Introduction to Data-flow analysis

Last Time
– Register allocation for expression trees

Today
– Control flow graphs
– 3-address code
– Register allocation using liveness analysis

Reading for this week
– Ch. 6.2-6.2.2, 3-address code
– 8-8.1.2, 8.1.4, intro to program analysis
– 8.4, 8.8, register allocation via data-flow analysis

Data-flow Analysis

Idea
– Data-flow analysis derives information about the dynamic behavior of a program by only examining the static code

Example
– How many registers do we need for the program on the right?
– Easy bound: the number of variables used + expr temp (4)
– Better answer is found by considering the dynamic requirements of the program

```
1  a := 0
2 L1: b := a + 1
3    c := c + b
4    a := b * 2
5    if a < 9 goto L1
6    return c
```
Liveness Analysis

Definition
– A variable is live at a particular point in the program if its value at that point will be used in the future (dead, otherwise).
∴ To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation
– A program contains an unbounded number of variables
– Must execute on a machine with a bounded number of registers
– Two variables can use the same register if they are never in use at the same time (i.e, never simultaneously live).
∴ Register allocation uses liveness information

Control Flow Graphs (CFGs)

Definition
– A CFG is a graph whose nodes represent program statements and whose directed edges represent control flow

Example
1 a := 0
2 L1: b := a + 1
3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c

1 a = 0
2 b = a + 1
3 c = c + b
4 a = b * 2
5 a<9
6 return c

No
Yes
Terminology

Flow Graph Terms
- A CFG node has **out-edges** that lead to **successor** nodes and **in-edges** that come from **predecessor** nodes.
- \(\text{pred}[n] \) is the set of all predecessors of node \(n \)
- \(\text{succ}[n] \) is the set of all successors of node \(n \)

Examples
- Out-edges of node 5: \((5 \rightarrow 6) \) and \((5 \rightarrow 2) \)
- \(\text{succ}[5] = \{2, 6\} \)
- \(\text{pred}[5] = \{4\} \)
- \(\text{pred}[2] = \{1, 5\} \)

Liveness by Example

What is the live range of \(b \)?
- Variable \(b \) is read in statement 4, so \(b \) is live on the \((3 \rightarrow 4) \) edge.
- Since statement 3 does not assign into \(b \), \(b \) is also live on the \((2 \rightarrow 3) \) edge.
- Statement 2 assigns \(b \), so any value of \(b \) on the \((1 \rightarrow 2) \) and \((5 \rightarrow 2) \) edges are not needed, so \(b \) is dead along these edges.

\(b \)'s live range is \((2 \rightarrow 3 \rightarrow 4) \)
Liveness by Example (cont)

Live range of a
- a is live from $(1\rightarrow 2)$ and again from $(4\rightarrow 5\rightarrow 2)$
- a is dead from $(2\rightarrow 3\rightarrow 4)$

Live range of b
- b is live from $(2\rightarrow 3\rightarrow 4)$

Live range of c
- c is live from $(\text{entry}\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 2, 5\rightarrow 6)$

Variables a and b are never simultaneously live, so they can share a register

Uses and Defs

Def (or definition)
- An assignment of a value to a variable
- $\text{def}_\text{node}[v] = \text{set of CFG nodes that define variable } v$
- $\text{def}[n] = \text{set of variables that are defined at node } n$

Use
- A read of a variable’s value
- $\text{use}_\text{node}[v] = \text{set of CFG nodes that use variable } v$
- $\text{use}[n] = \text{set of variables that are used at node } n$

More precise definition of liveness
- A variable v is live on a CFG edge if
 1. \exists a directed path from that edge to a use of v (node in $\text{use}_\text{node}[v]$), and
 2. that path does not go through any def of v (no nodes in $\text{def}_\text{node}[v]$)
The Flow of Liveness

Data-flow
- Liveness of variables is a property that flows through the edges of the CFG

Direction of Flow
- Liveness flows backwards through the CFG, because the behavior at future nodes determines liveness at a given node
 - Consider a
 - Consider b
 - Later, we’ll see other properties that flow forward

Liveness at Nodes

We have liveness on edges
- How do we talk about liveness at nodes?

Two More Definitions
- A variable is live-out at a node if it is live on any of that node’s out-edges
- A variable is live-in at a node if it is live on any of that node’s in-edges
Computing Liveness

Rules for computing liveness

1. Generate liveness:
 If a variable is in use[n], it is live-in at node n.

2. Push liveness across edges:
 If a variable is live-in at a node n, then it is live-out at all nodes in pred[n].

3. Push liveness across nodes:
 If a variable is live-out at node n and not in def[n], then the variable is also live-in at n.

Data-flow equations

\[
\begin{align*}
\text{in}[n] &= \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \\
\text{out}[n] &= \bigcup_{s \in \text{succ}[n]} \text{in}[s]
\end{align*}
\]

Solving the Data-flow Equations

Algorithm

\[
\begin{align*}
\text{for each } & \text{ node } n \text{ in CFG} \\
\text{in}[n] &= \emptyset; \quad \text{out}[n] = \emptyset \quad \{ \text{initialize solutions} \} \\
\text{repeat} \\
\text{for each } & \text{ node } n \text{ in CFG} \\
\text{in}'[n] &= \text{in}[n] \quad \{ \text{save current results} \} \\
\text{out}'[n] &= \text{out}[n] \\
\text{in}[n] &= \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \quad \{ \text{solve data-flow equations} \} \\
\text{out}[n] &= \bigcup_{s \in \text{succ}[n]} \text{in}[s] \\
\text{until } & \text{in}'[n] = \text{in}[n] \text{ and out}'[n] = \text{out}[n] \text{ for all } n \\
\{ \text{test for convergence} \}
\end{align*}
\]

This is iteractive data-flow analysis (for liveness analysis)
Example

<table>
<thead>
<tr>
<th>node</th>
<th>use</th>
<th>def</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td></td>
<td>a</td>
<td>a</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
<td>c</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>bc</td>
<td>ac</td>
<td>bc</td>
<td>ac</td>
<td>bc</td>
<td>ac</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>c</td>
<td>bc</td>
<td>b</td>
<td>bc</td>
<td>ac</td>
<td>bc</td>
<td>ac</td>
<td>bc</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>a</td>
<td>ac</td>
<td>a</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
<td>ac</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Data-flow Equations for Liveness

\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

\[
\text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s]
\]

Liveness Analysis in the MeggyJava compiler

Currently ...
- Parse into AST
- Allocate space on stack for locals and parameters and space in heap for member variables
- Use stack for expression evaluation
- Generate AVR code from AST

To perform data-flow analysis ...
- Need intermediate representation like 3-address code
- Use temporaries/symbolic registers for expression results
- Indicate uses and defs of temporaries and locals and parameters in each 3-address code instruction
- Create a control-flow graph with each 3-address code instruction as a node
A Low-Level IR: 3-address code

3-address code
- Linear representation
- Typically language-independent and nearly corresponds to machine instructions
- Each var is assumed to have a base + offset
- Assumes infinite temps (t#), or symbolic registers, are available

Example operations
- Copy \(x = z, t1 = t2 \)
- Indexed copy \(x = y[i], y[i] = x, t1 = y[i] \)
- Unary op \(x = \text{op} z \)
- Binary op \(x = v \text{ op } z, t1 = t2 \text{ op } t3 \)
- Address of \(p = \& v \)
- Load \(x = *p \)
- Store \(*p = x, \)
- Pass param \(\text{param } t0 \)
- Call \(t1 = \text{call } f, 1 \)
- Branch \(\text{goto } L1 \)
- Cbranch \(\text{if } (x==y) \text{ goto } L1 \)

Register Allocation

Problem
- Assign an unbounded number of symbolic registers, or temporaries, to a fixed number of architectural registers
- Simultaneously live data must be assigned to different architectural registers

Goal
- Minimize overhead of accessing data
 - Memory operations (loads & stores)
 - Register moves
Scope of Register Allocation

Expression
Local
Loop
Global
Interprocedural

Granularity of Allocation

What is allocated to registers?
– Variables
– Live ranges/Webs (i.e., du-chains with common uses)
– Values (i.e., definitions; same as variables with SSA)

Variables: 2 (x & y)
Live Ranges/Web: 3 (s_1 \rightarrow s_3, s_4; s_2 \rightarrow s_3; s_3, s_5 \rightarrow s_6)
Values: 4 (s_1, s_2, s_3, s_5, \phi (s_3, s_2))
Global Register Allocation by Graph Coloring

Idea [Cocke 71], First allocator [Chaitin 81]

1. Construct **interference graph** $G=(N,E)$
 - Represents notion of “simultaneously live”
 - Nodes are units of allocation (e.g., variables, live ranges, values)
 - \exists edge $(n_1,n_2) \in E$ if n_1 and n_2 are simultaneously live
 - Symmetric (not reflexive nor transitive)

2. Find **k-coloring** of G (for k registers)
 - Adjacent nodes can’t have same color

3. **Allocate** the same register to all allocation units of the same color
 - Adjacent nodes must be allocated to distinct registers

Interference Graph Example (Variables)

```
a := ...
b := ...
c := ...
... a ...
d := ...
... d ...
a := ...
... e ...
... a ...
... e ...
... b ...
```

```c
... c ...
a := ...
... d ...
... d ...
e := ...
... a ...
e := ...
... a ...
... e ...
... b ...
```
Computing the Interference Graph

Use results of live variable analysis

\[
\text{for each symbolic-register/temporary/var } t_i \text{ do } \\
\quad \text{for each symbolic-register/temporary/var } t_j \text{ (} j < i \text{) do } \\
\quad \quad \text{for each } \text{def } \in \{\text{definitions of } t_i\} \text{ do } \\
\quad \quad \quad \text{if } (t_j \text{ is live out at def}) \text{ then } \\
\quad \quad \quad \quad E \leftarrow E \cup (t_i, t_j)
\]

Options
– treat all instructions the same
– treat MOVE instructions special
– which is better?

Allocating Registers Using the Interference Graph

\textit{K-coloring}
– Color graph nodes using up to } k \text{ colors
– Adjacent nodes must have different colors

Allocating to } k \text{ registers \textit{\textbf{finding a }k\text{-coloring of the interference graph}}
– Adjacent nodes must be allocated to distinct registers

But. . .
– Optimal graph coloring is NP-complete
 – Optimal register allocation is NP-complete, too (must approximate)
– What if we can’t } k\text{-color a graph? (must spill)}
Register Allocation: Spilling

If we can’t find a k-coloring of the interference graph
– Spill variables (nodes) until the graph is colorable

Choosing variables to spill
– Choose arbitrarily or
– Choose least frequently accessed variables
– Break ties by choosing nodes with the most conflicts in the interference graph
– Yes, these are heuristics!

Spilling (Original CFG and Interference Graph)
Spilling (After spilling b)

\[
\begin{align*}
a & := \ldots \\
b & := \ldots \\
\ast(Y+4) & := b \\
c & := \ldots \\
\ldots a & \ldots \\
d & := \ldots \\
\end{align*}
\]

Simple Greedy Algorithm for Register Allocation

\[
\text{for each } n \in N \text{ do} \\
\quad \{ \text{select } n \text{ in decreasing order of weight} \} \\
\quad \text{if } n \text{ can be colored then} \\
\quad \quad \{ \text{reserve a register for } n \} \\
\quad \quad \text{do it} \\
\quad \quad \text{else} \\
\quad \quad \text{Remove } n \text{ (and its edges) from graph} \\
\quad \quad \{ \text{allocate } n \text{ to stack (spill)} \}
\]

\[\text{(After spilling b)}\]

\[
\begin{align*}
a & := \ldots \\
r24 & := \ldots \\
\ast(Y+4) & := r24 \\
c & := \ldots \\
\ldots a & \ldots \\
d & := \ldots \\
\end{align*}
\]
Example

Attempt to 3-color this graph (, ,)

What if you use a different order?

Example

Attempt to 2-color this graph (,)
Concepts

Liveness
- Used in register allocation
- Generating liveness
- Flow and direction
- Data-flow equations and analysis

3-address code and Control flow graphs

Register allocation
- scope of allocation
- granularity: what is being allocated to a register
- order that allocation units are visited in matters in all heuristic algorithms

Global approach: greedy coloring

Liveness in the MiniJava compiler