
ROBUST: A Next Generation
Software Reliability Engiineering Tool*

Naixin Li Yashwant K. Malaiya

Computer Science Department
Colorado State University

Fort Collins, CO 80523
malai yaQcs. colos t at e.edu

Abstract

In this paper we propose an approach for linking the
isolated research results together and describe a tool
supporting the incorporation of the various existing
modeling techniques. The new tool named ROBUST
is based on recent research results validated using ac-
tual data. It employs knowledge of static software
complexity metrics, dynamic failure data and test cov-
erages for software reliability estimation and predic-
tion at different software development phases.

1 Introduction

Software reliability modeling includes static and dy-
namic approaches. In the static approach, software de-
velopment process, software categories, software com-
plexity metrics, software engineer’s experience, etc.
are related to the initial program quality in terms of
defect density or error rate. A variety of static models
have been proposed by researchers [3, 61. The static
approach has limited accuracy but it can give an early
estimate of the software quality and supply valuable
information for the project managers.

Software reliability growth models (SRGMs) are
used in dynamic approach. Dozens of SRGMs have
been proposed [4]. Tools are available to assist re-
liability engineers in using the SRGMs and to select
among different models based on models’ goodness of
fit [17]. SRGMs can be used only after some test-
ing has been done and some failure data are available.
It can give better accuracy than the static approach
in reliability estimation and projection. Several tech-
niques has been suggested to improve the predictive
quality of SRGMs. Brochlehurst et al have proposed

*This research was supported by a BMDO funded project
monitored by ONR

using recalibration to reduce the bias commonly ob-
served when SRGMs are used to make projection [a] .
Lyu and Nikora have suggested combining pessimistic
and optimistic models for software reliability predic-
tion so that some bias can be cancelled out [ll]. Li and
Malaiya have studied the effectiveness of techniques
for enhaincing the predictive quality of SRGMs using
a large number of data sets [SI.

During early testing phase, failure data is dom-
inated by noise which makes prediction based on
SRGMs quite unstable. Static software reliability
models can play a role here. Software defect den-
sity or error rate can be estimated from static soft-
ware cornplexity and process metrics such as average
programmers’ skill, frequency of specification change
and amount of design documentation [lS]. The ini-
tial number of defects present in a program can be
estimated using defect density and program size. The
initial number of defects thus estimated may be used
as an estimate of one parameter of the finite software
reliability growth models. The initial defect density
can be used for estimating the initial fault exposure
ratio, which can be used to estimate the other param-
eter of tlhe Exponential model [9].

Traditional SRGMs treats all testing effort equally
with no discrimination against differences in test input
selection. But in practice] it is observed that the ef-
fectiveness of test inputs in revealing defects (failures)
can differ significantly. To account for the varying ef-
fectiveness of testing effort, coverage based modeling
is becoming an active topic recently [13].

Existing software reliability tools are designed only
to aid the use of SRGMs [17]. To the best of our
knowledge, no tools exist yet that include most re-
cent development of software reliability engineering
methods. With increasing availability of data, from
both the field and experimental studies, we can now

375
1071-9458/95 $4.00 01995 IEEE

attempt to develop engineering methods with sound
and validated analytical characterization. ROBUST
is a new tool being designed from the beginning to
have the following features.

It uses the familiar Windows/Excel interface, thus
allows easy learning. as well as customization
of the tool. ROBUST is designed as a system
containing well defined modules. These modules
can be independently upgraded or replaced. This
makes ROBUST an open system.

It provides a technique to estimate initial defect
density based on static metrics.

In the early test phase, the failure data is domi-
nated by noise which can cause unstable projec-
tions. ROBUST provides a choice of stabilization
techniques.

It supports techniques to improve the predictive
quality of SRGMs that were validated using ex-
tensive actual data.

It can estimate reliability using either time-based
SRGMs or coverage based models.

The rest of this paper is organized as follows. Sec-
tion 2 presents the technical bases for this tool. The
overall structure of ROBUST is described in Section
3. The user interface of ROBUST is illustrated in the
next section. Section 5 concludes the paper with a
summary of ROBUST.

2 Technical Foundations

As we mentioned in the introduction, the key fea-
ture of this paper is to integrate recent research results
that were validated and presented separately. A num-
ber of recent studies form the basis for this paper. We
have attempted to combine them in a careful and sys-
tematic way to obtain the specifications for this tool.

2.1 A New Static Model

It is well known that many factors contribute to
defects in a program. For instance, it is related to hu-
man behavior, professional experience, design method-
ology, quality control, tool support, interaction with
target users and programmers’ understanding of both
software development and target field. Maturity of
software technology (languages, tools, reuse, etc.) may
also have a general effect on defect density. Expe-
rience in developing similar systems may reduce the
defect density. Inherent target system complexity also

effects on the final defect density. In the past, re-
searchers have examined this problem from different
perspectives.

Takahashi and Kamayachi [18] noticed that pro-
grammer’s skill, frequency of program specification
change, and volume of program design document are
significant factors with respect to error rate in a pro-
gram. A model was proposed taking those factors
into consideration for predicting the error rate in a
program. Examination of the model and actual pa-
rameter values would reveal that programmer’s skill is
the most significant factor and the other factors only
slightly affect the error rate.

Software complexity also affects the software relia-
bility. Many complexity measures have been proposed
in the past. Crawford, et a1 found that no other single
complexity metric performs significantly better than
the number of lines of code (LOG) in predicting the
number of faults in a C program [3]. Most of the ex-
isting complexity measures are highly correlated and
some are simply linear combinations of others. Mun-
son and Khoshgoftaar used factor analysis to reduce 16
complexity metrics into 5 relatively independent com-
plexity domains and map those domains into a single
relative complexity metric [15].

Gaffney and Pietrolewicz proposed a process phase
based model for early error prediction in the software
development process [5]. They suggested that the er-
ror detection profile with respect to phases can be de-
scribed by the Rayleigh model. Although the phase
based model is not quite accurate, it allows projec-
tions of errors found in later phases and operational
uses even before the code is executed. Motivated by
their work, phase dependency is taken into considera-
tion in our implementation.

The RADC model [l] estimates defect density us-
ing multiplicative factors including application type,
development and software characteristics. Our static
model takes a similar format, i.e. the total number of
defects is estimated by multiplying several factors. It
is observed that 5040% of variation in the number of
faults is accounted for by software size alone [16]. We
choose software size (KLOC) as one of the multipliers.
Other factors affect the defect density which is mea-
sured in terms of the number of defects per thousand
lines of code. Equation 1 describes the defect density
model:

where C is a constant. It can be viewed as the defect
density for the “average case” which occurs when the
values of F,, F p , Fe, and F,,, are equal to the default
value of 1. Based on existent data, C is chosen to be

376

20 [lS, 181. F, depends on the overall software com-
plexity, which can be a measure similar to Munson
and Khoshgoftaar's relative complexity metric. The
value of Fp reflects the phase at which the estimate is
made. Fe measures the average of the programmers'
experience. It is noticed that the maturity of software
development process including technology, program-
ming language, tool support, amount of reuse, process
maturity, quality control and so on, has a significant
effect on defect density 171. The term F, is used to
characterize the maturity level of the software devel-
opment process. A preliminary version of the model
is implemented in the ROBUST tool. Modeling the
factors Fe, Fp, Fe, and F, as a function of related
measures is discussed in [IO].

2.2 Early estimation and prediction

Static models can be used to estimate the initial
defect density or initial total number of defects in a
program. They do not tell about reliability growth
during testing. The parameters of SRGMs, such as
the exponential model, have specific meaning associ-
ated with them. Their value may be estimated from
static measures. For example, the exponential model
as described by the equation below,

has two parameters PO and P I . Po is the expected total
number of defects initially present in a program. As
we mentioned above, it can be estimated using static
models. P1 is the per fault hazard rate which can be
estimated using the following equation:

Ii' K x r P''g=ISQ (3)

where TL is the linear execution time of the program.
I , is the number of source lines of code; Qp is the aver-
age object instructions per source statement; r is the
testing CPU instruction rate. I< is the fault exposure
ratio [le] and reflects the average effectiveness of test-
ing effort. Li and Malaiya modelled the relationship
between defect density and fault exposure ratio [9].
Their model, as given below, was validated using em-
pirical data.

bo b l D Ii' = -e
D (4)

Since the defect density can be estimated statically,
and we know that K varies only in a small range as
described by the above model, we can plug the values
of bo and bl from earlier projects into the model to es-
timate the value of K . ,f?1 can then be estimated using

static parameters and Equation 3. Thus, we obtain a
software reliability growth model from static metrics.
Such empirical estimation can be used to make early
projections about software reliability growth.

In eairly software testing phase when only a few
data points are available, noise can dominate informa-
tion and the failure data might not show the reliability
growth. SRGM parameters evaluated using such data
can be unstable and quite inaccurate. The above tech-
nique for obtaining dynamic model from static metrics
provides a way to stabilize the initial parameter values.
Suppose and Pf are evaluated from static metrics,
p," and P," are estimated from early software failure
data, then the final parameters can be computed us-
ing:

where IC is a weighing factor, which can be adjusted at
user's discrimination and/or based on the noise level
in the data.

Stabilizing techniques are model dependent in gen-
eral. The above shows the method for the exponential
model. For the logarithmic model, the two parame-
ters can be approximated using the parameters from
exponential model and Equations 7 and 8 [14]. This
may offset the optimism typically associated with fi-
nite SRGMs.

(7)

where the value of a is in the vicinity of 5 .
Another possible way to stabilizing logarithmic

model parameters is given by Malaiya [12]: A, =
Po x is the maximum failure intensity which may be
assumed constant for the initial short period of test-
ing and can be estimated simply by taking the average
failure intensity value from the initial failure data. ,!?I
is estimated by:

Am aA,
p l = p n = - DS (9)

where 13 is initial defect density; S is the size of the
code; the value of a is in the vicinity of 5 .

2.3 Enhancing predictive accuracy

Despite the existence of many SRGMs, accurate
prediction of software reliability using failure data is
not so easy. First software failure data needs to be

377

carefully collected. The predictive accuracy of SRGMs
can only be as good as the failure data itself. Secondly,
projections of different SRGMs do not often agree with
each other. Different models present different reliabii-
ity prediction quality for different projects, although
it was observed that some models, such as the loga-
rithmic model, generally performs better than others.
Finally the process of applying SRGMs to software
failure data has also an important role in predictabil-

We empirically studied the effect of different en-
hancing techniques on predictive accuracy based on
over 20 well collected real project data. It was ob-
served that groper selection of the enhancing tech-
niques, such as grouping and recalibration, can signif-
icantly enhance the predictive quality [8]. ROBUST
supports noise reduction as well as recalibration.

ity.

2.4 Coverage based reliability modeling

Traditional SRGMs use testing effort as the only
drive for reliability and neglect the difference in test-
ing effectiveness. That may be improved by taking
test coverages into consideration. Malaiya, et a1 [13]
modeled various test coverages as a logarithmic func-
tion of the number of test cases. The model can be
applied to code based coverages like block coverage,
brunch coverage, p-use coverage, etc. as well as defect
coverage. A model that relates defect coverage to test
coverage is proposed as given below:

where CO is the defect coverage, Ci is some kind of
test coverage such as block coverage. U ; , U ; , and U; is
the model parameters. ROBUST includes this model
in its library so that test coverage data, if available,
can be used to improve the reliability prediction.

. .

3 The Structure of ROBUST

ROBUST has been developed using Microsoft Vi-
sual Basic for Applications that comes with Microsoft
Excel. It provides a user-friendly interface. ROBUST
is an event-driven program consisting of modules in
the following categories: data editing, file manage-
ment, model library, enhancing techniques, estimate,
prediction, plotting, etc. Figure 1 depicts the main
modules and logical structure of the ROBUST tool.

0 Data Manager: This part of modules allow users
to enter new data in the provided format, retrieve
and/or edit existing data sets. The data can be
static metrics, dynamic software failure data or

Figure 1: Overall Structure of ROBUST

valuation

Estimate

Prediction

test coverages. Data sets are organized into files.
Existing data in text format can be imported to
ROBUST for reliability evaluation or prediction.

0 Smoothzng: Proper noise filtering through data
groilping or windowing can significantly improve
the predictability of SRGMs [8] . ROBUST sup-
ports noise smoothing by allowing user to choose
from fixed size grouping, lump grouping or win-
dowing. As Li and Malaiya have shown in [8],
proper grouping can reduce the noise yet preserve
the general trend, while excessive grouping can
result in loss of information present in a data.
By default, ROBUST uses the optimal grouping
guidelines which were obtained using a large set
of real data. Users can also specify the degree of
grouping for a particular data.

0 Plot: Plots provide graphic presentation of soft-
ware failure data. Various plots can be made to
show the reliability growth trend.

0 Modelzng Methods: ROBUST supports static
modeling, time based modeling, and coverage-
based modeling. For static modeling, it uses
static software metrics to estimate the defect den-
sity, fault exposure ratio, and parameters of the
exponential SRGMs. For SRGMs, ROBUST use
failure data to evaluate parameters for user se-
lected models and use the fitted model to esti-
mate or predict the program’s reliability. If test
coverage data is available, ROBUST can measure
the program’s reliability use coverage based reli-
ability model.

0 Model Lzbrary: ROBUST uses the combined
model introduced earlier to estimate defect den-
sity. Ei and Malaiya’s method is used to esti-
mate fault exposure ratio [9]. The logarithmic
model, exponential model, and delayed-S shaped

37s

0

a

0

4

model are implemented as SRGMs [16]. Malaiya,
et al’s coverage based reliability model is adopted
for coverage modeling. Inclusion of other models
in each category is relatively easy with the current
platform.

Recalibration: ROBUST uses recalibration to
counteract the tendency of overestimation or un-
derestimation of SRGMs.

Stabilization: In early testing phase, software fail-
ure data is dominated by noise. Reliability pro-
jection based on such data can be quite inaccurate
and unstable. ROBUST uses parameter estima-
tion from static metrics to stabilize the parameter
values of SRGMs.

Calculation: This part of the tool will interact
with users and invoke other corresponding func-
tional modules of ROBUST to make estimation
or prediction of software reliability.

Figure 2: Static Data and Model

User Interface
a Smoothing menu: Three data smoothing meth-

ROBUST is implemented as an ADD-IN applica-
tion for Microsoft Excel. The menu “Robust” appears
in the Excel menu bar when ROBUST is installed. To
run ROBUST, select “Robust(Run” from Excel menu
bar. ROBUST menu bar will replace Excel menu bar
and a customized toolbar replaces any previous Ex-
cel toolbars. ROBUST menu bar includes such menus
as File, Edit, Data, Smoothing, Models, Chart, and
Help. The toolbar provides a convenient way for user
to invoke frequently used functions.

o File menu: When a new file is opened, ROBUST
provides a template workbook for the user to work
with. The template workbook consists of a few
forms to be filled by users with static software
metrics and dynamic failure data. Users can im-
port existing failure data stored as text file using
“FilelImport” .

a Edit menu: The Edit menu has common menu
items such as Undo, Cut, Copy, Paste for editing.
However, it is more convenient to use the toolbar
buttons.

e Data menu: The Data menu lets users to choose
among static metrics, failure data, and coverage
data. For failure data, user can enter either fail-
ure interval or failure times. Figure 2 shows the
screen when static data are selected. To esti-
mate the defect density, users enter data using
the scrollbars and drop down boxes. Default val-
ues are supplied where applicable.

ods are supported: Fixed Size Grouping, Lump
Grouping, Windowing. For fixed size grouping,
an optimal degree of grouping which is data
dependent[8] is supplied as the default. Users can
change the preset degree of grouping.

ROBUST supports the static
model as discussed in section 2, SRGMs including
the Exponential model, the Logarithmic model,
andl the Delayed-S Shaped model, and Malaiya’s
coverage based model [13]. Figure 3 shows the
screen for coverage based modeling. Figure 4

0 Models menu:

Figure 3: Coverage Based Reliability Modeling

379

show the scenario when a user selects the Expo-
nential model from “ModelsIDynamic” and a dia-
log box pops up letting users to choose the input
data (original or smoothed), model enhancement
(use recalibration, stabilizing or none), output op-
tions and so on.

Figure 4: Dialog Box for the Exponential Model

0

5

Chart menu: This menu plots the software fail-
ure da.ta to visually present the software reliabil-
ity growth trend.

Concluding Remarks

We present a new integrated method and a new
tool for software reliability evaluation and projection.
Unlike existing software reliability tools, ROBUST is
not just a tool for SRGMs. It embraces recent de-
velopment of software reliability engineering methods
that are not available in current reliability tools. It
enables estimate and prediction of a program’s reli-
ability even before test begins. In early test phase,
due to low information-to-noise ratio, measurement of
reliability using SRGMs can be quite inaccurate and
unstable, ROBUST stabilize reliability prediction us-
ing static metrics and empirical data. During middle
and later testing phase, ROBUST’S noise smoothing
function can significantly improve the predictive qual-
ity of SRGMs. When test coverage data are available,
ROBUST can use such data in reliability evaluation
and prediction.

References

[l] J. R. Adams. Software reliabilit predictions are prac-
tical today. In 7th Annual SoJware Reliability Sym-
posium, Denver, Colorado, May 1989.

[2] S. Brocklehurst, P. Chan, B. Littlewood, and J. Snell.
Recalibrating software reliability models. IEEE
Trans. Software Engineering, 16:456470, April 1990.

[3] S. Crawford, A. McIntosh, and D. Pregibon. An anal-
ysis of static metrics and faults in c software. The
journal of systems and software, 5:37-48, 1985.

[4] W. H. Farr. A survey of software reliability modelling
and estimation. T R 82-171, Naval Surface Weapons
Center, Sept. 1983.

[5] J. Gaffney and J. Pietrolewicz. An automated model
for early error prediction in the software develo ment
process. In 8th Annual Software Reliability Ampo-
sium, Denver, Colorado, June 1990.

[6] S. Henry and C. Selig. Predicting source-code com-
plexity at the design stage. IEEE software, pages 36-
44, Mar. 1990.

[7] K. C. Keene and S. J. Keene. Concurrent engineer-
ing aspects of software develofment. In International
Symposium on Software Relia rlrty Engrneerrng, pages

[8] N . Li and Y . K. Malaiya. Enhancin accuracy of soft-
ware reliability prediction. In 4th h e r n a t i o n a l Sym-
posium on Software Reliability Engineering, pages 71-
79, Devner, Nov. 1993.

[9] N. Li and Y. K. Malaiya. Fault exposure ratio and
software reliability. In 3rd Workshop on Issues in
Software Reliability and Testing, pages 6.3.1-6.3.18,
Boulder, Colorado, Oct. 1993.

[IO] N. Li and Y. K. Malaiya. A new empirical model for
software defect densit . Technical re ort, Computer
Science Department, 8olorado State {niversity, 1995.

[I11 M. R. Lyu and A. Nikora. Applying reliability models
more effectively. IEEE Software, 9:43-52, July 1992.

[12] Y. K. Malaiya. Early characterization of the defect
removal process. In 9th Annual Software Reliability
Symposium, Denver, Colorado, May 1991.

[13] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, and
B. Skibble. The relationship between test coverage
and reliability. In 5th International Symposium on
Software Relaability Engineering, Monterey, Califor-
nia, Nov. 1994.

[14] Y. K. Malaiya, S. Sur, N. Karunanithi, and Y. Sun.
Implementation considerations for software reliability.
In 8th Annual Software Reliability Symposium, Den-
ver, Colorado, June 1990.

[15] J. C., Munson and T. M. Khosh oftaar. Measuring dy-
namic program complexity. II?EE Software, 9:48-55,
Nov. 1992. Relative complexity combines the features
of many complexity metrics to predict performance
and reliability.

[16] J . D. Musa, A. Iannino, and K. Okumoto. Software
Reliability - Measurement, Prediction, Applications.
McGraw-Hill, 1987.

[17] G. E. Stark. A survey of software reliability measure-
ment tools. In International Symposium of So ware
Reliability Engineering, pages 90-97, Austin, &xu,
May 1991.

[18] M. Takahashi and Y. Kamayachi. An em irical study
of a model for program error prediction. TEEE Trans.
Software Engineering, pages 82-86, Jan. 1989.

51-62, 1992.

380

