Write your answers on another sheet of paper. Homework assignments are to be completed individually. Handwritten submissions are fine, but they must be readable. Due at the beginning of class. Total points: 100, 5% of course grade

1. [20 Points] Given the following context-free grammar, draw the parse tree that is generated by SableCC for the given input.

Tokens
- `t_assign = '=');`
- `t_l_brc = '{';`
- `t_l_par = '(';`
- `t_plus = '+');`
- `t_r_brc = '}');`
- `t_r_par = ')');`
- `t_sc = ';');`
- `t_equal = "=="`
- `t_false = 'false';`
- `t_if = 'if';`
- `t_true = 'true';`
- `t_id = letter (letter | digit | underscore)*;`
- `t_blank = (' ' | eol | tab)+;`

Ignored Tokens
- `t_blank;`

Productions
- `StmtList = StmtList Stmt | /*empty */ ;`
- `Stmt = IfStmt | AssignStmt | ForStmt | ... ;`
- `AssignStmt = t_id t_assign Expr t_sc ;`
- `Expr = t_id | Expr t_plus Expr | Expr t_equal Expr ;`
- `IfStmt: t_if t_l_par t_true t_r_par t_l_brc StmtList t_r_brc | t_if t_l_par t_false t_r_par t_l_brc StmtList t_r_brc ;`
2. [30 Points] Instruction Scheduling. The loop shown below
for (i=1000; i>0; i--)
 \(x[i] = x[i] + s; \)

\(x[i] = x[i] + s; \)
The DAG for the above code is shown below.

Using the list of priorities we create the following schedule:

```
// body of the loop
Loop:
A: L.D F0, 0(R1) // because this instruction interlocks with successor
D: DADDI R3, R3, #1 // because this instruction doesn’t
  // interlock with A and has a successor
B: ADD.D F4, F0, F2 // because this instruction interlocks with its successor
C: S.D F4, 0(R1) // still interlocks with B for two cycles,
  // but can’t be helped
E: DADDI R1, R1, #1
F: BNE R3, R2, Loop
```

3. [20 Points] On page 43 of the data-flow analysis handout, the authors sketch a proof showing that if statement (9.22) holds, then statement (9.23) holds. Write up the same proof but put in some of the details that they do not explicitly describe. For example, what specific parts of the definition of greatest lower bound support the final step of the proof?

Answer:

Equation (9.22) states that for all \(x \) and \(y \) in the set of possible data-flow values \(V \) and for all \(f \) in the set of transfer functions \(F \), if \(x \leq y \) then \(f(x) \leq f(y) \).

Equation (9.23) states that for all \(x \) and \(y \) in the set of possible data-flow values \(V \) and for all \(f \) in the set of transfer functions \(F \), \(f(x \land y) \leq f(x) \land f(y) \).

We want to show that Equation (9.22) implies Equation (9.23). In the section describing greatest lower bounds, the statement that \(x \land y \) is the only greatest lower bound is shown. Part of the definition of the greatest The first and second part of the greatest lower bound definition combined with the fact that \(x \land y \) is the only greatest lower bound, imply the following: \(x \land y \leq x \) and \(x \land y \leq y \).

Combining the above partial ordering relationships with Equation (9.22), we can conclude that \(f(x \land y) \leq f(x) \) and \(f(x \land y) \leq f(y) \). The third point in the definition of greatest lower bounds specifies that if \(z \) is any element such that \(z \leq x \) and \(z \leq y \), then \(z \) will also be
partially order before the greatest lower bound, \(z \leq x \land y \). Since \(f(x) \land f(y) \) is the greatest lower bound of \(f(x) \) and \(f(y) \), \(f(x \land y) \leq f(x) \land f(y) \), and according to the third point in the definition of greatest lower bounds, \(f(x \land y) \leq f(x) \land f(y) \) thus proving that Equation (9.22) implies Equation (9.23).

4. [20 Points] Do Exercise 9.3.5 in the data-flow analysis handout. “Suppose the set \(F \) of functions for a framework are all of gen-kill form. That is, the domain \(V \) is the power set of some set, and \(f(x) = G \cup (x - K) \) for some sets \(G \) and \(K \). Prove that if the meet operator is either (a) union or (b) intersection, then the framework is distributive.”

Answer:
To be distributive, a data-flow framework must satisfy the following condition:

\[
f(x \land y) = f(x) \land f(y)
\]

for all \(x \) and \(y \) in the set of possible data-flow values \(V \) and for all transfer functions in the set of functions for the framework \(f \) in \(F \).

(a) When the meet operation is union and the transfer functions are all of the form \(f(x) = G \cup (x - K) \), then we must show the following is true to prove that the framework is distributive:

\[
f(x \cup y) = f(x) \cup f(y)
\]

Upon substituting the form of the function

\[
G \cup ((x \cup y) - K) = G \cup (x - K) \cup G \cup (y - K)
\]

\[
((x \cup y) - K) = (x - K) \cup (y - K)
\]

by distributivity of set difference the above equation is true.

(b) When the meet operation is intersection and the transfer functions are all of the form \(f(x) = G \cup (x - K) \), then we must show the following is true to prove that the framework is distributive:

\[
f(x \cap y) = f(x) \cap f(y)
\]

Upon substituting the form of the function

\[
G \cup ((x \cap y) - K) = (G \cup (x - K)) \cap (G \cup (y - K))
\]

\[
((x \cap y) - K) = (x - K) \cap (y - K)
\]

by distributivity of set difference the above equation is true.

5. [20 Points] Activity analysis is a data-flow analysis needed in the context of Automatic Differentiation. One piece of activity analysis is a forward data-flow analysis called vary analysis. The goal of vary analysis is to determine the set of variables in a procedure that depend on a specified subset of independent variables at various points in the program. For example, in the below program, if \(x \) is the independent variable of interest, then \(\text{OUT}(s1) = \{a, x\} \), \(\text{OUT}(s2) = \{a, b, x\} \), \(\text{OUT}(s3) = \{b, x\} \), and \(\text{OUT}(s4) = \{b, x, y\} \).
```plaintext
// independent = \{ x \}
s1: a = x + 3;
s2: b = a * 2;
s3: a = c;
s4: y = a + b;
```

Vary analysis has the following specification:

- must or may: may
- direction: forward
- meet: union
- data-flow values: sets of variables
- initial value: empty set
- OUT\[entry\] = the set of independent variables
- transfer function: \(f(X) = GEN \cup (X - KILL) \)

\(GEN \) is defined as the set of variables being defined in the statement, if a variable in \(X \) is being used in the statement. \(KILL \) is the set of variables being defined in the statement.

Perform vary analysis on the following procedure using iterative data-flow analysis. For each statement in the loop, show the OUT data-flow set. How many iterations of iterative data-flow analysis are required for convergence assuming that the statements are visited in the order they are listed in the program?

```plaintext
// independent = \{ a \}
for ( i=0; i<N; i++ ) {
    e = a + b + c + d;
    d = c + b;
    c = b * a;
    b = a - 3;
}
```

Answer:

It takes five iterations to solve vary analysis on the provided example. This happens because even though a variable is either in the vary set or not, the status each variable is affected by the status of other variables. Such an analysis is sometimes called non-separable.

<table>
<thead>
<tr>
<th>statement</th>
<th>OUT(statement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e = a+ b + c + d;</td>
<td>a e a b c e a b c d e a b c d e</td>
</tr>
<tr>
<td>d = c + b;</td>
<td>a e a b c d e a b c d e a b c d e</td>
</tr>
<tr>
<td>c = b*a ;</td>
<td>a c e a b c d e a b c d e a b c d e</td>
</tr>
<tr>
<td>b = a - 3;</td>
<td>a b c e a b c d e a b c d e a b c d e</td>
</tr>
</tbody>
</table>