Tiling: A Data Locality Optimizing Algorithm

Previously
- Kelly & Pugh transformation framework
- Affine space partitions for parallelism

Today
- “Unroll and Jam” and Tiling
- Specifying tiling in the Kelly and Pugh transformation framework
- Status of code generation for tiling

Loop Unrolling

Motivation
- Reduces loop overhead
- Improves effectiveness of other transformations
 - Code scheduling
 - CSE

The Transformation
- Make n copies of the loop; n is the **unrolling factor**
- Adjust loop bounds accordingly

Loop Unrolling (cont)

Example
```plaintext
do i=1,n
  A(i) = B(i) + C(i)
enddo
```
```plaintext
do i=1,n-1 by 2
  A(i) = B(i) + C(i)
A(i+1) = B(i+1) + C(i+1)
enddo
if (i=n)
  A(i) = B(i) + C(i)
```

Details
- When is loop unrolling legal?
- Handle end cases with a cloned copy of the loop
 - Enter this special case if the remaining number of iteration is less than the unrolling factor

Loop Balance

Problem
- We’d like to produce loops with the right balance of memory operations and floating point operations
- The ideal balance is machine-dependent
 - e.g. How many load-store units are connected to the L1 cache?
 - e.g. How many functional units are provided?

Example
```plaintext
do j = 1,2*n
  do i = 1,m
    A(j) = A(j) + B(i)
  enddo
enddo
```
- The inner loop has 1 memory operation per iteration and 1 floating point operation per iteration
- If our target machine can only support 1 memory operation for every two floating point operations, this loop will be memory bound

What can we do?
Unroll and Jam

Idea
- Restructure loops so that loaded values are used many times per iteration

Unroll and Jam
- Unroll the outer loop some number of times
- Fuse (Jam) the resulting inner loops

Example

```
do j = 1, 2*n
  do i = 1, m
    A(j) = A(j) + B(i)
  enddo
enddo
```

Unroll the Outer Loop

```
do j = 1, 2*n by 2
  do i = 1, m
    A(j) = A(j) + B(i)
  enddo
enddo
```

Jam the inner loops

```
do j = 1, 2*n by 2
  do i = 1, m
    A(j) = A(j) + B(i)
    A(j+1) = A(j+1) + B(i)
  enddo
enddo
```

- The inner loop has 1 load per iteration and 2 floating point operations per iteration
- We reuse the loaded value of B(i)
- The Loop Balance matches the machine balance

Tiling

A non-unimodular transformation that...
- groups iteration points into tiles that are executed atomically
- can improve spatial and temporal data locality
- can expose larger granularities of parallelism

Implementing tiling
- how can we specify tiling?
- when is tiling legal?
- how do we generate tiled code?

```
do ii = 1, 6, by 2
  do jj = 1, 5, by 2
    do i = ii, ii+2-1
      do j = jj, min(jj+2-1, 5)
        A(i,j) = ...
      enddo
    enddo
  enddo
enddo
```
Specifying Tiling

Rectangular tiling
- tile size vector \((s_1, s_2, \ldots, s_d)\)
- tile offset, \((o_1, o_2, \ldots, o_d)\)

Possible Transformation Mappings
- creating a tile space
\[
\{(i, j) \rightarrow [ti, tj, i, j] \mid ti = \text{floor}(i - o_1)/s_1 \\
\& tj = \text{floor}((j - o_2)/s_2)\}
\]
- keeping tile iterators in original iteration space
\[
\{(i, j) \rightarrow [ii, jj, i, j] \mid ii = s_1\text{floor}(i - o_1)/s_1 \\
\& jj = s_1\text{floor}((j - o_2)/s_2)\}
\]

Legality of Tiling
A legal rectangular tiling
- each tile executed atomically
- no dependence cycles between tiles
- Check legality by verifying that transformed data dependences are lexicographically positive

Fully permutable loops
- rectangular tiling is legal on fully permutable loops

Code Generation for Tiling

Fixed-size Tiles
- Omega library
- Cloog
- for rectangular space and tiles, straight-forward

Parameterized tile sizes
- Parameterized tiled loops for free, PLDI 2007
- TLOG - A Tiled Loop Generator, http://www.cs.colostate.edu/~ln/TLOG/

Overview of decoupled approach
- find polyhedron that may contain any loop origins
- generate code that traverses that polyhedron
- post process the code to start a tile origins and step by tile size
- generate loops over points in tile to stay within original iteration space and within tile

Unroll and Jam IS Tiling (followed by inner loop unrolling)

Original Loop
\[
do j = 1, 2n \\
do i = 1, m \\
A(j) = A(j) + B(i) \\
enddo
enddo
\]

After Tiling
\[
do jj = 1, 2n by 2 \\
do i = 1, m \\
do j = jj, jj+2-1 \\
A(j) = A(j) + B(i) \\
enddo
enddo
\]

After Unroll and Jam
\[
do jj = 1, 2n by 2 \\
do i = 1, m \\
A(j) = A(j)+B(i) \\
A(j+1) = A(j+1)+B(i) \\
enddo
enddo
\]
Concepts

Unroll and Jam is the same as Tiling with the inner loop unrolled

Tiling can improve ...
- loop balance
- spatial locality
- data locality
- computation to communication ratio

Implementing tiling
- specification
- checking legality
- code generation

Next Time

Lecture
- Run-time reordering transformations

Suggested Exercises
- after array expansion of the scalar T, is it legal to tile the three loops in Figure 11.23? write the tiled code for a block size of your choice.