CS 457 - Lecture 8 Switching and Forwarding

Fall 2011

Course So Far

- Can communicate over a point to point link
- Encode bits on the wire (NRZ, Manchester, etc)
- Make frames (header + data)
- Check for errors (CRC, parity bits)
- Reliably retransmit any lost or corrupt packets
- Can communicate over multi-access
- Shared wire (Ethernet)
- Shared wireless (Wi-Fi)
- But Internet is clearly not a single Ethernet or single Wi-Fi network...

Switches and Forwarding

Switches: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets
- Frame only forwarded to the necessary segments
- Segments become separate collision domains
- Bridge: a switch that connects two LAN segments

Motivation For Self Learning

- Switches forward frames selectively
- Forward frames only on segments that need them
- Switch table
- Maps destination MAC address to outgoing interface
- Goal: construct the switch table automatically

Self Learning: Building the Table

- When a frame arrives
- Inspect the source MAC address
- Associate the address with the incoming interface
- Store the mapping in the switch table
- Use a time-to-live field to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
- Forward the frame out all of the interfaces
- ... except for the one where the frame arrived
- Hopefully, this case won't happen very often

Switch Filtering/Forwarding

When switch receives a frame:

index switch table using MAC dest address
if entry found for destination
then\{
if dest on segment from which frame arrived then drop the frame
else forward the frame on interface indicated
\}
else flood

- forward on all but the interface - on which the frame arrived

Switch Example

Suppose C sends frame to D

- Switch receives frame from from C
- notes in bridge table that C is on interface 1
- because D is not in table, switch forwards frame into interfaces 2 and 3
- Frame received by D

Switch Example

Suppose D replies back with frame to C.

- Switch receives frame from from D
- notes in bridge table that D is on interface 2
- because C is in table, switch forwards frame only to interface 1
- Frame received by C

Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
- Upon receiving a frame with an unfamiliar destination
- Upon receiving a frame sent to the broadcast address
- Broadcasting is implemented by flooding
- Transmitting frame out every interface
- ... except the one where the frame arrived
- Flooding can lead to forwarding loops
- E.g., if the network contains a cycle of switches
- Either accidentally, or by design for higher reliability

Solution: Spanning Trees

- Ensure the topology has no loops
- Avoid using some of the links when flooding
- ... to avoid forming a loop
- Spanning tree
- Sub-graph that covers all vertices but contains no cycles
- Links not in the spanning tree do not forward frames

Constructing a Spanning Tree

- Need a distributed algorithm
- Switches cooperate to build the spanning tree
- ... and adapt automatically when failures occur
- Key ingredients of the algorithm
- Switches need to elect a "root"
- The switch with the smallest identifier
- Each switch identifies if its interface is on the shortest path from the root
- And exclude it from the tree if not
- Messages (Y, d, X)
- From node X
- Claiming Y is the root
- And the distance is d
-One hop
-Three hops

Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root
- Switch sends a message out every interface
- ... identifying itself as the root with distance 0
- Example: switch X announces ($\mathrm{X}, 0, \mathrm{X}$)
- Switches update their view of the root
- Upon receiving a message, check the root ID
- If the new id is smaller, start viewing that switch as root
- Switches compute their distance from the root
- Add 1 to the distance received from a neighbor
- Identify interfaces not on a shortest path to the root
- ... and exclude them from the spanning tree

Example From Switch \#4's Viewpoint

- Switch \#4 thinks it is the root
- Sends $(4,0,4)$ message to 2 and 7
- Then, switch \#4 hears from \#2
- Receives $(2,0,2)$ message from 2
- ... and thinks that \#2 is the root
- And realizes it is just one hop away
- Then, switch \#4 hears from \#7
- Receives (2, 1, 7) from 7
- And realizes this is a longer path
- So, prefers its own one-hop path

- And removes 4-7 link from the tree

Example From Switch \#4's Viewpoint

- Switch \#2 hears about switch \#1
- Switch 2 hears ($1,1,3$) from 3
- Switch 2 starts treating 1 as root
- And sends $(1,2,2)$ to neighbors
- Switch \#4 hears from switch \#2
- Switch 4 starts treating 1 as root
- And sends $(1,3,4)$ to neighbors
- Switch \#4 hears from switch \#7
- Switch 4 receives $(1,3,7)$ from 7
- And realizes this is a longer path

- So, prefers its own three-hop path
- And removes 4-7 link from the tree

Robust Spanning Tree Algorithm

- Algorithm must react to failures
- Failure of the root node
- Need to elect a new root, with the next lowest identifier
- Failure of other switches and links
- Need to re-compute the spanning tree
- Root switch continues sending messages
- Periodically re-announcing itself as the root (1, 0,1)
- Other switches continue forwarding messages
- Detecting failures through timeout (soft state!)
- Switch waits to hear from others
- Eventually times out and claims to be the root

Evolution Toward Virtual LANs

- In the olden days...
- Thick cables snaked through cable ducts in buildings
- Every computer they passed was plugged in
- All people in adjacent offices were put on the same LAN
- Independent of whether they belonged together or not
- More recently...
- Hubs and switches changed all that
- Every office connected to central wiring closets
- Often multiple LANs (k hubs) connected by switches
- Flexibility in mapping offices to different LANs

> -Group users based on organizational structure, rather than the physical layout of the building.

Why Group by Organizational
 - Security Structure?

- Ethernet is a shared media
- Any interface card can be put into "promiscuous" mode
- ... and get a copy of all of the traffic (e.g., midterm exam)
- So, isolating traffic on separate LANs improves security
- Load
- Some LAN segments are more heavily used than others
- E.g., researchers running experiments get out of hand
- ... can saturate their own segment and not the others
- Plus, there may be natural locality of communication
- E.g., traffic between people in the same research group

People Move, and Roles Change

- Organizational changes are frequent
- E.g., faculty office becomes a grad-student office
- E.g., graduate student becomes a faculty member
- Physical rewiring is a major pain
- Requires unplugging the cable from one port
- ... and plugging it into another
- ... and hoping the cable is long enough to reach
- ... and hoping you don't make a mistake
- Would like to "rewire" the building in software
- The resulting concept is a Virtual LAN (VLAN)

Example: Two Virtual LANs

-Red VLAN and Orange VLAN
-Bridges forward traffic as needed

Example: Two Virtual LANs

-Red VLAN and Orange VLAN
-Switches forward traffic as needed

Making VLANs Work

- Bridges/switches need configuration tables
- Saying which VLANs are accessible via which interfaces
- Approaches to mapping to VLANs
- Each interface has a VLAN color
- Only works if all hosts on same segment belong to same VLAN
- Each MAC address has a VLAN color
- Useful when hosts on same segment belong to different VLANs
- Useful when hosts move from one physical location to another
- Changing the Ethernet header
- Adding a field for a VLAN tag
- Implemented on the bridges/switches
- ... but can still interoperate with old Ethernet cards

What's Next

- Read Chapter 1 and 2
- Next Lecture Topics from Chapter 3.1 and 3.2
- Switching and Forwarding
- Homework
- Due Thursday
- Project 1
- Due tonight 11:45pm
- Submit your tar file on RamCT

