Induction Variables

Announcements
- HW1 due Friday

Last Time
- Code Motion

Today
- Induction variables

Induction Variables

Induction variable identification
- Induction variables
 - Variables whose values form an arithmetic progression

Why bother?
- Useful for strength reduction, induction variable elimination, loop transformations, and automatic parallelization

Simple approach
- Search for statements of the form, $i = i + c$
- Examine ud-chains to make sure there are no other defs of i in the loop
- Does not catch all induction variables. Examples?

Example Induction Variables

```c
s = 0;
for (i=0; i<N; i++)
  s += a[i];
```
Induction Variable Triples

Each induction variable \(k \) is associated with a triple \((i, c_1, c_2)\)
- \(i \) is a basic induction variable
- \(c_1 \) and \(c_2 \) are constants such that \(k = c_1 + c_2 \cdot i \) when \(k \) is defined
- \(k \) belongs to the family of \(i \)

Basic induction variables
- their triple is \((i, 0, 1)\)
- \(i = 0 + 1 \cdot i \) when \(i \) is defined

Algorithm for Identifying Induction Variables

Input: A loop \(L \) consisting of 3-address instructions, ud-chains, and loop-invariant information.
Output: A set of induction variables, each with an associated triple.
Algorithm:
1. For each stmt in \(L \) that matches the pattern \(i = i + c \) or \(i = i - c \)
 create the triple \((i, 0, 1)\).
2. Derived induction variables: For each stmt of \(L \),
 - If the stmt is of the form \(k = j + c_1 \) or \(k = j \cdot c_2 \)
 and \(j \) is an induction variable with the triple \((x, p, q)\)
 and \(c_1 \) and \(c_2 \) are loop invariant
 and \(k \) is only defined once in the loop
 and if \(j \) is a derived induction variable belonging to the family of \(i \) then
 the only def of \(j \) that reaches \(k \) must be in \(L \)
 and no def of \(i \) must occur on any path between the definition of \(j \) and \(k \)
 then create the triple \((x, p + c_1, q)\) for \(k = j + c_1 \)
 or \((x, p \cdot c_2, q \cdot c_2)\) for \(k = j \cdot c_2 \)

Example: Induction Variable Detection

![Example Diagram]

Picture from Prof David Walker’s CS320 slides

Algorithm for Strength Reduction

Input: A loop \(L \) consisting of 3-address instructions and induction variable triples.
Output: A modified loop with a new preheader.
Algorithm:
1. For each derived induction variable \(j \) with triple \((i, p, q)\)
 create a new \(j' \)
 after each definition of \(i \) in \(L \), where \(i = i + c \) put computation \(sq \cdot t \) in preheader
 replace the definition of \(j \) with \(\text{j' = j' + i} \)
 initialize \(j' \) at the end of the preheader to \(j' = p + q \cdot t \)

Note:
- \(j' \) also has triple \((i, p, q)\)
- multiplication has been moved out of the loop
Algorithm for Induction Variable Elimination

Input: A loop L consisting of 3-address instructions, ud-chains, loop-invariant information, and live-variable information.

Output: A revised loop.

Algorithm:

1. For each induction variable i
 - If only use is define itself and is dead out of loop exit nodes, then mark as eliminated
 - else if only uses are to compute other induction variables in its family and in conditional branches, then mark as eliminated
 - Use a triple (j, c, d) in family associated with variable k
 - Modify each conditional involving i so that k is used instead, uses relationships set up with triples
 - Delete all assignments to the eliminated induction variable
2. Apply copy propagation followed by dead code elimination to eliminate copies introduced by strength-reduction.
3. Remove any induction variable definitions where the induction variable is only used and defined within that definition.

Example: Strength Reduction

```
1:  i1 = 0
2:  i2 = 0
3:  branch (l2 = N)
4:  i3 = i2 * 1
5:  i4 = i3 + a
6:  i5 = i4 + c
7:  l1 = i1 + e
8:  i2 = i2 + 1
9:  jump
```

Summary

Induction variable detection uses
- strength reduction and induction variable elimination
- data dependence analysis, which can then be used for parallelization

Strength reduction
- removes multiplications
- the definition for some derived induction variables no longer depend directly on a basic induction variable

Induction variable elimination
- removes unnecessary induction variables

Next Time

Lecture
- Midterm Review