CS 457 – Lecture 7 Ethernet and Wireless

Fall 2011

Ethernet Uses CSMA/CD

- Carrier sense: wait for link to be idle
 - Channel idle: start transmitting
 - Channel busy: wait until idle
- Collision detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission, send jam signal
- Random access: exponential back-off
 - After collision, wait a random time before trying again
 - After mth collision, pick K randomly from {0, ..., 2^m-1}
 - and wait for K*512 bit times before trying again

Ethernet Frame Structure

 Sending adapter encapsulates packet in frame

- Preamble: synchronization
 - Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates

Ethernet Frame Structure (Cont.)

- Addresses: source and destination MAC addresses
 - Adaptor passes frame to network-level protocol
 - · If destination address matches the adaptor
 - Or the destination address is the broadcast address
 - Otherwise, adapter discards frame
- Type: indicates the higher layer protocol
 - Usually IP
 - But also Novell IPX, AppleTalk, ...
- CRC: cyclic redundancy check
 - Checked at receiver
 - If error is detected, the frame is simply dropped

CSMA/CD (Collision Detection)

- Human analogy: the polite conversationalist
- CSMA/CD: carrier sensing, deferral if busy
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing waste
- Collision detection
 - Easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - Difficult in wireless LANs: receiver shut off while transmitting

Elements of a wireless network

Elements of a wireless network

Elements of a Wireless Network

Elements of a Wireless Network

Elements of a Wireless Network

Ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless Link Characteristics

Differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times
- make communication across (even a point to point) wireless link much more "difficult"

Wireless Network Characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

- Hidden terminal problem
- B, A hear each other
- B, C hear each other
- A, C can not hear each other
- means A, C unaware of their interference at B

- Signal fading:
- B, A hear each other
- B, C hear each other
- A, C can not hear each other interferring at B

IEEE 802.11 Wireless LAN

- 802.11b
 - 2.4-5 GHz unlicensed radio spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code
 - widely deployed, using base stations

- 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- All use CSMA/CA
 for multiple access
- All have basestation and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for *beacon frames* containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Later Lectures]
 - will typically run DHCP to get IP address in AP's subnet

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/ CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)
2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

- *idea:* allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits *small* request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- RTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Avoid data frame collisions completely
using small reservation packets!

What's Next

- Read Chapter 1 and 2
- Next Lecture Topics from Chapter 3.1 and 3.2
 - Switching and Forwarding
- Homework
 - Due Thursday in Recitation
- Project 1
 - Due Friday