GCC Compiler Overview

GCC Overview cont...

SSA Optimizers
- vectorization
- loop optimizations
- scalar optimizations: CCP, DCE, DSE, FRE, PRE, VRP, SRA
- field-sensitive, points-to alias analysis

RTL Optimizers
- RTL has infinite registers
- register allocation
- scheduling, SW pipelining, CSE, ...

Static Single Assignment Form

Last Time
- Static single assignment (SSA) form

Today
- Continue conversion to and from SSA
- Applications of SSA
Transformation to SSA Form

Two steps
- Insert ϕ-functions
- Rename variables
Inserting Phi Nodes

Calculate the dominator tree
– a lot of research has gone into calculating this quickly

Computing dominance frontier from dominator tree
– $DF_{\text{local}}[n]$ = successors of n (in CFG) that are not strictly dominated by n
– $DF_{\text{up}}[n]$ = nodes in the dominance frontier of n that are not strictly dominated by n’s immediate dominator
– $DF[n] = DF_{\text{local}}[n] \cup \bigcup_{c \in \text{children}[n]} DF_{\text{up}}[c]$
Variable Renaming

Basic idea
- When we see a variable on the LHS, create a new name for it
- When we see a variable on the RHS, use appropriate subscript

Easy for straightline code

\[
\begin{align*}
 x &= x \\
 x &= x
\end{align*}
\]

\[
\begin{align*}
 x_0 &= x_0 \\
 x_1 &= x_1
\end{align*}
\]

Use a stack when there’s control flow
- For each use of x, find the definition of x that dominates it

Traverse the dominance tree

\[
\begin{align*}
 x &= x \\
 x &= x
\end{align*}
\]

\[
\begin{align*}
 x_0 &= x_0
\end{align*}
\]
Dominance Tree Example

The dominance tree shows the dominance relation

![Dominance Tree Example Diagram]
Variable Renaming (cont)

Data Structures

- **Stacks[v] ∀v**
 Holds the subscript of most recent definition of variable v, initially empty

- **Counters[v] ∀v**
 Holds the current number of assignments to variable v; initially 0

Auxiliary Routine

procedure GenName(variable v)

1. i := Counters[v]
2. push i onto Stacks[v]
3. Counters[v] := i + 1

Use the Dominance Tree to remember the most recent definition of each variable
Variable Renaming Algorithm

procedure Rename(block b)
 if b previously visited return

 for each statement s in b (in order)
 for each variable v ∈ RHS(s) (except for φ-functions)
 replace v by v_i, where i = Top(Stacks[v])
 for each variable v ∈ LHS(s)
 GenName(v) and replace v with v_i, where i=Top(Stack[ν])

 for each s ∈ succ(b) (in CFG)
 j ← position in s’s φ-function corresponding to block b
 for each φ-function p in s
 replace the j^th operand of RHS(p) by v_i, where i = Top(Stack[ν])

 for each s ∈ child(b) (in DT)
 Rename(s)
 for each φ-function or statement t in b
 for each v_i ∈ LHS(t)
 Pop(Stack[v])

 Call Rename(entry-node)

 Recurse using Depth First Search

 Unwind stack when done with this node
Transformation from SSA Form

Proposal
- Restore original variable names (i.e., drop subscripts)
- Delete all ϕ-functions

Complications
- What if versions get out of order?
 (simultaneously live ranges)

Alternative
- Perform dead code elimination (to prune ϕ-functions)
- Replace ϕ-functions with copies in predecessors
- Rely on register allocation coalescing to remove unnecessary copies
Dead Code Elimination for SSA

Dead code elimination

while ∃ a variable v with no uses and whose def has no other side effects
Delete the statement s that defines v
for each of s’s uses w
Delete the use from list of uses of variable w

\[
\begin{align*}
x &= a + b \\
y &= x + 3
\end{align*}
\]

If y becomes dead and there are no other uses of x, then the assignment to x becomes dead, too

Contrast this approach with one that uses liveness analysis

This algorithm updates information incrementally

With liveness, we need to invoke liveness and dead code elimination iteratively until we reach a fixed point
Implementing Simple Constant Propagation

Standard worklist algorithm
- Identifies simple constants
- For each program point, maintains one constant value for each variable

Problem
- Inefficient, since constants may have to be propagated through irrelevant nodes

Solution
- Exploit a sparse dependence representation (e.g., SSA)
Sparse Simple Constant Propagation

Reif and Lewis algorithm
- Identifies simple constants
- Faster than Simple Constants algorithm

SSA edges
- Explicitly connect defs with uses
- How would you do this?

Main Idea
- Iterate over SSA edges instead of over all CFG edges

\[
x = 1
\]

\[
y = x
\]
Sparse Simple Constants Algorithm (Ch. 19 in Appel)

worklist = all statements in SSA

while worklist ≠ ∅

 Remove some statement S from worklist
 if S is x = phi(c,c,...,c) for some constant c
 replace S with v = c
 if S is x=c for some constant c
 delete S from program
 for each statement T that uses x
 substitute c for x in T
 worklist = worklist union {T}
Copy Propagation

Algorithm
worklist = all statements in SSA
while worklist $\neq \emptyset$

Remove some statement S from worklist
if S is $x = \phi(y)$ or $x = y$

for each statement T that uses x
replacem all use of x with y
worklist = worklist union {T}

delete S
Concepts

SSA construction
- Place phi nodes
- Variable renaming

Transformation from SSA to executable code depends on the optimizations copy propagation, dead-code elimination, and coalescing

Some optimizations that are simpler and more efficient with SSA
- dead-code elimination
- constant propagation
- copy propagation

Others that weren’t covered
- induction variable detection, strength reduction, and elimination
- register allocation
- ...

Next Time

Assignments

– Read Alpern and Zadeck paper on value numbering

Lecture

– Using SSA for value numbering
Backward Analyses vs. Forward Analyses

For forward data-flow analysis, at phi node apply meet function

For backward data-flow analysis?

\[v_2 := \phi(v_0, v_1) \]

\[\ldots v_2 \ldots \]
Static Single Information Form (SSI)

Figure 5.1: A comparison of SSA (left) and SSI (right) forms.

Ananian’s Masters Thesis, 1997 MIT