
not so easy. First software failure data needs to be 
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carefully collected. The predictive accuracy of SRGMs 
can only be as good as the failure data itself. Secondly, 
projections of different SRGMs do not often agree with 
each other. Different models present different reliabii- 
ity prediction quality for different projects, although 
it was observed that some models, such as the loga- 
rithmic model, generally performs better than others. 
Finally the process of applying SRGMs to software 
failure data has also an important role in predictabil- 

We empirically studied the effect of different en- 
hancing techniques on predictive accuracy based on 
over 20 well collected real project data. It was ob- 
served that groper selection of the enhancing tech- 
niques, such as grouping and recalibration, can signif- 
icantly enhance the predictive quality [8]. ROBUST 
supports noise reduction as well as recalibration. 

ity. 

2.4 Coverage based reliability modeling 

Traditional SRGMs use testing effort as the only 
drive for reliability and neglect the difference in test- 
ing effectiveness. That may be improved by taking 
test coverages into consideration. Malaiya, et a1 [13] 
modeled various test coverages as a logarithmic func- 
tion of the number of test cases. The model can be 
applied to code based coverages like block coverage, 
brunch coverage, p-use coverage, etc. as well as defect 
coverage. A model that relates defect coverage to test 
coverage is proposed as given below: 

where CO is the defect coverage, Ci is some kind of 
test coverage such as block coverage. U ; ,  U ; ,  and U; is 
the model parameters. ROBUST includes this model 
in its library so that test coverage data, if available, 
can be used to improve the reliability prediction. 

. .  

3 The Structure of ROBUST 

ROBUST has been developed using Microsoft Vi- 
sual Basic for Applications that comes with Microsoft 
Excel. It provides a user-friendly interface. ROBUST 
is an event-driven program consisting of modules in 
the following categories: data editing, file manage- 
ment, model library, enhancing techniques, estimate, 
prediction, plotting, etc. Figure 1 depicts the main 
modules and logical structure of the ROBUST tool. 

0 Data Manager: This part of modules allow users 
to  enter new data in the provided format, retrieve 
and/or edit existing data sets. The data can be 
static metrics, dynamic software failure data or 

Figure 1: Overall Structure of ROBUST 

valuation 

Estimate 

Prediction 

test coverages. Data sets are organized into files. 
Existing data in text format can be imported to 
ROBUST for reliability evaluation or prediction. 

0 Smoothzng: Proper noise filtering through data 
groilping or windowing can significantly improve 
the predictability of SRGMs [8] .  ROBUST sup- 
ports noise smoothing by allowing user to  choose 
from fixed size grouping, lump grouping or win- 
dowing. As Li and Malaiya have shown in [8], 
proper grouping can reduce the noise yet preserve 
the general trend, while excessive grouping can 
result in loss of information present in a data. 
By default, ROBUST uses the optimal grouping 
guidelines which were obtained using a large set 
of real data. Users can also specify the degree of 
grouping for a particular data. 

0 Plot: Plots provide graphic presentation of soft- 
ware failure data. Various plots can be made to  
show the reliability growth trend. 

0 Modelzng Methods: ROBUST supports static 
modeling, time based modeling, and coverage- 
based modeling. For static modeling, it uses 
static software metrics to estimate the defect den- 
sity, fault exposure ratio, and parameters of the 
exponential SRGMs. For SRGMs, ROBUST use 
failure data to evaluate parameters for user se- 
lected models and use the fitted model to esti- 
mate or predict the program’s reliability. If test 
coverage data is available, ROBUST can measure 
the program’s reliability use coverage based reli- 
ability model. 

0 Model Lzbrary: ROBUST uses the combined 
model introduced earlier to estimate defect den- 
sity. Ei and Malaiya’s method is used to esti- 
mate fault exposure ratio [9]. The logarithmic 
model, exponential model, and delayed-S shaped 
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model are implemented as SRGMs [16]. Malaiya, 
et al’s coverage based reliability model is adopted 
for coverage modeling. Inclusion of other models 
in each category is relatively easy with the current 
platform. 

Recalibration: ROBUST uses recalibration to  
counteract the tendency of overestimation or un- 
derestimation of SRGMs. 

Stabilization: In early testing phase, software fail- 
ure data is dominated by noise. Reliability pro- 
jection based on such data can be quite inaccurate 
and unstable. ROBUST uses parameter estima- 
tion from static metrics to  stabilize the parameter 
values of SRGMs. 

Calculation: This part of the tool will interact 
with users and invoke other corresponding func- 
tional modules of ROBUST to make estimation 
or prediction of software reliability. 

Figure 2: Static Data and Model 

User Interface 
a Smoothing menu: Three data smoothing meth- 

ROBUST is implemented as an ADD-IN applica- 
tion for Microsoft Excel. The menu “Robust” appears 
in the Excel menu bar when ROBUST is installed. To 
run ROBUST, select “Robust(Run” from Excel menu 
bar. ROBUST menu bar will replace Excel menu bar 
and a customized toolbar replaces any previous Ex- 
cel toolbars. ROBUST menu bar includes such menus 
as File, Edit, Data, Smoothing, Models, Chart, and 
Help. The toolbar provides a convenient way for user 
to invoke frequently used functions. 

o File menu: When a new file is opened, ROBUST 
provides a template workbook for the user to  work 
with. The template workbook consists of a few 
forms to be filled by users with static software 
metrics and dynamic failure data. Users can im- 
port existing failure data stored as text file using 
“FilelImport” . 

a Edit menu: The Edit menu has common menu 
items such as Undo, Cut, Copy, Paste for editing. 
However, it is more convenient to  use the toolbar 
buttons. 

e Data menu: The Data menu lets users to  choose 
among static metrics, failure data, and coverage 
data. For failure data, user can enter either fail- 
ure interval or failure times. Figure 2 shows the 
screen when static data are selected. To esti- 
mate the defect density, users enter data using 
the scrollbars and drop down boxes. Default val- 
ues are supplied where applicable. 

ods are supported: Fixed Size Grouping, Lump 
Grouping, Windowing. For fixed size grouping, 
an optimal degree of grouping which is data 
dependent[8] is supplied as the default. Users can 
change the preset degree of grouping. 

ROBUST supports the static 
model as discussed in section 2,  SRGMs including 
the Exponential model, the Logarithmic model, 
andl the Delayed-S Shaped model, and Malaiya’s 
coverage based model [13]. Figure 3 shows the 
screen for coverage based modeling. Figure 4 

0 Models menu: 

Figure 3: Coverage Based Reliability Modeling 
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show the scenario when a user selects the Expo- 
nential model from “ModelsIDynamic” and a dia- 
log box pops up letting users to choose the input 
data (original or smoothed), model enhancement 
(use recalibration, stabilizing or none), output op- 
tions and so on. 

Figure 4: Dialog Box for the Exponential Model 

0 

5 

Chart menu: This menu plots the software fail- 
ure da.ta to visually present the software reliabil- 
ity growth trend. 

Concluding Remarks 

We present a new integrated method and a new 
tool for software reliability evaluation and projection. 
Unlike existing software reliability tools, ROBUST is 
not just a tool for SRGMs. It embraces recent de- 
velopment of software reliability engineering methods 
that are not available in current reliability tools. It 
enables estimate and prediction of a program’s reli- 
ability even before test begins. In early test phase, 
due to low information-to-noise ratio, measurement of 
reliability using SRGMs can be quite inaccurate and 
unstable, ROBUST stabilize reliability prediction us- 
ing static metrics and empirical data. During middle 
and later testing phase, ROBUST’S noise smoothing 
function can significantly improve the predictive qual- 
ity of SRGMs. When test coverage data are available, 
ROBUST can use such data in reliability evaluation 
and prediction. 
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