Prelude - IA-64 Compiler Overview

Profiling-Guided Opt
- inlining, procedure layout
- instruction selection, speculation

Interprocedural
- memory disambiguation
- inlining, cloning partial inlining

Data Locality and Parallelization
- loop interchange, skewing, scaling fusion, unroll and jam, distribution
- scalar replacement, data prefetch
- OpenMP parallel, vectorization

Global Scalar Optimizations
- modified PRE, dead code, ...

Scheduling
- Predication, SW pipelining, ...

From "An Overview of the Intel IA-64 Compiler" (1999) by Dulong et al.

Static Single Assignment Form

Last Time
- Induction variable detection and elimination and strength reduction

Today
- Program representations
- Static single assignment (SSA) form
 - Program representation for sparse data-flow
 - Conversion to and from SSA

Next Time
- Applications of SSA

Data Dependence

Definition
- Data dependences are constraints on the order in which statements may be executed

We say statement \(s_j \) depends on \(s_i \)
- **Flow (true) dependence**: \(s_i \) writes memory that \(s_j \) later reads (RAW)
- **Anti-dependence**: \(s_i \) reads memory that \(s_j \) later writes (WAR)
- **Output dependences**: \(s_i \) writes memory that \(s_j \) later writes (WAW)
- **Input dependences**: \(s_i \) reads memory that \(s_j \) later reads (RAR)

True dependences
- Flow dependences represent actual flow of data

False dependences
- Anti- and output dependences reflect reuse of memory, not actual data flow; can often be eliminated

Example

\[
\begin{align*}
 s_1 & : a = b; \\
 s_2 & : b = c + d; \\
 s_3 & : e = a + d; \\
 s_4 & : b = 3; \\
 s_5 & : f = b * 2;
\end{align*}
\]
Representing Data Dependences

Implicitly
- Using variable defs and uses
- Pros: simple
- Cons: hides data dependence (analyses must find this info)

Def-use chains (du chains)
- Link each def to its uses
- Pros: explicit; therefore fast
- Cons: must be computed and updated, space consuming

Alternate representations
- e.g., Static single assignment form (SSA), Program Dependence Graph (PDG), dependence flow graphs (DFG), value dependence graphs (VDG),

DU Chains

Definition
- du chains link each def to its uses

Example

```
s_1     a = b;
s_2     b = c + d;
s_3     e = a + d;
s_4     b = 3;
s_5     f = b * 2;
```

UD Chains

Definition
- ud chains link each use to its defs

Example

```
s_1     a = b;
s_2     b = c + d;
s_3     e = a + d;
s_4     b = 3;
s_5     f = b * 2;
```

Role of Alternate Program Representations

Advantage
- Allow analyses and transformations to be simpler & more efficient/effective

Disadvantage
- May not be “executable” (requires extra translations to and from)
- May be expensive (in terms of time or space)

Process

```
Original Code (RTL) ➔ SSA Code1 ➔ SSA Code2 ➔ SSA Code3
Optimized Code (RTL)
```

T1 ➔ T2
Static Single Assignment (SSA) Form

Idea
– Each variable has only one static definition
– Makes it easier to reason about values instead of variables
– Similar to the notion of functional programming

Transformation to SSA
– Rename each definition
– Rename all uses reached by that assignment

Example
\[
\begin{align*}
 v & := \ldots \\
 \ldots & := \ldots v \ldots \\
 v & := \ldots \\
 \ldots & := \ldots v \ldots \\
 \end{align*}
\]

What do we do when there’s control flow?

SSA and Control Flow

Problem
– A use may be reached by several definitions

Merging Definitions
– \(\phi \)-functions merge multiple reaching definitions

Example
\[
\begin{align*}
 v & := \ldots \\
 v_0 & := \ldots \\
 v & := \ldots \\
 v & := \ldots \\
\end{align*}
\]

Another Example

Example
\[
\begin{align*}
 v & := 1 \\
 v_0 & := 1 \\
 v & := v+1 \\
 v_1 & := \phi(v_0, v_2) \\
 v_2 & := v_1 + 1 \\
\end{align*}
\]
SSA vs. ud/du Chains

SSA form is more constrained

Advantages of SSA
– More compact
– Some analyses become simpler when each use has only one def'
– Value merging is explicit
– Easier to update and manipulate?

Furthermore
– Eliminates false dependences (simplifying context)

for (i=0; i<n; i++)
 A[i] = i;

for (i=0; i<n; i++)
 print(foo(i));

SSA vs. ud/du Chains (cont)

Worst case du-chains?

switch (c1) {
 case 1: x = 1; break;
 case 2: x = 2; break;
 case 3: x = 3; break;
}

switch (c2) {
 case 1: y1 = x; break;
 case 2: y2 = x; break;
 case 3: y3 = x; break;
 case 4: y4 = x; break;
}

m defs and n uses leads to m×n du chains

Transformation to SSA Form

Two steps
– Insert ϕ-functions
– Rename variables

Where Do We Place ϕ-Functions?

Basic Rule
– If two distinct (non-null) paths $x\rightarrow z$ and $y\rightarrow z$ converge at node z, and
 nodes x and y contain definitions of variable v, then a
 ϕ-function for v is inserted at z
Approaches to Placing ϕ-Functions

Minimal
- As few as possible subject to the basic rule

Briggs-Minimal
- Same as minimal, except v must be live across some edge of the CFG

Pruned
- Same as minimal, except dead ϕ-functions are not inserted

What’s the difference between Briggs Minimal and Pruned SSA?

Briggs Minimal vs. Pruned

Briggs Minimal will add a ϕ function because v is live across the blue edge, but Pruned SSA will not because the ϕ function is dead.

Neither Briggs Minimal nor Pruned SSA will place a ϕ function in this case because v is not live across any CFG edge.

Why would we ever use Briggs Minimal instead of Pruned SSA?

Machinery for Placing ϕ-Functions

Recall Dominators
- $d\text{ dom }i$ if all paths from entry to node i include d
- $d\text{ sdom }i$ if $d\text{ dom }i$ and $d\neq i$

Dominance Frontiers
- The **dominance frontier** of a node d is the set of nodes that are “just barely” not dominated by d; i.e., the set of nodes n, such that
 - d dominates a predecessor p of n, and
 - d does not strictly dominate n
- $DF(d) = \{n | \exists p \in \text{pred}(n), d\text{ dom }p \text{ and } d\not\text{ sdom }n\}$

Notational Convenience
- $DF(S) = \bigcup_{s \in S} DF(s)$

Dominance Frontier Example

Nodes in Dom(5)

What’s significant about the Dominance Frontier?

In SSA form, definitions must dominate uses
Dominance Frontier Example II

\[DF(d) = \{ n \mid \exists p \in \text{pred}(n), d \text{ dom } p \text{ and } d \not\text{sdom } n \} \]

\[\text{Dom}(5) = \{ 5, 6, 7, 8 \} \]

\[DF(5) = \{ 4, 5, 13 \} \]

In this graph, node 4 is the first point of convergence between the entry and node 5, so do we need a \(\phi \)-function at node 13?

Dominance Frontiers Revisited

Suppose that node 3 defines variable \(x \)

\[DF(3) = \{ 5 \} \]

Do we need to insert a \(\phi \)-function for \(x \) anywhere else?

Yes. At node 6. Why?

SRA Exercise

\[DF(8) = \{ 10 \} \]

\[DF(9) = \{ 10 \} \]

\[DF(2) = \{ 6 \} \]

\[DF(\{ 8, 9 \}) = \{ 10 \} \]

\[DF(10) = \{ 6 \} \]

\[DF(\{ 2, 8, 9, 6, 10 \}) = \{ 6, 10 \} \]

Dominance Frontiers and SSA

Let

\[DF_1(S) = DF(S) \]

\[DF_{i+1}(S) = DF(S \cup DF_i(S)) \]

Iterated Dominance Frontier

\[DF_n(S) \]

Theorem

\[\text{If } S \text{ is the set of CFG nodes that define variable } v, \text{ then } DF_n(S) \text{ is the set of nodes that require } \phi \text{-functions for } v \]
Algorithm for Inserting ϕ-Functions

for each variable v
 WorkList $\leftarrow \emptyset$
 EverOnWorkList $\leftarrow \emptyset$
 AlreadyHasPhiFunc $\leftarrow \emptyset$
for each node n containing an assignment to v
 WorkList \leftarrow WorkList \cup $\{n\}$
 EverOnWorkList \leftarrow WorkList
while WorkList $\neq \emptyset$
 Remove some node n for WorkList
 for each $d \in \text{DF}(n)$
 if $d \notin$ AlreadyHasPhiFunc
 Insert a ϕ-function for v at d
 AlreadyHasPhiFunc \leftarrow AlreadyHasPhiFunc \cup $\{d\}$
 if $d \notin$ EverOnWorkList
 WorkList \leftarrow WorkList \cup $\{d\}$
 EverOnWorkList \leftarrow EverOnWorkList \cup $\{d\}$

Put all defs of v on the worklist
Put all v on the worklist

Concepts

Data dependences
- Three kinds of data dependences
- du-chains
Alternate representations
SSA form
Conversion to SSA form
- ϕ-function placement

Variable Renaming

Basic idea
- When we see a variable on the LHS, create a new name for it
- When we see a variable on the RHS, use appropriate subscript

Easy for straightline code

Use a stack when there’s control flow
- For each use of x, find the definition of x that dominates it

Traverse the dominance tree
The dominance tree shows the dominance relation.

```
1
2 3 4 5 6 7 8 9 10 11 12 13
```

Variable Renaming Algorithm

```plaintext
procedure Rename(block b)
    if b previously visited return
    GenName(LHS(p)) and replace v with v_i, where i=Top(Stack[v])
    for each statement s in b (in order)
        for each variable v ∈ RHS(s)
            replace v by v_i, where i=Top(Stack[v])
    for each variable v ∈ LHS(s)
        GenName(v) and replace v with v_i, where i=Top(Stack[v])
    for each v_i ∈ LHS(t)
        Pop(Stack[v])
    for each φ-function or statement t in b
        Rename(s)
```

Transformation from SSA Form

Proposal

- Restore original variable names (i.e., drop subscripts)
- Delete all φ-functions

Complications

- What if versions get out of order?
 (simultaneously live ranges)

Desired Behavior

- Perform dead code elimination (to prune φ-functions)
- Replace φ-functions with copies in predecessors
- Rely on register allocation coalescing to remove unnecessary copies