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Abstract

Security vulnerabilities in servers and operating
systems are software defects that represent great risks.
Both software developers and users are struggling to
contain the risk posed by these vulnerabilities. The
vulnerabilities are discovered by both developers and
external testers throughout the life-span of a software
system. A few models for the vulnerability discovery
process have just been published recently. Such models
will allow effective resource allocation for patch
development and are also needed for evaluating the
risk of vulnerability exploitation. Here we examine
these models for the vulnerability discovery process.
The models are examined both analytically and using
actual data on vulnerabilities discovered in three
widely-used systems. The applicability of the proposed
models and significance of the parameters involved are
discussed. The limitations of the proposed models are
examined and major research challenges are

identified.

1. Introduction

The vulnerability discovery process is analogous to
the process of finding defects in software during
testing. Vulnerabilities are, after all, a class of software
defects [20]. However, there are some remarkable
differences.

Software testing conducted within an organization
is a reasonably well-defined process. At the same time,
the effort that goes into finding vulnerabilities can
depend on the rising and falling share of the installed
base. A significant fraction of the vulnerabilities are
found externally. Some of the finders are experts in
commercial security organizations. However, some of
the finders may be potential “black-hat” individuals
who may be tempted to use the vulnerabilities
discovered for their own gain. It is considered
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acceptable for some known bugs to be present in the
software; they are often not fixed until the next release.
Nonetheless, the presence of a known and unremedied
vulnerability is highly undesirable. The system
developers need to release patches as soon as possible
after a vulnerability is discovered. The presence of
known vulnerabilities in operating systems and servers
can represent an extremely high risk for some
organizations such as banks, investment and brokerage
houses and web-based merchants.

Just as it is not feasible for a software to be certified
defect-free, it is not possible to identify and fix every
vulnerability present in an operating system. The
software developers and users need to be able to assess
the risk posed by the vulnerabilities and must invest in
effective counter-measures. It is now recognized that
the risk can depend on the delay involved in
developing and releasing a patch [6, 10]. A developer
needs to allocate sufficient resources for continuous
vulnerability testing and patch development to stay
ahead of the hackers. The users need to invest in data
safeguard mechanisms, intrusion detection and damage
control. This investment must be proportional to level
of risk involved.

Software reliability growth models [13, 17] have
been used for characterizing the defect-finding process.
Such models are used to assess the test resources
needed to achieve the desired reliability level by the
target date and are needed for evaluating the reliability
level achieved. They can also be used to estimate the
number of residual defects that are likely to be present.

There is a need to develop similar models for
quantitative characterization of the security aspects of
the software. There are two separate processes to be
considered. The first is the vulnerability discovery
process, while the second is exploitation of individual
vulnerabilities discovered. In this paper we examine
modeling the first process. While the two processes are
distinct, evaluation of the overall risk should involve a
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joint consideration of both processes. Obviously a
vulnerability needs to be discovered before it can be
exploited. While those who attempt to exploit
vulnerabilities may often be amateurs, those who
discover vulnerabilities must have significant technical
expertise.

In the security field, the vulnerability exploitation
models (VEMs) were the first to be considered.
Browne et al. [9] have examined the exploitation of
some specific vulnerabilities and have presented a
modeling scheme. Investigations on the modeling of
the vulnerability finding process have recently been
examined by a few researchers. We examine and
evaluate these models, termed vulnerability discovery
models (VDMs), in this paper. An evaluation of the
risk would involve both characterization of
vulnerability discovery process was well as their
potential exploitation. This evaluation of the risk
involves both VEMs and VDMs.

The first VDM model proposed by Anderson [5] is
here termed the Anderson Thermodynamic (AT)
model. The second termed the AML model, is a
logistic model proposed by Alhazmi and Malaiya in [2]
and investigated in [3]. Two trend models were
examined by Rescola in [19]; a linear model and an
exponential model; these are termed RL and RE
respectively. Finally, we try to fit and test a new model
LP, which is an application of a traditional Logarithmic
Poisson reliability growth model [18] proposed by
Musa and Okumoto. All of these can be termed time-
based models since they consider calendar time as the
main factor. An effort-based model has also been
proposed by Alhazmi and Malaiya in [2]. It will not be
considered in this paper since it uses a different
approach that attempts to use test-effort as the main
factor instead of calendar time.

Alhazmi and Malaiya [2] have examined
applicability of the AML model to the Windows 98
and NT 4.0 cumulative vulnerability data and found the
fit to be acceptable. On the other hand, Rescorla [19],
using the non-cumulative vulnerability rate data, found
the fit for the two models considered to be insignificant
for three of the four systems under consideration and
significant for Red hat Linux 6.2. The applicability of
the model proposed by Anderson [5] has not yet been
considered. No comparison of the VDMs has yet been
done. This paper examines and compares all the
proposed models in a uniform manner, using the same
data sets.

Ideally a time-based model such as an SRGM or a
VDM should fit the available data perfectly. However,
a model is an approximation of actual behavior that
may be subject to some minor factors which are not
modeled, in addition to some statistical fluctuations. A
model should be useful for making future projections
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and for identifying the current trends. Thus, it should
attempt to model the longer term trend. It is desirable
that a model have a simple interpretation of the
parameters; however, such an interpretation is not
always easily found. If a parameter has an
interpretation, it may be possible to estimate the
general range in which its value should lie. When
curve fitting is iterative, it can be quite useful to start
with a preliminary estimate of the parameters as an
initial value. In this paper we briefly examine the basis
of proposed models and evaluate the applicability of
the models using actual vulnerability data.

Just as static models for defect density and fault
exposure ratio can assist in use of the SRGMs, the
metrics vulnerability density and vulnerability/defect
ratio can be applied to complement and support VDMs.
Alhazmi and Malaiya [2] have shown that for similar
systems, the values of these attributes tend to fall
within a range. Static metrics can be used to constrain
parameter estimation during fitting [4].

This paper examines the proposed models and
presents a comparison using actual data for
vulnerabilities in three major operating systems.
Statistical goodness of fit tests are used to examine
how well models track the actual discovery process. In
the next section we discuss the proposed models. In
section 3 the data-sets used for evaluation and the
methodology is described. In Section 4, the models’
adequacy is examined; the section evaluates measures
for goodness of fit and presents the findings. In Section
5, the results are further discussed. Finally the
conclusions are presented and the future work is
identified in the last section.

2. Vulnerability Discovery Models

Here we present a summary of the main features of
the vulnerability discovery models (VDMs) proposed.
Although some of them were not formally termed a
“model,” they are appropriate candidates for further
examination. For uniformity, the models are presented
in such a way as to give the cumulative number of
vulnerabilities with time as the independent variable. A
vulnerability is defined as “a defect which enables an
attacker to bypass security measures” [20]. VDMs can
describe the rate of vulnerability discovery, denoted by
w(t), or the cumulative number of vulnerabilities
discovered, denoted by ©Q(?). Note that Q() is obtained
by integrating w(?) with respect to time.

Anderson Thermodynamic Model (AT): This
model was originally proposed for software reliability
in [8]. Later, Anderson applied it to vulnerabilities in
[5]; Figure 1 shows a hypothetical plot of AT model
for different values of k/y and C. Let us suppose that
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there are N(¢) vulnerabilities left after 7 tests, and let the
probability that a test fails be w(?). The model assumes
that encountering a vulnerability causes it to be
removed and also that no bugs are reintroduced. Using
an analogy from thermodynamics, Anderson argues
that o(t) < k / t, where k is a constant. Arguing that
equality should be a reasonable approximation, he
finally arrives at the model

a)(t ) = i ,
vt

where ¥ is a factor that takes into account the lower
failure rate during beta testing by the users compared
with alpha testing. Since we want to compare
cumulative models we integrate equation 3 to get the
model in terms of the cumulative number of
vulnerabilities given by the function Q(z) as follows:

Q(t) = j (%jdt

E In(z) + (E In(C )]
v v

ey

k . :
where —ln(C ) represents the integration constant.
4

Simplifying we get,

Q) = Eln(Ct) , )
v

where C is a constant introduced by the integration.
Note that this Q(t) in this model is not defined when
t=0; hence we will only consider its applicability when
t>1. As t grows, Q(t) grows with logarithmic increase.
It should be noted that this model has a relationship to
the well-known Logarithmic Poisson SRGM and the
failure rate bound proposed Bishop and Bloomfield
[7].

Alhazmi-Malaiya Logistic Model (AML): This
model was proposed by Alhazmi and Malaiya in [2].
They have also proposed an effort-based model
(AMEB); however, it is not comparable to the other
models examined here. The AML model is based on
the observation that the attention given to an operating
system increases after its introduction, peaks at some
time and then drops because of the introduction of a
newer competing version; Figure 2 shows a
hypothetical plot of AML model for different values of
A, B and C. Thus the vulnerability discovery rate
increases at the beginning, reaches a steady rate and
then starts declining. The cumulative number of

3

vulnerabilities thus shows an increasing rate at the
beginning as the system starts attracting an increasing
share of the installed base. After some time, a steady
rate of vulnerability finding yields a linear curve.
Eventually, as the vulnerability discovery rate starts
dropping, there is saturation due both to reduced

attention and a smaller pool of remaining
vulnerabilities.
Anderson Thermodynamic Model
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Figure 1 —Anderson Thermodynamic (AT)
model

The model assumes that the rate of change of the
cumulative number of vulnerabilities Q2 is governed by
two factors, as given in Equation 3 below. One of
these factors declines as the number of remaining
undetected vulnerabilities declines. The other factor
increases with the time needed to take into account the
rising share of the installed base. The saturation effect
is modeled by the first factor. While it is possible to
obtain a more complex model, this model provides a
good fit to the data, as shown below.

Let us assume that the vulnerability discovery rate
is given by the differential equation:-

dQ

S AQB-9Q), 3)
dt

where Q is the cumulative number of vulnerabilities, t

is the calendar time, and initially t=0. 4 and B are

empirical constants determined from the recorded data.

By solving the differential equation we obtain

B
CO=gem @

where C is a constant introduced while solving
Equation 1. It is thus a three-parameter model given by
the logistic function. In Equation 4, as t approaches
infinity, y approaches B. Thus, the parameter B
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represents the total number of accumulated
vulnerabilities that will eventually be found. The
model given by Equation 4 will be referred to as the
Alhazmi-Malaiya Logistic (AML) model [2].

Alhazmi-Malaiya Logistic Model

A=.052,B=60,
C=50

A=.003,B=60,

A=.0024,B=60,
C=190

Cumulative Vulerabilities

Time

Figure 2 — Alhazmi-Malaiya Logistic (AML)
model

This model addresses the fact that the
vulnerabilities found in an operating system depend on
its own usage environment. It should be noted that the
saturation phase may not be seen in an OS which has
not been present for a sufficiently long time. Also, if
the initial adaptation is quick due to better prior
publicity, in some cases early learning phase (when the
slope gradually rises) may not be significant.

A non-linear regression may require an initial
estimate of the parameter values. An initial estimate of
B may be obtained by noting the size of the software
and using the typical vulnerability density values of
similar software. Using Equation 2, we can show that
the maximum slope is given by AB*/4, which occurs at
y = B/2. It can also be mathematically shown that the
two inflexion points in the derivative of Q are 2.63/AB
time period apart. This fact can be used guide
parameter estimation during fitting [4].

Rescola Linear Model (RL): Rescola has
attempted to identify trends in the vulnerability
discovery data by applying some statistical tests. We
here refer to these tests as the linear model and
exponential model [19]; Figure 3 shows a hypothetical
plot of RL model for different values of B and K.

First, we examine Rescorla linear model that
attempts to fit the vulnerability finding rate linearly
with time, rather than using the cumulative data.
Vulnerabilities were grouped in 3-months-periods of
time. The linear fit for the failure rate w(t) implies the
model:

w(t)=Bt+K , (5)

4

where B is the slope and K is a constant, while both are
regression coefficients. The cumulative vulnerability
discovery model can be derived by integrating (5):

Qt) = j (Bt + K)dt

2

(6)

here the integration constant is taken to be zero to
allow €Q(t) to be zero at t =0. In this model as t grows,
Q grows polynomially, as given by the squared term.

+ Kt >

Q1) = Bt

Rescorla's Linear

B=.3,K=2

B=.2,K=1.5

Cumulative Vulnerabilites

B=.1,K=1

Time

Figure 3 —Rescorla linear (RL) model

Rescorla's Exponential

A=-.01,

N=40 A=-.05,N=35

A=-.02,N=80

Cumulative Vulnerabilities

Time

Figure 4 —Rescorla exponential (RE) model

Rescorla Exponential Model (RE): Rescorla [19]
has also used Goel-Okumoto SRGM [11] to fit the
data. This exponential model can be given as:

at) = Nie™, (7)

where N is the total number of vulnerabilities in the

system and A is a rate constant. Again, we here

integrate (7) to get the cumulative number of

vulnerabilities. Figure 4 shows some plots of RE
model for different values of A, and N.
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Q1) = j NAe *'dt = N — Ne ™™

QW) =N(-e™), ®)

where the integration constant has been equated to
N to allow the initial value of Q to be zero. Note that
as time grows, {2 approaches N.

Logarithmic Poisson Model (LP): This model is
also known as the Musa-Okomoto model [18]. A
physical interpretation of the model and its parameters
is complex. An interpretation in terms of the
variability of the fault exposure ratio is given in [14].
Figure 5 shows various plots of LP model for different
values of 5, and £;.

Q) = ﬂo ln(l+ﬂ1t) ,

where By and B, are regression coefficients. At t=0,
Q(t) = 0; Q (t) grows indefinitely as the system ages
with a logarithmic growth. In spite of the fact that the
parameters have a complex interpretation, the model
has been found to be among the better fitting SRGMs
in many cases.

€))

Logarithmic Poisson Model

Cumulative Vulnerabilites

Time

Figure 5 —Logarithmic Poisson (LP) model

Some of the models are somewhat related. The AT
and LP models are given by rather similar expressions,
with the significant difference that AT is undefined at t
= 0. It can be shown that RE and LP may yield similar
short term projections, but they differ significantly for
very large values of t.

3. Methodology for Model Evaluation

Here we discuss how the data was collected and
prepared for fitting, and then we describe how the
goodness of fit was evaluated.

The data sources: Compared to data that has been
used for SRGMS in the past, vulnerability data
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demonstrates some different characteristics. One of the
main differences is that generally no information is
available concerning the faults in SRGM data, whereas
for vulnerabilities the data bases identify the specific
vulnerability. The vulnerability data comes from well-
known products, since the data for every operating
system and server, both commercial and open-source,
are available. The SRGM data comes only from some
selected projects where the management has permitted
disclosure of the data. On the other hand, vulnerability
data has some limitations—namely, that it comes from
a limited number of sources, and the number of
vulnerabilities typically represents only a small
fraction of the total number of defects.

Table 1: The data sets used

w»n = - =l
3 25 % ’§§ ] § 2
IS = «» 2z
g S e 5 3 § E*? 3 §
2 5 o = =) =2 o
8 E |& E| =
& = F|®
w»
Windows Commer- Aug
95 15 cial client 50 0.0033 1995
Windows Commer- Oct
XP 40 cial client | 88 0.0022 2001
] Open-
R H Linux 17 source 118 | 0.00694 Mar
6.2 server 2000

Vulnerability data needs to be manually extracted
from data bases. Our major sources of data are the
Mitre Corporation [16] website and the ICAT [12]
metabase. ICAT is an easily searchable data base with
the option of downloading an ACCESS database.

Evaluation of goodness of fit: We will apply two
goodness-of-fit tests. The first is the chi-square
goodness of fit test. The chi-square (%) statistic is
calculated as follows:

" Y
Zz _ z (0,—¢,) ’ (10)
i=1

¢
where o; is the observed value and e; is the model’s
expected value.

For fit to be acceptable, the chi-square statistic
should be less than the critical value for a given alpha
level and the degrees of freedom. The P-value is the
probability that a value of the x2 statistic at least as
high as the value calculated by the above formula

could have happened by chance. We use an alpha level
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of 5%; i.e., if the P-value of the chi-square test is
below 0.05 then the fit will be rejected. A P-value
closer to 1 indicates a better fit. P-value is calculated
by using the number of degrees of freedom of the data
set and chi-square distribution.

For model adequacy testing Akaike Information
Criteria (AIC) [1] is also frequently used. AIC is used
to make a fair comparison between the models. AIC is
formally defined as

AIC= (-2 % log likelihood) + 2M
An equivalent way to compute AIC is

AIC=T In(RSS) + 2M, (11)
where M is the number of free parameters of the
examined model, T the number of observations, and
RSS the residual sum of squares. We use the
formulation of AIC given by Equation 11. The Akaike

In our analysis, we have used the data sets for three
significantly ~ different operating systems. The
vulnerability data of Windows 95 is for a client
operating system that has existed for several years. It
has gone through nearly a complete life-cycle and its
remaining installed base is now very small. The data
set for Windows XP represents a relatively new
operating system which may be near the peak of its
popularity. We have also included data for Linux Red
Hat 6.2 which represents an open-source operating
system. Some of the key attributes of the three systems
are given in Table 1, [3, 12, 15, 16]. Windows XP is
much bigger than Windows 95; however, its
vulnerability density is comparable. It is likely that
significant number of yet undiscovered vulnerabilities
is present in Windows XP. The higher number of
vulnerabilities in RH Linux 6.2 may be due to the fact
that a larger fraction of the software’s functionality
may be devoted to access control.

4. Fitting Data to Proposed Models

The results of fitting the models to the data is
presented graphically in the plots given in Figures 6,7
and 8, which show the fitted plots along with actual
cumulative data. The parameter values obtained during
the fit, and the corresponding measures of goodness of
fit for the three operating systems’ sets, are given in
Tables 2, 3 and 4. First we discuss the results for each
model individually and afterwards each software
system’s datasets.

The Windows 95 data (Figure 6) has a distinct s-
shape due to the fact that vulnerability detection
reached saturation some time ago. As we would
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expect, the AML model fits quite well. The fitted AT
model gives negative values at the beginning and
significantly diverges from the actual data, except near
the end, that is why AT’s chi-square value is
incomparable with the other models. The fitted RE, RL
and the LP models generate linear plots and thus show
considerable divergence at the end.

The Linux Red Hat 6.2 data (Figure 7) shows a
milder s-shape, permitting most models except AT to
fit reasonably well. The data for Windows XP (Figure
8) show a very linear trend, allowing LP, RE and RL to
fit quite well. This is likely to change when the
vulnerability discovery rate for Windows XP
eventually saturates. The AT model again has a
problem with fitting during the initial stage and again
in the last stage.

For the Linux Red Hat 6.2 data, LP, RL, RE and
AML models successfully fitted with P-values ranging
from 0.915 to 0.998 (Table 3). However, AML gave a
better AIC test score of 429.89, while the others
yielded values close to 469.

Table 4 shows that for the Windows XP dataset LP,
RE, RL and AML successfully fit the data with P-
values ranging between 0.918 to 0.99997. However,
the AT model did not fit the dataset. The RL model has
the lowest AIC of 249.4, while for the other models the
value ranged from 273.4 and 373.19. The reason that
the AML model was not better for Windows XP is that
it is relatively new operating system and the saturation
phase has not yet been reached. The RL model fits the
Windows XP data very well.

Windows 95
X RE

70

[ —— cumiltive vuins

N w N o o
=] o o =] =]
L L L L L

Cumulative Vulnerabilities

o
L

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103
Time (Months)

Figure 6 —Fitted VDMs with actual Windows 95
data

Comparative performance of the models: Here
we examine the performance of each individual model.
The Anderson Thermodynamic (AT) model was
unable to fit any of the data, exhibiting the highest AIC
scores and lowest P-values. For the Windows 95 data,
with an AIC of (947) it is 100 points away from the
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nearest model. For Linux 6.2 it has demonstrated an
AIC of (572.79), which is 103 points. For Windows
XP it was about 85 points higher than the closest
model.

Rescorla linear (RL) model was able to fit two out
of three of the datasets under consideration. RL was
not able to fit the Windows 95 data (see Figure 6)
because of the strong S-shaped trend of the data; at
best, the model was stretched as linear as possible.
Thus, it scored poorly in the chi-square test with a P-
value of only 0.0035, whereas it should have been at
least 0.05 to be acceptable. For Linux 6.2 it achieved a
P-value of 0.915, which is a very good fit. It fits the
Windows XP data very well with a P-value of 0.99997.

Table 2- Windows 95 goodness of fit results

2
—test
Mode Parameters ZX e RSS | AIC
1 X P-Value
AT | K € 13| 2% |62
17.795 2.36
Bo By 5 847.9
LP 157.63 12.14x107 144.72 | 1x10™ | 3095 4
RE A N 135.82 (0.00198|3300.3 854.6
0.0001 5629.7 9
S K 844.8
RL 000137 0,674 147.07 | 0.0035 |3006.2 P
A B C
AML 0002149151 1.41 48.4 1.999999(416.27{639.3
*Chi-square test was applied to the positive values for
the AT model.

140 4 Linux Red Hat 6.2

—— Cumiltive wulns X RE----- RL

AWML ©° AT

IN)
o
L

5]
S
L

80 -

Cumulative Vulnerabilities

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Time (Months)

Figure 7 — Fitted VDMs with actual Red Hat
Linux 6.2 data

The Rescorla Exponential (RE) model was able to
fit two out of three of the data sets considered. RE was
not able to fit the Windows 95 data (see Figure 6)
because of the prominent S-shape of the data set curve,
the fit was judged to be poor in the chi-square test with
a P-value of only 0.0198, which is significantly less
than the 0.05 that is considered acceptable. For Linux

7

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)
1071-9458/05 $20.00 © 2005 IEEE

6.2 and Windows XP the P-values were 0.925 and 0.97
respectively, a very good fit in both cases. However,
RE scored 854.69 in the AIC test for Windows 95,
which is higher than other models except AT. For
Linux Red Hat 6.2, the AIC was 469.82 which is close
to the values for LP and RL, although larger than the
value for AML. For Windows XP, again it was with a
high AIC of 288.58.

The Alhazmi-Malaiya Logistic Model (AML) is the
only model that fits all three data sets well. The fit was
especially superior for the Windows 95 and Linux Red
Hat 6.2 data sets, where it gave the best AIC results.
For Windows 95, AML has an AIC value of 639.3,
which is much less than the other models which have
scored between 844 and 947.14. The AML model fits
the data with an excellent P-value very close to 1. The
other four models failed the goodness of fit test for
Windows 95, since they generated unacceptably high
chi-square values and consequently low P-values
below 0.02. AML was the best model in RedHat Linux
6.2 data set, with a low 429.89 on AIC with a 40 points
better than the nearest model. Although AML fits well
with Windows XP data, it is able to score only a
modest 273.34 on the AIC. The RL model fit the
Windows XP data better due to the fact that the
Windows XP data has is very linear, which gives it an
advantage over the AML model. We would, however,
expect the Windows XP data to eventually saturate.
The results show that the AML is the most consistent
model for the three data sets.

Table 3- Fitting Results for Red Hat Linux 6.2

2 _test
Model Parameters 2X e RSS | AIC
X P-Value
K/y C -20)
AT 383 539 173.6 |1.1x10218156.6/572.79,
LP o By 389 | 0.998 |3077.6469.85
6999.9 |3.2x10™| 7 ‘ : :
RE . N 13508 | 0925 [3076.18469.82
0.0004 | 5629.7 : ‘ : :
S K
RL oot 5oa7g ] 4002 | 0915 (3069.81469.7
A | B C
AML [ oto1og] 3243 | 0.996 [1492.96429.89

*Chi-square test was applied to the positive values for
the AT model

The Logarithmic Poisson (LP) model was able to fit
the Linux 6.2 data with a P-value of 0.998 and
Windows XP with a P-value equal to 0.9654.
However, it failed to fit the Windows 95 data set with a
low P-value of 1x10”. On the AIC scale for Linux 6.2,
it scored 469.85, which is close to the score of the RL
and RE models and better than the AT model. For
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Windows XP, the AIC was 284.49, better than the RE
model and worse than the RL and AML models.

Both RE and RL demonstrate a good fit for a short
term. Both the models are flexible and can adjust to a
linear trend with an adjustment of their regression
parameters. However, they may not work very well for
the long term. The RE model is somewhat better than
RL with the ability to capture the saturation in the later
phase. On the other hand, the S-shaped AML model
has shown excellent fit, especially for the long term.
Furthermore, the AML model is flexible enough to
also fit short term data.

100 + Windows XP

| [==—cumiitvevins _x__RE----- RL

AML _©o AT

O O N ® ©
o © & o © o
L L L L L

Cumulative vulnerabilities

w
=]
L

1 3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Time (Months)

Figure 8 — Fitted VDMs with actual Windows

XP data
Table 4- Fitting results for Windows XP
2
—test
Model Parameters 2X d RSS | AIC
x~ |P-Value
K/’Y C 9
*
AT 271 761 115 |1.1x10716568.3(373.19
Bo B
LP 26.15 | 0.9654 |757.9284.49
7211.8510.000277
A N
RE 000035 56233 26.44 | 0.955 [761.8(284.7
S K
RL 0.0162 1430 13.82 10.99997(328.7|249.4
A B C
AML 0.0011107510.144 29.12 | 0.918 [581.69273.37
*Chi-square test was applied to the positive values for
the AT model

5. Results and Observations

Of the five models examined, three of them—RL,
RE and LP, appear to do a good job of following the
shorter-term trends, especially when the cumulative
vulnerabilities show a linear trend. The AT model
generally does not appear to fit the actual data well.
The AML model often provides the best fit since it can
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follow the S-shaped trend that is observed in some
cases.

The AML model uses three parameters, while the
others are two-parameter models. However, both the
measures, the P-value and AIC, take the number of
parameters into account and thus provide a fair basis
for comparison.

Among the five models, the parameters of the RE
and AML models have some simple interpretations.
One of the parameters in both is related to the total
number of vulnerabilities present in the software. If the
expected range of vulnerability density values can be
estimated based on past experience, a preliminary
estimate of the total number of vulnerabilities may be

empirically obtained [3]. However, empirical
estimation of other parameters requires further
investigation.

The evaluation presented here is based on three
operating systems that represent two commercial
systems in different life-cycle phases and one open-
source software system. These observations need to be
further validated using data from other systems.

The vulnerability data is generally of higher quality
than that used for evaluating SRGMs in the past.
However, there are some significant issues to keep in
mind. One is that vulnerabilities are sometimes
reported in batches, which affects the accuracy of the
time a vulnerability is recorded. If cumulative data is
being used for analysis, this will cause some
fluctuations but should not change the longer-term
trend present in the data.

ICAT metabase can have some ambiguity in
identifying a specific version of a software system.
Consequently, researchers need to check details of
vulnerabilities and use some of the ICAT references
for additional verification. Sometimes duplicate entries
are encountered. Rescorla has mentioned some of these
irregularities in [19].

Since data bases only include the publicly known
vulnerabilities, for proprictary software systems we
may not know about unpublished vulnerabilities.
However, with external experts competing to discover
vulnerabilities, it is likely that disclosure of
vulnerabilities will be carried out as soon as a patch is
available. For open-source systems, the discovered
vulnerabilities are usually available in the public
domain.

Vulnerabilities are shared among successive
versions due to code reuse. This can raise the question
of where the vulnerability was discovered—in the new
version or in the older version. Sometimes
vulnerabilities in the ICAT metabase are discovered
prior to the specified version’s release date, a problem
that can be overcome by filtering omitted pre-release
date vulnerabilities.
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The AT, RL, RE and LP models assume a stable
level of testing effort over time. However, it would be
reasonable to assume that the extent of the testing
effort is driven by the cost/reward factors. Finding
vulnerabilities in a widely-installed system should be
more rewarding to internal testers, who would put in
extra effort into minimizing the probability of
exploitation in the popular systems. The external
experts and hackers would find it more rewarding to
find vulnerabilities in systems that are currently
popular. Thus the testing effort varies with changes in
the market share of software systems. This variability
of effort was addressed in [2] by developing an
equivalent effort model. The model addresses changes
in the usage environment, which affects the discovery
process. The model considered the time spent by the
number of workstations using the software systems.
The equivalent effort model fit very well but the model
requires data that can be very hard to collect. The AML
model attempts to implicitly model the effort variation.

6. Conclusions and Discussion

This paper
applicability  of

presents an examination of the

recently proposed quantitative
vulnerability discovery models to actual data.
Systematic  software testing in a developing
organization occurs prior to release and the bugs are
found internally. On the other hand vulnerability
discovery occurs throughout the product lifetime and
the vulnerabilities are found both internally and
externally. Moreover, compared with ordinary bugs,
the number of vulnerabilities is very small. This raises
a question about applicability of quantitative models,
such as the SRGMs that have been successfully used.
The results presented here show that some of the
proposed models fit the actual vulnerability discovery
process very well.

Four vulnerability discovery models were examined
using Akaike Information Criteria (AIC) and chi-
square (x°) tests. Results show that the AML model is
generally the best for the longer term, performing
better for Windows 95 and Linux 6.2. Because it
captures the S-shape pattern in the data, it has better fit
as determined by using AIC and the chi-square test.
RL, RE, LP and AML all show very good fit for
Windows XP, a system that has not yet shown signs of
saturation. This can be attributed to the fact that they
can fit trends that are largely linear. The AT model
considered did not perform well in general.

These vulnerability discovery models ignore the
architecture of the software system. They assume that
vulnerabilities are found in random places within
software systems. In some specific modules, exploiting
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information concerning the architecture of the system
can focus security testing to the code with higher
chance of finding vulnerability, which will make
security testers more productive.

We have analyzed the models statistically and
analytically. However since models with a good fit will
not necessarily have good estimation capability, there
is a need to examine the ability of the models to
estimate the future vulnerability discovery rate. In a
concurrent work [4], the prediction capabilities of two
of the VDM models are examined. The results show
that the prediction capability gets better as more data
becomes available. The investigations show that
putting some constraints on the models’ parameters
based on previous observations significantly improves
the prediction capability. Examination of the
prediction capabilities of the other models is still
needed to show broader comparison of the other
vulnerability discovery models.

VDMs can be termed dynamic models. It is possible
to define and use static metrics that impact the
parameter values in such models. Metrics such as
vulnerability density and vulnerability/defect ratios [3]
can be used to check the projections made using VDMs
during early phases when the available data is
insufficient, or when a VDM is known to have some
specific limitations.

Vulnerability discovery models can be used by both
the developers and the user community. Developers
can assess the product readiness by projecting future
vulnerability discovery trends. Developers need to
allocate security maintenance resources to detect
vulnerabilities, preferably before others do; and to
release security patches as soon as possible. The users
also need to assess the risk due to vulnerabilities before
patches are applied. A patch may need to be tested for
stability before it is applied as discussed by
Brykczynski et al. [10] and Beattie et al. [6]. Effective
security policy at an organization would require time
and resources. Vulnerability discovery models can be
used to quantitatively guide such policies.

The models considered have some limitations,
namely, that they treat all vulnerabilities equally, even
though some vulnerabilities may represent higher
severity levels. Moreover, the models do not address
code re-use and overlap among consecutive versions of
software systems. Vulnerability discovery models
assume that each specific release of an operating
system is independent, and can be separately modeled.
In practice, a significant sharing of the code occurs
between successive releases. Thus a vulnerability
detected in a version may also exist in previous
versions. Further research is needed to model the
impact of such shared code.
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