
ARTICLE IN PRESS
Computer Networks xxx (2004) xxx–xxx

www.elsevier.com/locate/comnet
BGP-RCN: improving BGP convergence through root
cause notification q

Dan Pei a,*, Matt Azuma a, Dan Massey b, Lixia Zhang a

a Department of Computer Science, UCLA, Los Angeles, CA 90095, United States
b Department of Computer Science, Colorado State University, Fort Collins, CO 80523-1873, United States

Received 2 April 2004; received in revised form 19 August 2004; accepted 28 September 2004

Responsible Editor: E. Ekici
Abstract

This paper presents a new mechanism, called BGP with root cause notification (BGP-RCN), that provides an upper

bound of O(d) on routing convergence delay for BGP, where d is the network diameter as measured by the number of

AS hops. BGP-RCN lets each routing update message carry the information about the specific cause which triggered

the update message. Once a node v receives the first update message triggered by a link failure, v can avoid using any

paths that have been obsoleted by the same failure. The basic approach in BGP-RCN is applicable to path vector rout-

ing protocols in general. Our analysis and simulation show that BGP-RCN can achieve substantial reduction in both

BGP convergence time and the total number of intermediate route changes.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Routing; BGP; Routing protocol convergence
1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2004.09.008

q This work is partially supported by the Defense Advanced

Research Projects Agency (DARPA) under Contract No.

DABT63-00-C-1027, by National Science Foundation (NSF)

under Contract No. ANI-0221453, and by a research grant

from Cisco Systems. Any opinions, findings and conclusions or

recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the DARPA,

NSF, or Cisco Systems.
* Corresponding author. Tel.: +1 310 825 4838.

E-mail addresses: peidan@cs.ucla.edu (D. Pei), matt_

azuma@earthlink.net (M. Azuma), massey@cs.colostate.edu

(D. Massey), lixia@cs.ucla.edu (L. Zhang).
1. Introduction

The Internet is composed of thousands of

Autonomous Systems (ASes) and the Border
Gateway Protocol (BGP) [1,2] is used to exchange

reachability information among the ASes. BGP

routers adapt dynamically to changes in network

topology and routing policy. However measure-

ments in [3] showed that on average, it can take

3 min for the whole Internet to switch from failed
ed.

mailto:peidan@cs.ucla.edu
mailto:azuma@earthlink.net
mailto:massey@cs.colostate.edu
mailto:lixia@cs.ucla.edu

1 In practice, there can be multiple routers per AS and

multiple physical links between two neighbor ASes. These issues

will be discussed later in Section 4.

2 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
routes to valid ones for a given destination. In

some cases, it may even take up to 15 min for

the routing tables in all routers to stabilize.

As a path vector routing protocol, BGP�s rout-
ing update messages include the entire AS path to
each destination. After a topology change (e.g.

link or node failure) or policy change that invali-

dates a current best path, the router will select a

new best path. The router, however, may mistak-

enly choose and propagate a path that has been

obsoleted by the very same topology (or policy)

change. This obsolete path may, in turn, be chosen

by other nodes as their ‘‘new’’ best path, resulting
in an invalid path being propagated throughout

the network. Furthermore, BGP uses a Minimum

Route Advertisement Interval timer (MRAI timer)

to space out consecutive updates, however MRAI

timer can also delay the propagation of valid

reachability information [4–6]. Although a few re-

cently proposed approaches, such as [7,6], can sig-

nificantly reduce BGP convergence delays in many
cases, they do not prevent all the invalid paths

from propagating out, and are rendered ineffective

under certain topological conditions.

This paper presents a new mechanism, called

BGP with root cause notification (BGP-RCN),

that provides an upper bound of O(d) on BGP

convergence delay, where d is the network diame-

ter as measured by the number of AS hops, a much
tighter bound on the convergence delay compared

to the existing results in literature. In BGP-RCN,

each routing update message carries the informa-

tion about the specific cause which triggered the

update message. Once a node v receives the first

update message triggered by a link failure, the root

cause information is sufficient to enable v to iden-

tify all other routes that depend on the failed link.
The basic approach in BGP-RCN is applicable to

path vector routing protocols in general. Our anal-

ysis and simulation show that BGP-RCN can

achieve substantial reduction in both BGP conver-

gence time and the total number of intermediate

route changes. In the simulation of a 110-AS Inter-

net-derived topology, when a destination becomes

unreachable (i.e. a Tdown event defined later), BGP-
RCN reduces the convergence time from 715.3 s to

1.3 s, and reduces the number of BGP update mes-

sages from 30,483 to 926. When a destination be-
comes reachable through a longer path (i.e., a

Tlong event defined later), in 95% of the cases

BGP converges in 56 s or less, and BGP-RCN re-

duces this time to 32 s.

The rest of the paper is organized as follows.
Section 2 presents a protocol model for the stan-

dard BGP and summarizes the existing complexity

results from literature. Section 3 presents the BGP-

RCN algorithm and provides the complexity

analysis for BGP-RCN. Section 4 discusses imple-

mentation and deployment issues. Section 5 pre-

sents the simulation results. Section 6 compares

BGP-RCN with previous work. Finally, Section
7 concludes this paper.
2. A simple model for the standard BGP

In this section we define simple path vector pro-

tocol (SPVP), a simplified model of BGP. This

model is slightly different from that in [8] in that
we model important BGP features such as the

MRAI timer. We use this protocol model to define

concepts of BGP convergence and summarize the

complexity results from previous studies. We for-

malize our BGP-RCN approach as SPVP-RCN la-

ter in Section 3.

2.1. The SPVP model

We model the Internet as a simple directed con-

nected graph G = (V,E), where V = VN [VP and

E = EN [EP. VN = {0,1, . . . ,n � 1} represents the

set of n nodes that run SPVP protocol. A node

in VN corresponds roughly to an Internet AS. 1,

and is not considered a destination in network G.

Nodes in VN are connected by links in EN. VP is
the set of all the destination nodes (prefixes) in

the network G. Without loss of generality, we con-

sider only a single destination p which is connected

to node 0 only (in BGP terms, p is ‘‘single-

homed’’). A path to destination p is an ordered se-

quence of nodes P = (vkvk�1 . . . v0p) such that link

[vi vi�1] 2 EN and vi 2 VN for all i, 0 6 i 6 k, and

2 In some extreme cases, after a Tlong event triggered by one

single link failure [vu], the network can be partitioned into two

parts. One part, say Gv, is disconnected to destination p, and the

other part, say Gu, is still connected to destination p. In this

case, the analysis and simulation will be equivalent to a Tdown

event in Gv where a destination p0 is connected to node v. For

clarity of presentation, we ignore such Tlong event in the rest of

the paper, and consider the topology where each node in EN has

at least two neighbors in EN, a condition which guarantees the

network is not partitioned by any single link failure.

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 3

ARTICLE IN PRESS
v0 = 0. We say vi 2 P, "i, 0 6 i 6 k; [vi vi�1] 2 P, "i,
1 6 i 6 k; and define Length(P) = k + 1.

SPVP is a single path routing protocol, in which

each node advertises only its best route to neigh-

boring nodes. For node v, the latest route received
from neighbor u is stored in rib_in(v (u). After

the initial route announcement, further updates

are sent only if the best route changes. A node v se-

lects its best route, denoted rib(v), according to

some routing policy (or ranking function). BGP

allows arbitrary route selection policies, and

some policies can lead to persistent route oscilla-

tion [8]. For clarity, the SPVP model considers
only a shortest-path policy (which has been

proven to converge [9]) unless specified otherwise.

When two paths have the same length, the one re-

ceived from the neighbor with a lower ID is

preferred.

Nodes in VN and links in E can fail and recover,

and we assume that both nodes u and v can detect

failure or recovery of link [uv] within limited time.
The failure or recovery of link [0p] can also be de-

tected by node 0 within limited time. After node v

detects the failure of link [uv], rib_in(v (u) is

changed to �, and after node v detects the recovery

of link [uv], node v sends its rib(v) to node u. In re-

sponse to either a link status change or a received

routing update message, node v recomputes it best

route rib(v). If v�s best route has changed, it will
send the new rib(v) to its neighbors. If the link sta-

tus change or update message results in no avail-

able route to the destination, rib(v) = � and a

withdrawal message carrying an � aspath is sent

to each neighboring node.

SPVP includes an MRAI timer that guarantees

any two (non-withdrawal) update messages from

v to w will be separated by at least a Minimum

Route Advertisement Interval. We use M to denote

its default value. According to [1] the MRAI timer

is usually not applied to withdrawal messages.

2.2. SPVP convergence definitions

In [3,4,6,10], BGP routing events are catego-

rized into four classes:

• Tup. A previously unavailable destination is

announced as available.
• Tdown. A previously available destination is

announced as unavailable.

• Tshort. An existing path is replaced by a more

preferred path.

• Tlong. An existing path is replaced by a less pre-
ferred path.

For clarity, our analysis and simulations focus

on the impact of a single link failure event. Note

that in our model, Tdown happens when the link

[0p] fails, and Tup happens when node 0 detects that

the [0p] link has recovered from a previous failure.

Tlong events can be triggered by the failure of any
link other than [0p], and Tup can be triggered by

the recovery of any link other than [0p]. 2

Definition 1. Converged state. A node v is in a

converged state iff rib(v) will not change unless

some new event occurs.

Although in practice, a new triggering event

could occur before the previous convergence event

finishes, routing convergence is typically defined

relevant to one of these four events. Multiple fail-
ures can be treated as multiple independent single

failures, and details will be discussed later in Sec-

tion 3.

The convergence time associated with an event

is defined as follows:

Definition 2. Network Convergence Delay, de-
noted time(T), starts when a triggering event T

occurs and ends when all the nodes in the network

are converged.

Labovitz et al. [4] have shown the convergence

time for Tup and Tshort are both bounded by

M Æ d, where M is the MRAI timer value (i.e.

4 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
30 s) and d is the network diagmeter. Labovitz

et al. [4] and Obradovic [11] proved that the con-

vergence of Tdown is bounded by M Æ n, where n is

the number of nodes in the network. Furthermore,

since at most one advertisement can be sent in a
particular direction on each link every M seconds,

the message overhead of SPVP is bounded at

ðjEN j � M �n
M Þ ¼jENj �n. Our RCN design focuses on

improving Tdown and Tlong convergence delay.
3. SPVP with root cause notification

In this section we describe the RCN algorithm

in the context of SPVP, prove its correctness,

and analyze SPVP-RCN�s bounds of convergence
delay and message count for Tdown and Tlong

events. Then we consider issues related to multiple

failures overlapping in time and Section 4 discusses

implementation issues. Our correctness result hold

for arbitrary (convergent) policies, but the analysis
of delay bounds requires detailed modeling of the

policy and our delay bound analysis is based on

shortest path policies only.

3.1. SPVP-RCN algorithm

Because SPVP model has no periodic advertise-

ments, an update message can be triggered only by
a change in connectivity, that is a status change of

some link. 3 When a link�s status changes, the two
nodes adjacent to the link will detect the change.

For a given destination, at most one of the two

adjacent node may change its route as a result.

We call this node the root cause node. The root

cause node attaches its ID to the update mes-

sage(s) sent that result from this link status change,
and this root cause information is copied into, and

propagated along, all subsequent SPVP updates

caused by the same link status change. Thus any

node in the network can learn the unique root
3 The status of a link can change due to either a policy

change or a physical failure that has occurred within an AS or

between ASes. A node failure can be modeled by failing all its

attached links. If two ASes are connected by multiple links, the

failure of one of them may not result in a link status change in

SPVP model. These issues are further discussed in Section 4.
cause node which spawned the update messages

it receives. Different from flooding used in link-

state protocols (e.g. OSPF[12]), SPVP-RCN piggy-

backs the root cause in the routing updates, thus

only the affected nodes and their direct neighbors
are notified.

Because routing updates triggered by the same

root cause may propagate along multiple paths

at different speeds, one must be able to distinguish

which update represents the latest link status

changes. For example, after a link flapping (i.e. a

link goes down and then comes up quickly), the

link down notification might arrive at a node later
than the path announced in the link up event.

Therefore, when the link down notification arrives,

the node can mistakenly remove a valid path that

announced in the link up event. SPVP-RCN solves

this problem by letting each node v maintain a se-

quence number, t(v), which is incremented by 1

upon each change of node v�s route to prefix p.

In SPVP-RCN, a route is defined as r = {r.aspath,
r.ts}, where r.aspath is the SPVP aspath;

r.ts = {ts(u)ju 2 r.aspath} is a list of sequence

numbers, which correspond one-to-one with the

nodes in r.aspath. Any change of r.ts, or r.aspath,

or both should result in an increment of t(v),

and an update should be scheduled for each neigh-

bor, subject to delay required by the MRAI timer.

In SPVP-RCN, an update is defined as upda-

te = {update.r,update.rcn}, where update.r is a

route and update.rcn = {c, ts(c)} represents the

node ID and sequence number of the ‘‘root cause

node’’.

To detect invalid transient routes, each node v

maintains a sequence number table. This table

keeps a copy of the highest sequence number for

node x, denoted by seqnum(v,x), that node v has
ever received. Upon receiving an update, node v

updates seqnum(v,x) if either

• x 2 update.r.aspath and update.r.ts(x) > seq-

num (v,x), or

• x = update.rcn.c and update.rcn.ts(c) > seq-

num (v,x)

Note that ts(x) in any routes, updates, root cause, or

seqnum(v,x) are just copies of t(x), thus could be out-

dated. That is, we always have t(x)P r.ts(x) for any

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 5

ARTICLE IN PRESS
routes r in rib_in, rib or updates in the network, and

t(x)P rcn.ts(x) for any rcn propagated in the net-

work, and t(x)P seqnum(v,x) for any node v.

After any change in seqnum(v,x), node v verifies

all routes in its rib_in tables. If x 2 rib_in(v (u).
aspath and rib_in(v(u).ts(x) < seqnum(v,x), the

route rib_in(v(u) is outdated, and we claim that

this route will be withdrawn by u during the con-

vergence. Therefore, node v can safely remove this

route (replace it with �). This allows v to rapidly re-

move obsolete routes, improving convergence

time. We now prove this claim on the ‘‘correct-

ness’’ of the SPVP-RCN algorithm.

Theorem 1. If at time t, x 2 rib_in(v (u).aspath

and rib_in(v (u).ts(x) < seqnum(v,x), then u must

send an update by the end of convergence that

explicitly or implicitly withdraws the current
rib_in(v (u).

Proof. Let P = rib_in(v (u).aspath = (xixi�1x1
x . . .0) at time t, where xi = u. Suppose at the

end of the convergence, the route that v learned

from u is rib_in 0 (v (u). If rib_in 0(v (u).

aspath 5 P, clearly, rib_in(v (u) 5rib_in 0 (v (
u), i.e., the rib_in(v (u) at time t is replaced by
a route with a different aspath.

If rib_in 0(v (u).aspath = P, we claim rib_in(v (
0
u).ts 5 rib_in (v (u).ts and thus rib_in(v (u) at

time t is withdrawn after t. Since rib_in(v (u).

ts(x) < seqnum(v,x), it is clear that node x has chan-

ged its route, and incremented t(x) to at least seq-

num(v,x). Let T(x) be the t(x) value at the end of

the convergence, and it is clear that T(x) P seq-

num(v,x) > rib_in(v (u).ts(x). The SPVP-RCN
(a)

Fig. 1. SPVP-RCN Example For Tlong: (a) before the link failure
algorithm requires that node xmust send an update

to x1 with a T(x) > rib_in(v (u).ts(x). Note that

SPVP-RCN algorithm requires that any change

of r.ts, or r.aspath, or both result in an increment

of a node�s sequence number. Therefore after node
x1 receives the update from node x, it must change

its own sequence number ts(x1), and send an update

to x2. Similarly, xj�1 must send an update to xj, for

all 1 6 j 6 i � 1. For the same reason, node u = xi
must receive an update from node xi�1, increases

its sequence number, and send an update to node

v, resulting in rib_in 0(v (u).ts 5 rib_in (v (u).ts.

The claim is true, and so is the theorem. h

Note that Theorem 1 is true even when multiple

failures overlap in time, guaranteeing a node only

removes a path that will anyway be withdrawn la-

ter. Furthermore, above proof did not make any

policy assumptions other than the route eventually

converges and Theorem 1 is true for a general pol-

icy, provided this policy does not lead to persistent

oscillation.
3.2. An example

Fig. 1 illustrates how SPVP-RCN works in

Tlong, and the algorithm operation is the same in

Tdown. Fig. 1(a) shows the routing tables prior to

a failure. Each node�s best path to the destination

is marked with a star and the sequence numbers
appear in brackets next to each node. Node 5�s se-
quence number table is shown in the box, and ini-

tially all sequence numbers in the table are 0. In

Fig. 1(b), the link between node 2 and node 0 fails,

so node 2 chooses backup path (1 [0]0 [0]p),
(b)

and (b) after node 5 receives the first update from node 3.

Fig. 2. Notations used in Section 3.

6 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
increases ts(2) to 1, and includes rcn = {c, ts(c)} =
{2,1} in the update message to neighbors 3 and 4.

Now suppose node 2�s announcement reaches

node 3 first. Node 3 will change to path (2 [1]

1 [0]0 [0]p), increase ts(3) to 1, and announce

this new path to node 5 using rcn = {2,1} to

indicate that the root cause of this announcement

is a change in node 2. Without the use of RCN,

node 5 would learn its current route via node 3
is invalid and node 5 would select the (invalid)

alternate route rib_in(5(4) = (4 [0]2 [0]0 [0]p)

and advertise this path to its neighbors. 4 With

RCN, however, node 5 marks rib_in(5(4) =

(4 [0]2 [0] 0 [0]p) invalid, since this route lists

node 2�s sequence number as 0, but the most

recent update indicates node 2 has increased its

sequence number to 1. Node 5 avoids selecting
and further propagating the invalid route via

node 4, resulting in the routing table shown in

Fig. 1(b).

Note that SPVP-RCN not only prevents node 5

from adopting an invalid alternate route, but also

allows node 5 to rapidly propagate the new infor-

mation about node 2. After receiving the update

from node 3, node 5 will change its route and send
an update to node 4. This update from 5 to 4 lists

the new sequence number for node 2. Node 4

learns that its route via node 2 is invalid when
4 Here, we assumed this advertisement is sent out before

node 4�s update arrives at node 5.
either the update from node 2 arrives or the update
from node 5 arrives. In other words if update(x,y)

denotes the time to send an update from x to y, the

time required for node 4 to learn its route is invalid

is min(update(2,4), update(2,3) + update(3,5) +

update(5,4)).
3.3. SPVP-RCN Tdown convergence bounds

We now consider the behavior of a single node

v, and provide an upper bound on its convergence

time. Fig. 2 summarizes the symbols used through-

out this section. For each node v, define rib(v)old

as v�s route before the triggering event T, and

rib(v)new as v�s new route after v adapts to

event T and returns to a converged state. Note that

these convergence bounds apply to shortest-path
policy only, and we mainly focus on the worst

case.

Theorem 2. If conv(v) denotes the convergence time
of node v after a Tdown event, then l Æ d 6 conv(v) 6

l Æ d.

Proof. By construction, node 0 is the only node

directly connected to the destination p and, with-

out loss of generality, we let t(0) = 0 prior to event

T. At the start of event T, node 0 detects that link

[0p] has failed. Node 0 immediately converges, and
conv(0) = 0. We label the nodes in VN according

to their convergence time such that conv(vi) P

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 7

ARTICLE IN PRESS
conv(vi�1), for 1 6 i 6 n�1. Node v1 converges as

soon as it receives the first message from v0 since

the RCN sequence number carried by this message

increases ts(0) to 1 and invalidates all paths that v1
currently has and might later receive during the
Tdown convergence. Thus for node v1, l(v0, v1) +

conv(v0) 6 conv(v1) 6 l(v0,v1) + conv(v0).

We now prove by induction and show that

"vi 2 VN, min06j<i{l(vj,vi) + conv(vj)} 6 conv(vi) 6

min06j<i{l(vj,vi) + conv(vj)}. Suppose the hypoth-

esis holds true for vi. Since every update contains

an RCN that sets ts(0) = 1, any message received

by vi+1 will invalidate all routes that vi+1 currently
has and might later receive during the Tdown

convergence. Thus vi+1 converges after receiving

the first message from any of the already-con-

verged nodes (v0, . . . ,vi). vi+1 will receive this first

message no later than min06j<i+1{l(vj, vi+1) +
conv(vj)} and no sooner than min06j<i+1{l(vj,

vi+1) + conv(vj)}. The hypothesis holds true and

we have l Æ d(0,v) 6 conv(v) 6 l Æ d(0,v) 6 l Æ d. h

In other words, node v converges no later than

the time it takes for a message to propagate

along the shortest path from 0 to v with the maxi-
mal nodal delay l, and no sooner than the time

it takes for a message to propagate along the

shortest path from 0 to v with the minimal nodal

delay l.

Corollary 2.1. If we model h = l = l, then SPVP-

RCN�s Tdown convergence is bounded above by h Æ d.

It is clear that in the worst case, SPVP-RCN im-

proves the convergence time from h Æ n to h Æ d.
Actually, given a fixed h, this is the theoretical

ideal result of any path vector protocol, thus

SPVP-RCN always improves the Tdown conver-

gence time.

Theorem 3. The message overhead for Tdown con-

vergence in SPVP-RCN is bounded by jENj.

Proof. Each node will converge immediately after

it receives its first message, and will send out at

most one withdrawal message to each neighbor.
Since the number of directed links is jENj, so the

message overhead is bounded by jENj. h
3.4. SPVP-RCN Tlong convergence
Theorem 4. If conv(v) denotes the convergence time

of node v after a Tlong event, then conv(v) 6

d(2l + M).

Proof. LetVstable = {v 2 VNjribold(v).aspath =ribnew(v).
aspath}. In other words, Vstable is the set of nodes
whose paths have not changed after convergence

event T. Similarly, let Vaffected = VN � Vsta-

ble = {v 2 VNjribold(v).aspath5 ribnew(v).aspath}. In

other words, Vaffected is the set of nodes whose

paths have changed as a result of the convergence

after event T. For a node v 2 Vaffected, the new path

ribnew(v).aspath must have the form (vm . . .
v0sk . . . s0) where v = vm, vi 2 Vaffected (0 6 i 6 m),
sj 2 Vstable(0 6 j 6 k), and s0 = p.

The Tlong convergence of node v is divided into

two stages as illustrated in Fig. 3. Node c = c0 is

the root cause node. During the first stage, node v0
converges. By definition ribnew(v0) = (v0sk . . . s0) =
(v0 Æ rib_in

old(v0 (sk)). Since sk 2 Vstable, the path

from sk is already available in v0�s rib_in tables

before the Tlong event happens and this path will
not change during convergence. Any path P

strictly shorter than Length(ribnew(v0)) must

include the root cause node, c, (otherwise P would

become the preferred alternate path after the

convergence ends). Since every update in the Tlong

event includes the root cause node (and signals an

increase in the sequence number for the root cause

node), all shorter paths are marked invalid by v0 as
soon as it receives the first message after Tlong

event. The convergence time for v0 is no later than

the longest time it takes a message to propagate

from c = c0 to v0 and no sooner than the shortest

time it takes a message to propagate from c = c0 to

v0 . More precisely, d(c0,cq) Æ l = q Æ l 6 conv(v0) 6

d(c0,v0) Æ l = q Æ l 6 dl.
The second stage starts when v0 converges and

ends when v = vm converges. After node v0 con-

verges, its path will be propagated along v1, . . .
vm�1 to vm = v. As soon as vi+1 receives vi�s update,
vi+1 learns the shortest route that does not include

the root cause node (since ribnew(vi+1).aspath =

vi+1 Æ rib
new(vi).aspath). In addition, the new update

allows vi+1 to immediately discard any shorter

routes that contain the root cause node (since the

y: link [x y] in G

p

0

V_affectedV_stable

’

s_k

s_1

c_0=c

c_1

v_0=c_q

v_1

rib^new(v).aspath=(v_m ...v_0 s_k...s_0)

v_m=v

u

x
x
x

x y: x and y are connected

 y: x’s next hop is y

 y: y in rib(x).aspath

Fig. 3. Routing trees after Tlong convergence.

8 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
update carries a new sequence number for the root

cause node). Thus, the convergence time of a node

vi in stage 2 is no longer than the time it takes for a
message to propagate along the path from v0 to vi
with the longest nodal delay plus MRAI timer.

The convergence time of node vi in stage 2 is no

shorter than the time it takes for a message to

propagate along the path from v0 to vi with the

shortest nodal delay. More precisely, d(v0,vi) Æ l =
q Æ l 6 conv(v) 6 d(v0,vm) Æ (l + M) = m Æ (l + M) 6

d(l + M) and thus node v�s Tlong convergence
time is upper bounded at (l Æ d + (l + M)d) =

(2l + M)d. h

Similar to Tdown, it is clear that in the worst
case, SPVP-RCN improves the Tlong convergence

time and SPVP-RCN always improves the first

stage of Tlong convergence. However, SPVP-RCN

might worsen the second stage of Tlong conver-

gence in some rare cases. We leave more detailed

analysis on this topic for future work.

Theorem 5. The message overhead for Tlong con-

vergence in SPVP-RCN is jENjdð2lþMÞ=M .
Proof. There can be only one message sent every

M seconds on each of the jENj directed links dur-

ing Tlong convergence. Since convergence lasts at
most d(2l + M) seconds, there can be at most

jENjdð2lþMÞ=M messages sent. h

Corollary 5.1. If we model l = l = h, then SPVP-

RCN�s Tlong convergence time�s upper bound is

(2h + M)d, message overhead is jENjdð2hþMÞ=M .
3.5. Multiple failures overlapping in time

For clarity of presentation, so far we have de-

scribed SPVP-RCN in the case of a single link fail-

ure. In a large network multiple failures may
overlap in time. These overlapping failures can

be treated as independent events, each with its

own root cause. We leave as future work a more

detailed analysis of the convergence delay for over-

lapping failures since it requires a detailed model-

ing of the timing of the overlapping failures.

Instead, we focus on the correctness of SPVP-

RCN, which has been proven in Theorem 1, and
on how to maximize RCN�s improvement in con-

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 9

ARTICLE IN PRESS
vergence delay in face of multiple failures, dis-

cussed below. Differences in update propagation

delays could result in the following scenarios when

there are multiple failures. A node v may receive

rib_in(v (u) from u such that rib_in(v (u) con-
tains nodes x and y, where ts(x) > seqnum(v,x),

but ts(y) < seqnum(v,y). In this case, although

rib_in(v (u) is invalidated, ts(x) is indeed the lat-

est information about node x thus seqnum(v,x) is

updated to the newer sequence number ts(x).

Even with multiple root causes overlapping in

time, a node v just copies the rcn of the incoming

update that has triggered rib(v) changes. However,
it is possible that the rcn.ts(c) in the incoming up-

date rib_in(v (u) is smaller than its counterpart

seqnum(v,c). An outdated rcn.ts(c) means there

are still nodes in the network that have not learned

latest sequence number of node c. Instead of fur-

ther propagating information known to be obso-

lete, node v sets its outgoing root cause as

rcn = {c, seqnum(v,c)} to help quickly removing
any paths that contain c and have a sequence num-

ber smaller than seqnum(v,c).

3.6. Delay bounds with per-neighbor MRAI timer

and WRATE

Up to this point, we have assumed that a dis-

tinct MRAI timer is kept for each (neighbor, pre-
fix) pair, so that the first message sent by a node v

during the convergence is not delayed by the

MRAI timer at node v. The proof of Theorem 2

and the first stage of Theorem 4 have taken advan-

tage of this assumption. As we mentioned earlier,

however, in practice the MRAI timer is typically

implemented on a per neighbor basis. When an up-

date regarding prefix p turns on the per-neighbor
timer, future updates regarding other prefixes p 0

may be delayed. Thus even the first message sent

by a node v during the convergence can be delayed

by up to M seconds. In this case, for Tlong, SPVP-

RCN�s the upper bound on the convergence time

of the first stage would increase to d Æ (h + M).

The total Tlong convergence would increase to

d Æ (2h + 2M), and the upper bound for the total
number of messages would increase to jEN jd2hþ
2M=M . On the other hand, SPVP-RCN�s upper

bound for Tdown remains unchanged because the
MRAI timer does not apply to withdrawal mes-

sages, and all the messages sent during SPVP-

RCN Tdown convergence are withdrawal messages.

However certain BGP implementations use

withdrawal rate limiting (WRATE), and the latest
BGP draft [2] proposes the use of WRATE. In

WRATE, nodes apply the MRAI timer to with-

drawals as well as announcements [3–5]. In this

scenario, the SPVP-RCN Tdown convergence time

would be bounded above by (h + M) Æ d, but the

message overhead is still bounded by jENj.
In practice routers might also use different

MRAI values. In this case, we need to replace
the M in our delay bound with the maximum

MRAI value in the network. Regardless of the de-

tails in the MRAI timer implementation, the

SPVP-RCN algorithm has the same time complex-

ity of O(d), and only constant factors change with

the per-neighbor MRAI timer, heterogeneous set-

tings of MRAI value, and/or WRATE.
4. Implementation and deployment

Section 3 presented the basic design of SPVP-

RCN, this section discusses implementation and

deployment issues. The RCN approach is deploy-

able in the current infrastructure. However, a de-

sign trade-off occurs in associating a sequence
number with a node (as presented here) or associ-

ating a sequence number with a link and, due to

space limitations, we first focus on this trade-off.

We then address other issues such as transmission

of the RCN, and handling the absence of an RCN

(i.e. partial deployment), sequence number

wrapping, and the protection of the sequence

number.
In the SPVP-RCN design, we use node se-

quence number to represent the root cause. The

node sequence number is incremented each time

the AS path changes. One obvious alternative is

to use link sequence number and increment the

link sequence number each time the link status

changes, as done in an independently developed

approach, FESN (forwarding edge sequence num-
ber) [13]. In this case, the root cause can be repre-

sented by {c,b, ts([cb])}, where link [cb] is the link

that has changed the status. The link sequence

10 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
number is then attached to the update message,

and a path is considered obsolete if it contains

the same link with a smaller sequence number. In

the context of the SPVP, the effectiveness of these

two implementations of the root cause are equiva-
lent and share the same delay bounds. In most of

the cases, these two approaches face the same

implementation problems, although there exists

some differences. We are currently investigating

the trade-off of using node sequence number as op-

posed to link sequence number.

4.1. Storage overhead

Node sequence numbers require that, for each

prefix p, node v maintain a table seqnum(v,p,x)

for all other nodes x. If s is the number of bytes

used to store a sequence number, each node needs

at most s Æ n bytes storage overhead per prefix and

needs at most s Æ n Æ jVPj bytes storage overhead for

all the prefixes in the network. Comparatively,
SPVP-RCN with link sequence number requires

that each node v locally store the sequence number

associated with each link. As a result, the storage

overhead with link sequence number is

s Æ jENj Æ jVPj, a much larger value than the node

sequence number implementation.

In practice, however, the storage overhead may

be reduced in both approaches. The sequence
number for node x is stored at node v only when

x has appeared in some path received by v, and

the number of such x is typically less than the total

number of nodes in the network. Furthermore, be-

cause BGP-RCN stops nodes from exploring

many invalid paths currently tried in the standard

BGP, this also helps reduce the number of nodes

whose sequence numbers must be stored. Similar
optimization can be used for link sequence num-

ber. But even with this optimization, the number

of links will typically be much higher than the

number of nodes and associating sequence num-

bers with nodes can achieve a dramatic reduction

in storage overhead.

4.2. Logical elements vs. physical elements

For clarity in presentation, the SPVP-RCN de-

sign modeled each AS as a single node and each
link as a single physical connection. In reality, an

logical AS is a collection of routers and each logi-

cal link typically consists of multiple physical

links. For example, SPVP models a large AS such

as Sprint as a single node when in fact the Sprint
AS consists of many routers spreading over a large

geographic area. Similarly, the link between Sprint

and AT&T is modeled as a single logical link when

in fact Sprint and AT&T peer in many locations

over many different physical links. Note also that

this is not simply an over-simplication of SPVP,

but the standard BGP protocol also represents

the link between Sprint and AT&T as a single log-
ical link. In implementing sequence numbers, we

need to address the fact that both nodes (ASes)

and links are not simple atomic entities and the se-

quence number implementation faces two choices.

The first option continues to associate the se-

quence number with the logical element. In order

to implement logical node sequence numbers, the

various routers that make up a node must agree
on consistent sequence number choices. Similarly,

in order to implement the logical link sequence

number, the various physical links that make up

a logical link must agree on a consistent sequence

number for the link. In other words, both node se-

quence number and link sequence number imple-

mentations face a coordination problem. The

former requires that routers within the same AS
maintain a consistent sequence number, while the

latter needs to maintain a consistent sequence

number among multiple physical links between

two neighboring ASes.

Alternatively, we can avoid coordination by

changing the semantics of BGP to represent the

more complex physical topology. In the node se-

quence number approach, we can maintain a se-
quence number for each border router (who

announces routing updates to neighbor ASes),

and only increases this sequence number when

the border router�s path changes. This can limit

the effectiveness of RCN since the root cause (a

border router and its sequence number) can only

invalidate those obsolete paths that go through

the same border router. In addition, each router�s
storage overhead increases to s� jV 0

N j � jV P j, where
jV 0

N j is the total number of border routers in the

network. In the link sequence number approach,

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 11

ARTICLE IN PRESS
we can maintain a sequence number for each phys-

ical link. Again this limits effectiveness since the

root cause (physical link sequence number) can

only invalidate those obsolete paths that have the

same failed physical link. Each router�s storage
overhead increases to s� jE0

Nj � jV Pj where jE0
Nj is

the total number of physical links in the network.

The use of border routers or physical links both

change the semantics of BGP and expose a much

more detailed view of the local topology to the glo-

bal system. Exposing this local information may

greatly increase the number of routing update mes-

sages in a global scale even when the actual AS
path is not affected. Zhao et al. [14] observed an

example where the use of a BGP path attribute

inadvertently exposed physical link information

and triggered a high volume of (unnecessary)

BGP updates throughout the Internet. Overall,

we believe a key principle is that local changes

should be kept local and changing the semantics

to expose local information is not a viable opera-
tional choice. As a result, we require that the rou-

ters within an AS coordinate to select new RCN

sequence numbers (or equivalently, physical links

connecting two AS coordinate to select new

RCN sequence numbers). We are currently investi-

gating the techniques such as timestamp to coordi-

nate the sequence number.

4.3. Handling the absence of RCN

The discussions in Section 3 assume that either

a node v detects a link change and sets v itself as

the root cause node in the outgoing updates, or v

propagates the RCN carried in the incoming up-

date message that triggered the rib(v).aspath

change. It is possible, however, that an incoming
update has no RCN. If such an update triggers a

rib(v).aspath change, node v should set itself as

the RCN in outgoing update messages. This ap-

proach allows incremental deployment of RCN

in a network. For example, suppose node u is the

root cause node, but has not implemented RCN.

Updates from u will not contain an RCN, but

the first RCN-capable node, v, that acts on the up-
date will set itself as a root cause. In other words,

the RCN-capable nodes closest to the ‘‘real’’ root

cause will set themselves as the root cause.
Although the full power of RCN may not be

achieved in such a partial deployment case, any in-

valid paths containing v can still be quickly re-

moved by other RCN-capable nodes. This

approach also handles ‘‘policy withdrawals’’. In a
policy withdrawal, node u may decide to stop

announcing reachability for prefix p to neighbor

v, but u has not changed its AS path to prefix p,

and thus the sequence number ts(u) has not chan-

ged either. In this case, u sends a ‘‘policy with-

drawal’’ to v, which contains no RCN. Node v

treats such a withdrawal as a failure of link [vu],

and following the rule above, sets itself as the root
cause.

4.4. Sequence number maintenance and security

consideration

There are several issues common to any ap-

proach that uses sequence numbers. A node might

lose its current sequence number as the result of a
crash, sequence numbers can wrap around, or a

fault (or intentional attack) could introduce erro-

neous sequence numbers. In particular, an attacker

who has compromised a node v can launch a De-

nial-of-Service attack on destination p by sending

a withdrawal with rcn = {0, ts 0(0)}, where ts 0(0) >

ts(0) and ts(0) is node 0�s latest sequence number.

As a result, nodes who believe the false sequence
number will remove their valid paths to node 0.

There is considerable prior work on managing se-

quence numbers. Techniques proposed in [15] can

be used to deal with these issues in face of arbitrary

failures. Alternatively, timestamps could be used

instead of sequence numbers to solve the wrapping

around and rebooting problems. Using timestamps

would also assist in protecting nodes against false
sequence numbers by allowing nodes to apply a

sanity check, ensuring that the timestamps are

within a reasonable range. Cryptography can also

be used to protect the sequence number, as in

[16], when adding the sequence number to the ori-

gin AS. Furthermore, OSPF [12] is widely used and

addresses sequence number problems; we primarily

borrow techniques from this approach.
On the other hand, RCN can also help on

BGP�s security. One of the most important con-

cern that previous BGP security solution such as

1

0 3

2

p

p

4

5 6

7

1
2

3

0

(a) (b)

Fig. 4. Clique and B-Clique topologies: (a) Clique of size 4 and

(b) B-Clique of size 4.

12 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
Secure-BGP [17] is the demanding CPU overhead

needed for cryptography computation for each

incoming and outgoing message. Our RCN has

reduced the message overhead for Tdown from

jENjn= jEN j¼ nð Þ messages per peering session to
1� n= jEN jð Þ messages per session, and reduced

the message overhead for Tlong to dð2hþ 30Þ=30
messages per session. In either case, the message

overhead is reduced by orders of magnitude, and

this will make cryptography based security solu-

tion such as Secure-BGP [17] more feasible for

the Internet, which in return can help improve

our RCN approach�s security.
5 Tdown result in B-Clique topology is similar to that in

Clique topology.
5. Simulation results

We used the SSFNET [18] simulator to conduct

a comparative evaluation on both routing conver-

gence and packet delivery. In addition to BGP-

RCN we also simulated the standard BGP and
two of the previously proposed BGP convergence

speedup approaches, BGP-Assertion [7] and

BGP-GF [6] which are described briefly in Section

6. SSFNET has a built-in BGP model, we added

the implementation of BGP-RCN as well as the

implementations of BGP-Assertion and BGP-GF

according to [7,6], respectively. A third-party

package [19] was incorporated and modified to en-
able tracing packet delivery in SSFNET.

5.1. Simulation setting

We used Clique, Backup-Clique (or B-Clique in

short) and Internet-derived network topologies to

evaluate the performance of different BGP vari-

ants. Clique (full-mesh) topologies, as shown in
Fig. 4(a), are frequently used in literature

[3,5,20,6] as a simple basis for Tdown analysis and

comparison. A B-Clique topology of size n, as

shown in Fig. 4(b), consists of 2n nodes. Nodes

0, . . . ,n � 1 constitute a chain topology of size n,

and nodes n, . . . , 2n � 1 constitute a Clique topol-

ogy of size n. Furthermore, node 0 is connected

to node n, and node n � 1 is connected to node
2n � 1. This topology is used to model an edge

network (node 0) that connects to the well-con-

nected Internet core (a Clique topology) through
a direct link and a long backup path (the chain).

We use B-Clique to study Tlong convergence only.
5

To derive a simulation topology that resembles the

Internet topology, we first generated a 110-node

topology based on BGP routing tables by using
the algorithm described in [21]. Following the

same algorithm, we randomly removed some links

and selected the largest connected sub-graph. In

this sub-graph, we merged two non-adjacent nodes

with the smallest degrees, and which shared no

neighbors. This merging was repeated until all

nodes in the sub-graph had degree 2 or greater.

We used this method to generate two 55-node
topologies, four 28-node topologies, and eight

14-node topologies.

In all our simulations, the MRAI timer value

was set to the BGP default of 30 s plus a random

jitter. The link propagation delay was 2ms, and

the processing delay of each routing message was

chosen randomly between 0.1 and 0.5 s. The band-

width of each network interface was 10 Mbps.
To evaluate the performance of the standard

BGP and three of its proposed variants, we mea-

sured not only routing convergence time and the

number of routing update messages, but also data

packet losses during routing convergence for Tlong

event. Pei et al. [22] shows that a short convergence

time does not necessarily imply minimal packet

losses and maximizing packet delivery should be
one of the design priorities for all routing proto-

cols. In all of our Tlong simulations, there is a data

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 13

ARTICLE IN PRESS
source attached to each AS node in the network

except the origin AS. Each data source generates

packets at the rate of one packet per second. The

packet size was 24 bytes and carried a TTL

(Time-To-Live) value of 128, the default setting
in SSFNET. Given each link has a bandwidth of

10 Mbps, there is no congestion-induced packet

losses during simulation.
5.2. Tdown simulation results

For Clique topologies, we chose node 0 as the

only origin AS which advertised a destination pre-
fix, and simulated the Tdown event by marking node
0.25

1

4

16

64

256

1024

2 4 8 16 32

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

Number of Nodes in Clique Topology

Standard BGP
Assertion

Ghost Flushing
RCN

(a) (

Fig. 5. Results for Tdown convergence in Clique topologies: (a) converg

1

2

4

8

16

32

64

128

256

512

1024

7 14 28 56 112 224

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

Number of Nodes in Internet-Derived Topology

Standard BGP
Assertion

Ghost Flushing
RCN

(a) (

Fig. 6. Results for Tdown convergence in Internet-derived topologi

messages(log–log).
0 down. The simulation results are based on 100

simulation runs which used different random

seeds. Fig. 5 shows the convergence delay and

the number of update messages averaged over

100 runs with a 95% confidence interval. For Inter-
net-derived topologies, one node x was chosen as

the only origin AS which advertised a destination

prefix, and we simulated the Tdown event by mark-

ing this node x down. We repeated the simulation

with five random seeds. We then repeated that set

of simulations for every node in each topology. In

total, there were 1 · 110 · 5 = 550 runs for the

110-node topology, and 2 · 55 · 5 = 550 runs for
the two 55-node topologies. Fig. 6 shows the Tdown

convergence results averaged over 550 runs with a
4

16

64

256

1024

4096

16384

65536

2 4 8 16 32

N
um

be
r

of
 U

pd
at

e
M

es
sa

ge
s

Number of Nodes in Clique Topology

Standard BGP
Assertion

Ghost Flushing
RCN

b)

ence time(log–log) and (b) number of update messages(log–log).

16

32

64

128

256

512

1024

2048

4096

8192

16384

7 14 28 56 112 224

N
um

be
r

of
 U

pd
at

e
M

es
sa

ge
s

Number of Nodes in Internet-Derived Topology

Standard BGP
Assertion

Ghost Flushing
RCN

b)

es: (a) convergence time(log–log) and (b) number of update

14 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
95% confidence interval for Internet-derived topol-

ogies. Note that both the X- and Y-axis are in log

scale.

Simulation results show that, compared with

the standard BGP, BGP-RCN can reduce Tdown

convergence time by 2–3 orders of magnitude,

and reduce the total number of routing update

messages by 1–2 orders of magnitude. For the

110-node Internet-derived topology, the Tdown

convergence time was reduced from 648.4 s to

1.3 s, and number of messages was reduced from

15,387 to 463. For Clique topologies of size 32,

the convergence time was reduced from 662.1 s
to 0.5 s, and the number of messages from 20533

to 961. BGP-RCN�s improvement is consistent

with our analysis in Section 3.
1

2

4

8

16

32

64

128

256

512

1024

2 4 8 16 32

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

Number of Nodes in B-Clique Topology

Standard BGP
Assertion

Ghost Flushing
RCN

N
um

be
r

of
 U

pd
at

e
M

es
sa

ge
s

4

16

64

256

1024

4096

16384

65536

2 4 8

N
um

be
r

of
 P

ac
ke

ts
 L

os
t

Number of Nodes in B

Standard BGP
Assertion

Ghost Flushing
RCN

(a) (b)

(c)

Fig. 7. Results for Tlong convergence in B-Clique topologies: (a) conv

and (c) number of packet losses(log–log).
5.3. Tlong simulation results

To simulate the Tlong event in B-Clique topolo-

gies, we chose node 0 as the origin AS and marked

the link [0n] down after the simulation started. The
average Tlong convergence results over 100 runs

with 95% confidence interval are shown in Fig. 7.

Note that both the X and Y-axis are in log scale.

As the figure shows, BGP-RCN can reduce BGP�s
Tlong convergence time and number of messages in

B-Clique topologies by 1–2 orders of magnitude.

For the B-Clique topology of size 32, the conver-

gence time was reduced from 720.0 s to 11.3 s,
and the number of messages from 22211 to 1955.

This improvement is less dramatic than in the

Tdown case because BGP-RCN�s convergence time
16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

2 4 8 16 32

Number of Nodes in B-Clique Topology

Standard BGP
Assertion

Ghost Flushing
RCN

16 32

-Clique Topology

ergence time(log–log); (b) number of update messages(log–log)

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 15

ARTICLE IN PRESS
upper bound is d(2h + 30) s, a function of the

MRAI timer value which has a big impact during

the second stage of Tlong�s convergence. Neverthe-

less, BGP-RCN significantly improves packet

delivery performance by reducing the number of
packets losses by 1–2 orders of magnitude, from

23730 in standard BGP to 438 in BGP-RCN.

For Internet-derived topologies, one node x was

chosen as the only origin AS which advertised a

destination prefix, and we simulated the Tlong event

by marking down one of x�s links, l. We repeated

the simulation with five random seeds. We then re-

peated that set of simulations for each l and x for
each topology. There are 286 links in our 110-node

topology and each link was failed twice, thus

1 · 2 · 286 · 5 = 2860 simulation runs were con-

ducted. Unlike in B-Clique topologies where the
20

25

30

35

40

45

50

55

60

65

70

75

50 55 60 65 70 75 80 85 90 95 100

S
im

ul
at

io
n

T
im

e
(s

ec
)

Percent of Simulation Runs Converged

Standard BGP
Assertion

Ghost Flushing
RCN

0

50

100

150

200

250

300

350

400

450

500

50 55 60 65 70 75

N
um

be
r

of
 P

ac
ke

ts
 D

ro
pp

ed
 o

r
Lo

op
ed

Percent of Simulatio

Standard BGP
Assertion

Ghost Flushing
RCN

(a) (b

(c)

Fig. 8. Results for Tlong convergence in Internet-derived topologies:

number of packet losses.
failure of the current route to node 0 forces most

of the other nodes to move to a new route, rela-

tively few nodes have to change their route to 0

after a single link failure. In particular, our Inter-

net-derived topologies include a number of nodes
that directly connect to a large number of other

nodes, resembling the ASes of large Internet ser-

vice providers. For example, 5 nodes in the 110-

node topology connect to 20 or more other nodes

each, and another 7 nodes have 10 or more links

each. When a link attached to one of these well-

connected nodes fails, few nodes in the network

need to readjust their routes. In addition, BGP
slow convergence only occurs in the local region

of affected nodes. Furthermore, when those af-

fected nodes try to find the next best path to the

same destination, due to the rich connectivity,
0

200

400

600

800

1000

1200

1400

50 55 60 65 70 75 80 85 90 95 100

N
um

be
r

of
 U

pd
at

e
M

es
sa

ge
s

S
en

t

Percent of Simulation Runs Converged

Standard BGP
Assertion

Ghost Flushing
RCN

80 85 90 95 100

n Runs Converged

)

(a) convergence time; (b) number of update messages and (c)

16 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
not only do most of the nodes have multiple alter-

native routes to each destination, but also the new-

ly selected path by the nodes have a good chance

of not depending on the failed link, even without

the knowledge of which link has failed.
Because of the above factors, the simulation re-

sults of the 110-node Internet-derived topology

show that, under the standard BGP, more than

50% of our Tlong simulation runs had short conver-

gence delays and very small numbers of update

messages. Therefore, instead of using the average,

we use the percentile curve of Tlong to show conver-

gence results. A point (x,y) in Fig. 8(a) means that
x% of the link-failures resulted in a convergence

delay of no longer than y s. Fig. 8(a) shows that,

for up to 85% of the links, all the four variants

of BGP produce similar convergence delay. Above

that point, however, the convergence delay reduc-

tion by BGP-RCN becomes more pronounced.

For example, 95% of link failures converged with-

in 56 s in the standard BGP, and BGP-RCN re-
duced this number to 32 s. BGP-RCN does not

bring significant reduction in message count, not

because BGP-RCN did not perform well, but

rather it is because the rich connectivity in the sim-

ulated topology enabled good performance for the

other three BGP variants.
Fig. 9. Convergence time and message upper bound.M is MRAI time

diameter, jENj is the number of directed AS-Level links in the network

AS hop: (a) upper bound and (b) empirical data (from [23,6]).
6. Comparison with previous work

In this section, we compare our BGP-RCN de-

sign with other convergence improvement mecha-

nisms through simulation. Fig. 9 summarizes the
upper bound of the standard BGP, BGP-RCN,

BGP-Assertion [7] and BGP-GF (Ghost Flushing

[6]), as well as the empirical data for the parame-

ters used.

6.1. Assertion approach

BGP-Assertion [7] tries to detect the path incon-
sistency between rib_in received from different

neighbors, and if an inconsistency is found, the

path learned from the direct neighbor is given

higher priority in propagation and conflicting

paths will also be marked infeasible. BGP-Asser-

tion reduces the chance of choosing or propagat-

ing obsolete paths but does not eliminate the

propagation of all obsolete paths, and its effective-
ness is sensitive to the details of topology. For

example, when BGP-Assertion is used in the topol-

ogy shown in Fig. 1(b), after node 5 receives node

3�s new update, it will choose the invalid backup

path (5420p) and will further propagate the path

to other neighbors. In BGP-RCN, node 3�s update
r value. n is the number of ASes in the network, d is the network

. h is the average delay for a BGP update message to traverse an

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 17

ARTICLE IN PRESS
message carries a root cause {2,1} and invalidates

all the paths that include node 2 and have

ts(2) < 1, (e.g. (4 [0]2 [0]0 [0]p) is invalid).

For Tdown convergence in Clique topologies and

Tlong convergence in B-Clique topologies, BGP-
Assertion�s performance is as good as that of

BGP-RCN. In these specialized topologies, the

BGP-Assertion algorithm allows node 0 (node

1)�s neighbors in Tdown(Tlong) to immediately con-

verge. For Tdown convergence in Internet-derived

topologies, however, BGP-Assertion�s perfor-

mance is 2 orders of magnitude worse than BGP-

RCN because BGP-RCN avoids the impact of
MRAI from Tdown convergence, while Assertion

does not. BGP-Assertion does improve Tlong con-

vergence with the Internet-derived topology, but

only to a limited extent.

6.2. BGP-GF: ghost flushing

In BGP-GF[6] a node sends a ‘‘flushing’’ with-
drawal message when it changes to a less preferred

path, but announcement of the less preferred path

is delayed due to the MRAI timer. Without BGP-

GF, the MRAI timer blocks announcement of the

less preferred path and the obsolete path remains

in the system until the MRAI timer expires. Be-

cause withdrawal messages are not subject to the

MRAI timer delay, thus by sending a withdrawal
an invalid path can potentially be quickly removed

from the entire network. Like BGP-Assertion,

BGP-GF does not eliminate the propagation of

all invalid paths. For example, after the link [2 0]

in Fig. 1(b) fails, node 2 sends an update and node

3 will send a flushing withdrawal to node 5 to re-

move the old path (320p). Node 4 will also send

a flushing withdrawal to node 5, but this flushing
withdrawal might arrive at node 5 after the node

5 processes the flushing withdrawal from node 3,

chooses an obsolete backup path (5420p) and

propagates it further.

BGP-GF has an advantage that it does not

change the format of the standard BGP message.

According to [6], BGP-GF�s Tdown convergence

time is bounded at h Æ n seconds and the message
overhead is bounded at 2 jENjnh=M . No complex-

ity results for Tlong is provided in [6]. Because

BGP-RCN eliminates all the invalidated paths,
its convergence time is upper bounded by O(d) in

Tdown convergence, where d is the network diame-

ter, which is about 3 orders of magnitude smaller

than n in today�s Internet topology, as shown in

Fig. 9. In simulations, Fig. 6 shows that BGP-
GF can reduce Tdown convergence time by one or-

der of magnitude in the Internet-derived topolo-

gies. Fig. 5(b), however, shows that in a densely

connected topology such as a Clique of size 32,

the additional withdrawals sent by BGP-GF lead

to higher message overhead. An invalid alternative

path P can be propagated out by a node v before v

receives the new updates that would invalidate P.
Therefore, the improvement in convergence time

at size 32 is much less than at size 16 (Fig. 5(a)).

The additional processing overhead of withdrawal

messages, which can mount to a large number in a

dense topology, also reduces the improvement of

Tlong convergence in B-Clique of size 32 (Fig. 7),

and even increases the Tlong convergence time in

Internet-derived topologies (Fig. 8).
While BGP-GF quickly removes invalidated

paths, it does not necessarily speed up the propa-

gation of alternative ones and it can cause signifi-

cantly more packet losses than the standard BGP

during Tlong convergence in Internet-derived topol-

ogies (Fig. 8(c)). BGP-Assertion and BGP-RCN,

on the other hand, both reduce packet losses. As

observed in [22], minimizing routing convergence
time in Tdown does not necessarily lead to minimal

packet losses in Tlong convergence. Furthermore,

the flushing withdrawals sent by BGP-GF are

incompatible with the recent adoption of WRATE

[2], and can result in penalty by the route damping

mechanisms [24,20].

6.3. Other related work

Sequence numbers have been used before by

[16] to improve the security of BGP. In [16], each

origin AS maintains a sequence number for each

prefix it originates, and increases the sequence

number when it withdraws or re-announces the

prefix. In the case of a withdrawal carrying a se-

quence number, this approach can be considered
a sub-case of BGP-RCN. Approaches similar to

[16] have also been proposed for distance vector

protocols in [25] and AODV [26]. BGP-RCN lets

18 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
every AS maintain sequence number for each pre-

fix in the network, and improves both Tlong conver-

gence and Tdown convergence. An independently

developed approach, FESN (Forwarding Edge Se-

quence Number) [13], is similar to BGP-RCN but
it uses link sequence number instead of node se-

quence number. We have compared the use of

node sequence number and link sequence number

in Section 4.

Variations on explicitly signaling a root cause

have been proposed in [27–30]. Cheng et al. [27]

considered distance vector routing and combined

a path finding approach with a system for stamp-
ing the triggering link failure (e.g., the identifiers

of the two nodes adjacent to the failed link) into

each routing update. They provided Tlong analysis

but not Tdown. [28] proposed explicitly signaling the

Tdown failure in BGP, and their approach can im-

prove the Tdown convergence time significantly,

but is not applicable to Tlong. ‘‘BGP-Cause Tag

(BGP-CT)’’, outlined in two presentations
[29,30], uses timing heuristic to deal with overlap-

ping failures. Similar to BGP-RCN, BGP-CT

explicitly signals the failure but does not use a se-

quence number. Any path containing the failed

link is marked as ‘‘invalidated’’ and a timer is

set. Invalidated paths are retained in the rib_in,

but cannot be selected as the best path to destina-

tion. An invalidated path will either be replaced
(by a withdrawal or new advertisement from a

neighbor) or will again become available when

the invalidation timer expires. The timer ensures

a path that was incorrectly marked as invalid will

eventually be eligible for use.

However, these approaches do not guarantee

‘‘correctness’’ in the case that multiple failures

overlap in time. In all these approaches, link flap-
ping (repeated link failure then link recovery) can

cause correctness problems if a newer piece of

notification arrives at a node before an older piece

of path information. In the first two approaches, a

node may mistakenly remove a valid path when an

outdated piece of information arrives. BGP-CT�s
behavior depends on the timer settings. Generally,

a path that is incorrectly marked invalid due to
outdated information may be re-used when the

timer expires. Note that BGP-RCN addresses the

multiple failure issue by using a strictly increasing
(with wrapping around handling) sequence num-

ber to signal the freshness of the root cause, and

can safely remove all the paths invalidated by the

latest RCN. The performance of BGP-CT depends

on the timer settings. In the case of single failure,
our Tdown and Tlong analytical results for BGP-

RCN should be similar to BGP-CT with an ideal

timer setting. In the case of multiple failures, the

correctness and performance of overlapping events

in BGP-CT would depend on the timer settings.
7. Conclusion

As evidenced by previous measurement and

simulation studies [4,5,7,6], both the convergence

time and message overhead of standard BGP can

increase quickly as the network topology becomes

larger in size and denser in connectivity. Labovitz

et al. [4] and Obradovic [11] proved that standard

BGP Tdown convergence time has an upper bound
of O(n), where n is the number of AS nodes in

the network, and a message overhead upper bound

of jENj Æ n, where jENj is number of directed AS-le-

vel links.

Our proposed BGP-RCN design reduces BGP�s
convergence time upper bound to O(d), where d is

the network diameter. This represents a much tigh-

ter bound on BGP�s convergence delay compared
to the existing results in literature. After a link fail-

ure, the root cause information carried in each up-

date message enables a node to invalidate all the

paths that are obsolete due to the same failure; this

includes both obsolete paths currently in the rout-

ing table as well as obsolete paths that could be re-

ceived in the future. Our simulation results show

that the convergence time for a Tdown event can
be reduced by at least 2 orders of magnitudes in

both Clique and Internet-derived topologies. For

Tlong events, BGP-RCN eliminates all the invalid

paths and propagates only valid reachability infor-

mation. As a result, simulations on B-Clique

topologies showed substantial reduction in the

convergence time, the number of update messages,

and packet losses after a connectivity change. Sim-
ulations of the Internet-derived topology also

showed an improvement by BGP-RCN over stan-

dard BGP in all the three measurements, although

D. Pei et al. / Computer Networks xxx (2004) xxx–xxx 19

ARTICLE IN PRESS
the improvement is moderate in most cases. This is

not because BGP-RCN did not perform well, but

rather, the rich connectivity in our simulated

topologies enabled the other three protocols to

also perform well. When a link failure occurs close
to the network edge, BGP-RCN offers more pro-

nounced improvement.

This paper focuses on the design of RCN and

only compared with other approaches qualita-

tively through simulations. We are currently devel-

oping a general analytical model which can help

fill the holes in Fig. 9(a). In particular, we believe

that analytical results for Tlong could be instructive
in explaining why the standard BGP performs well

and the proposed convergence enhancements offer

only insignificant improvement in Internet-like

topologies.

In addition to routing convergence improve-

ments, we also believe that the root cause informa-

tion carried in BGP-RCN can be potentially

helpful in Internet routing diagnosis. When a rout-
ing change occurs in today�s Internet, it is often

difficult to infer the cause and origin of the change.

We plan to explore the use of root cause informa-

tion in understanding global routing dynamics in

our future efforts.
Acknowledgement

We are indebted to Eli Gafni for his invaluable

suggestions and comments. We thank Nam Ngu-

yen and Jiwei Chen for their contribution on earlier

design and simulation of this work. We thank our

editor and the anonymous reviewers for their de-

tailed and insightful comments that greatly im-

proved the paper and inspired our future work.
We would also like to thank Songwu Lu and S. Fe-

lix Wu for helpful discussions, Xiaoliang Zhao for

his help on simulation setting package, and Beich-

uan Zhang, Mohit Lad, Vasilis Pappas for their

comments on an earlier version of this paper.
References

[1] Y. Rekhter, T. Li, Border Gateway Protocol 4, Rfc 1771,

SRI Network Information Center, July 1995.
[2] Y. Rekhter, T. Li, S. Hares, Border Gateway Protocol 4,

Available from <http://www.ietf.org/internet-drafts/draft-

ietf-idr-bgp4-22.txt> October 2003.

[3] C. Labovitz, A. Ahuja, A. Bose, F. Jahanian, Delayed

Internet routing convergence, in: Proceedings of ACM

Sigcomm, 2000.

[4] C. Labovitz, R. Wattenhofer, S. Venkatachary, A. Ahuja,

The impact of Internet policy and topology on delayed

routing convergence, in: Proceedings of the IEEE INFO-

COM, 2001.

[5] T. Griffin, B. Premore, An experimental analysis of BGP

convergence time, in: Proceedings of ICNP, 2001.

[6] A. Bremler-Barr, Y. Afek, S. Schwarz, Improved BGP

convergence via ghost flushing, in: Proceedings of the IEEE

INFOCOM, 2003.

[7] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, F.S.

Wu, L. Zhang, Improving BGP convergence through

assertions approach, in: Proceedings of the IEEE INFO-

COM, 2002.

[8] T. Griffin, F.B. Shepherd, G. Wilfong, The stable path

problem and interdomain routing, IEEE/ACM Transac-

tions on Networks 10 (2) (2002) 232–243.

[9] T. Griffin, G. Wilfong, A safe path vector protocol, in:

Proceedings of IEEE INFOCOMM, 2000.

[10] D. Pei, M. Azuma, N. Nguyen, J. Chen, D. Massey, L.

Zhang, BGP-RCN: improving bgp convergence through

root cause notification, Technical Report TR-030047,

UCLA CSD, Available from <http://www.cs.ucla.edu/pei-

dan/bgp-rcn-tr.pdf> October 2003.

[11] D. Obradovic, Real-time model and convergence time of

BGP, in: Proceedings of the IEEE INFOCOM, 2002.

[12] J. Moy, OSPF Version 2, RFC 2328, SRI Network

Information Center, September 1998.

[13] J. Chandrashekar, Z. Duan, Z.-L. Zhang, J. Krasky,

Limiting path exploration in path vector protocols, Tech-

nical Report, University of Minnesota, 2003.

[14] X. Zhao, M. Lad, D. Pei, L. Wang, D. Massey, A. Mankin,

S. Wu, L. Zhang, An analysis BGP multiple origin

AS(MOAS) conflicts, in: Proceedings of the IEEE DIS-

CEX, 2003.

[15] R. Perlman, Network layer protocols with byzantine

robustness, Ph.D. Thesis, MIT Laboratotry for Computer

Science, 1988.

[16] B.R. Smith, J.J. Garcia-Luna-Aceves, Securing the border

gateway routing protocol, in: Global Internet�96, 1996.
[17] S. Kent, C. Lynn, K. Seo, Secure border gateway protocol

(s-bgp), IEEE JSAC Special Issue on Network Security.

[18] The SSFNET Project, http://www.ssfnet.org.

[19] M. Liljenstam, Ssf.os.trace—a record route mechanism for

ssfnet ip, v 0.1, http://www.cs.dartmouth.edu/mili/research/

ssf/trace/Trace.html.

[20] Z. Mao, R. Govindan, G. Varghese, R. Katz, Route flap

damping exacerbates Internet routing convergence, in:

Proceedings of ACM Sigcomm, 2002.

[21] B. Premore, Multi-as topologies from bgp routing tables,

Available from <http://www.ssfnet.org/Exchange/gallery/

asgraph/index.html>.

http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-idr-bgp4-22.txt
http://www.cs.ucla.edu/peidan/bgp-rcn-tr.pdf
http://www.cs.ucla.edu/peidan/bgp-rcn-tr.pdf
http://www.ssfnet.org
http://www.cs.dartmouth.edu/mili/research/ssf/trace/Trace.html
http://www.cs.dartmouth.edu/mili/research/ssf/trace/Trace.html
http://www.ssfnet.org/Exchange/gallery/asgraph/index.html
http://www.ssfnet.org/Exchange/gallery/asgraph/index.html

20 D. Pei et al. / Computer Networks xxx (2004) xxx–xxx

ARTICLE IN PRESS
[22] D. Pei, L. Wang, D. Massey, S.F. Wu, L. Zhang, A study

of packet delivery performance during routing conver-

gence, in: IEEE DSN, 2003.

[23] G. Huston, BGP Table Data, Available from <http://

bgp.potaroo.net/>.

[24] C. Villamizar, R. Chandra, R. Govindan, BGP Route

Damping, RFC 2439, SRI Network Information Center,

May 1998.

[25] B.R. Smith, J.J. Garcia-Luna-Aceves, Securing distance-

vector routing protocol, in: Global Internet�96, 1997.
[26] C. Perkins, E. M. Belding-Royer, S. R. Das, Ad hoc on-

demand distance vector (AODV) routing, Available from

<http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-

13.txt> February 2003.

[27] C. Cheng, R. Riley, S. Kumar, J. Garcia-Lunes-Aceves, A

Loop-Free Extended Bellman-Ford Routing Protocol

Without Bouncing Effect, in: Proceedings of ACM Sig-

comm, 1989, pp. 224–236.

[28] J. Luo, J. Xie, R. Hao, X. Li, An Approach to Accelerate

Convergence for Path Vector Protocol, in: Proceedings of

IEEE Globecom, 2002.

[29] C. Labovitz, A. Ahuja, Modeling inter-domain routing

protocol dynamic, Avaiable from <http://www.caida.org/

outreach/isma/0012/talks/labovitz/> December 2000.

[30] R. Wattenhofer, Slow internet routing convergence, Avail-

able from <http://www.inf.ethz.ch/schlude/webalgs/BGP-

slides.pdf> December 2002.

Dan Pei is currently a Ph.D candidate
at UCLA Computer Science Depart-
ment. His current research interests
include the fault tolerance and perfor-
mance of Internet Routing Protocols.
He received his Bachelor�s and
Master�s degrees from Tsinghua
University.
Matt Azuma received his Master degree from UCLA Computer
Science Department in June 2004.

Dan Massey is an assistant professor at
Computer Science Department of
Colorado State University and is cur-
rently the principal investigator on
DARPA and NSF funded research
projects investigating techniques for
improving the Internet�s DNS and
BGP infrastructures. He received his
doctorate from UCLA and is a mem-
ber of the IEEE, IEEE Communica-
tions Society, and IEEE Computer
Society. His research interests include
fault-tolerance and security for large
scale network infrastructures.
Lixia Zhang (SM�95/ACM �84) received her Ph.D. degree from
the Massachusetts Institute of Technology. She was a member
of the research staff at the Xerox Palo Alto Research Center
before joining the faculty of UCLA�s Computer Science
Department in 1995. In the past she has served on the Internet
Architecture Board, Co-Chair of IEEE Communication Society
Internet Technical Committee, Vice Chair of ACM SIG-
COMM, and editor for the IEEE/ACM Transactions on
Networking.

http://bgp.potaroo.net/
http://bgp.potaroo.net/
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt
http://www.caida.org/outreach/isma/0012/talks/labovitz/
http://www.caida.org/outreach/isma/0012/talks/labovitz/
http://www.inf.ethz.ch/schlude/webalgs/BGP-slides.pdf
http://www.inf.ethz.ch/schlude/webalgs/BGP-slides.pdf

	BGP-RCN: improving BGP convergence through root cause notification
	Introduction
	A simple model for the standard BGP
	The SPVP model
	SPVP convergence definitions

	SPVP with root cause notification
	SPVP-RCN algorithm
	An example
	SPVP-RCN Tdown convergence bounds
	SPVP-RCN Tlong convergence

	Multiple failures overlapping in time
	Delay bounds with per-neighbor MRAI timer and WRATE

	Implementation and deployment
	Storage overhead
	Logical elements vs. physical elements
	Handling the absence of RCN
	Sequence number maintenance and security consideration

	Simulation results
	Simulation setting
	Tdown simulation results
	Tlong simulation results

	Comparison with previous work
	Assertion approach
	BGP-GF: ghost flushing
	Other related work

	Conclusion
	Acknowledgement
	References

